![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elxp6 | GIF version |
Description: Membership in a cross product. This version requires no quantifiers or dummy variables. See also elxp4 5118. (Contributed by NM, 9-Oct-2004.) |
Ref | Expression |
---|---|
elxp6 | ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = ⟨(1st ‘𝐴), (2nd ‘𝐴)⟩ ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2750 | . 2 ⊢ (𝐴 ∈ (𝐵 × 𝐶) → 𝐴 ∈ V) | |
2 | opexg 4230 | . . . 4 ⊢ (((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶) → ⟨(1st ‘𝐴), (2nd ‘𝐴)⟩ ∈ V) | |
3 | 2 | adantl 277 | . . 3 ⊢ ((𝐴 = ⟨(1st ‘𝐴), (2nd ‘𝐴)⟩ ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶)) → ⟨(1st ‘𝐴), (2nd ‘𝐴)⟩ ∈ V) |
4 | eleq1 2240 | . . . 4 ⊢ (𝐴 = ⟨(1st ‘𝐴), (2nd ‘𝐴)⟩ → (𝐴 ∈ V ↔ ⟨(1st ‘𝐴), (2nd ‘𝐴)⟩ ∈ V)) | |
5 | 4 | adantr 276 | . . 3 ⊢ ((𝐴 = ⟨(1st ‘𝐴), (2nd ‘𝐴)⟩ ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶)) → (𝐴 ∈ V ↔ ⟨(1st ‘𝐴), (2nd ‘𝐴)⟩ ∈ V)) |
6 | 3, 5 | mpbird 167 | . 2 ⊢ ((𝐴 = ⟨(1st ‘𝐴), (2nd ‘𝐴)⟩ ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶)) → 𝐴 ∈ V) |
7 | elxp4 5118 | . . 3 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = ⟨∪ dom {𝐴}, ∪ ran {𝐴}⟩ ∧ (∪ dom {𝐴} ∈ 𝐵 ∧ ∪ ran {𝐴} ∈ 𝐶))) | |
8 | 1stvalg 6145 | . . . . . 6 ⊢ (𝐴 ∈ V → (1st ‘𝐴) = ∪ dom {𝐴}) | |
9 | 2ndvalg 6146 | . . . . . 6 ⊢ (𝐴 ∈ V → (2nd ‘𝐴) = ∪ ran {𝐴}) | |
10 | 8, 9 | opeq12d 3788 | . . . . 5 ⊢ (𝐴 ∈ V → ⟨(1st ‘𝐴), (2nd ‘𝐴)⟩ = ⟨∪ dom {𝐴}, ∪ ran {𝐴}⟩) |
11 | 10 | eqeq2d 2189 | . . . 4 ⊢ (𝐴 ∈ V → (𝐴 = ⟨(1st ‘𝐴), (2nd ‘𝐴)⟩ ↔ 𝐴 = ⟨∪ dom {𝐴}, ∪ ran {𝐴}⟩)) |
12 | 8 | eleq1d 2246 | . . . . 5 ⊢ (𝐴 ∈ V → ((1st ‘𝐴) ∈ 𝐵 ↔ ∪ dom {𝐴} ∈ 𝐵)) |
13 | 9 | eleq1d 2246 | . . . . 5 ⊢ (𝐴 ∈ V → ((2nd ‘𝐴) ∈ 𝐶 ↔ ∪ ran {𝐴} ∈ 𝐶)) |
14 | 12, 13 | anbi12d 473 | . . . 4 ⊢ (𝐴 ∈ V → (((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶) ↔ (∪ dom {𝐴} ∈ 𝐵 ∧ ∪ ran {𝐴} ∈ 𝐶))) |
15 | 11, 14 | anbi12d 473 | . . 3 ⊢ (𝐴 ∈ V → ((𝐴 = ⟨(1st ‘𝐴), (2nd ‘𝐴)⟩ ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶)) ↔ (𝐴 = ⟨∪ dom {𝐴}, ∪ ran {𝐴}⟩ ∧ (∪ dom {𝐴} ∈ 𝐵 ∧ ∪ ran {𝐴} ∈ 𝐶)))) |
16 | 7, 15 | bitr4id 199 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = ⟨(1st ‘𝐴), (2nd ‘𝐴)⟩ ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶)))) |
17 | 1, 6, 16 | pm5.21nii 704 | 1 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = ⟨(1st ‘𝐴), (2nd ‘𝐴)⟩ ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶))) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2148 Vcvv 2739 {csn 3594 ⟨cop 3597 ∪ cuni 3811 × cxp 4626 dom cdm 4628 ran crn 4629 ‘cfv 5218 1st c1st 6141 2nd c2nd 6142 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-sbc 2965 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-iota 5180 df-fun 5220 df-fv 5226 df-1st 6143 df-2nd 6144 |
This theorem is referenced by: elxp7 6173 oprssdmm 6174 eqopi 6175 1st2nd2 6178 eldju2ndl 7073 eldju2ndr 7074 aptap 8609 qredeu 12099 qnumdencl 12189 tx1cn 13854 tx2cn 13855 psmetxrge0 13917 xmetxpbl 14093 |
Copyright terms: Public domain | W3C validator |