ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elxp6 GIF version

Theorem elxp6 6245
Description: Membership in a cross product. This version requires no quantifiers or dummy variables. See also elxp4 5167. (Contributed by NM, 9-Oct-2004.)
Assertion
Ref Expression
elxp6 (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩ ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶)))

Proof of Theorem elxp6
StepHypRef Expression
1 elex 2782 . 2 (𝐴 ∈ (𝐵 × 𝐶) → 𝐴 ∈ V)
2 opexg 4271 . . . 4 (((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶) → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ V)
32adantl 277 . . 3 ((𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩ ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶)) → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ V)
4 eleq1 2267 . . . 4 (𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩ → (𝐴 ∈ V ↔ ⟨(1st𝐴), (2nd𝐴)⟩ ∈ V))
54adantr 276 . . 3 ((𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩ ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶)) → (𝐴 ∈ V ↔ ⟨(1st𝐴), (2nd𝐴)⟩ ∈ V))
63, 5mpbird 167 . 2 ((𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩ ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶)) → 𝐴 ∈ V)
7 elxp4 5167 . . 3 (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = ⟨ dom {𝐴}, ran {𝐴}⟩ ∧ ( dom {𝐴} ∈ 𝐵 ran {𝐴} ∈ 𝐶)))
8 1stvalg 6218 . . . . . 6 (𝐴 ∈ V → (1st𝐴) = dom {𝐴})
9 2ndvalg 6219 . . . . . 6 (𝐴 ∈ V → (2nd𝐴) = ran {𝐴})
108, 9opeq12d 3826 . . . . 5 (𝐴 ∈ V → ⟨(1st𝐴), (2nd𝐴)⟩ = ⟨ dom {𝐴}, ran {𝐴}⟩)
1110eqeq2d 2216 . . . 4 (𝐴 ∈ V → (𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩ ↔ 𝐴 = ⟨ dom {𝐴}, ran {𝐴}⟩))
128eleq1d 2273 . . . . 5 (𝐴 ∈ V → ((1st𝐴) ∈ 𝐵 dom {𝐴} ∈ 𝐵))
139eleq1d 2273 . . . . 5 (𝐴 ∈ V → ((2nd𝐴) ∈ 𝐶 ran {𝐴} ∈ 𝐶))
1412, 13anbi12d 473 . . . 4 (𝐴 ∈ V → (((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶) ↔ ( dom {𝐴} ∈ 𝐵 ran {𝐴} ∈ 𝐶)))
1511, 14anbi12d 473 . . 3 (𝐴 ∈ V → ((𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩ ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶)) ↔ (𝐴 = ⟨ dom {𝐴}, ran {𝐴}⟩ ∧ ( dom {𝐴} ∈ 𝐵 ran {𝐴} ∈ 𝐶))))
167, 15bitr4id 199 . 2 (𝐴 ∈ V → (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩ ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶))))
171, 6, 16pm5.21nii 705 1 (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩ ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶)))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1372  wcel 2175  Vcvv 2771  {csn 3632  cop 3635   cuni 3849   × cxp 4671  dom cdm 4673  ran crn 4674  cfv 5268  1st c1st 6214  2nd c2nd 6215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-sbc 2998  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-iota 5229  df-fun 5270  df-fv 5276  df-1st 6216  df-2nd 6217
This theorem is referenced by:  elxp7  6246  oprssdmm  6247  eqopi  6248  1st2nd2  6251  eldju2ndl  7156  eldju2ndr  7157  aptap  8705  qredeu  12338  qnumdencl  12428  tx1cn  14659  tx2cn  14660  psmetxrge0  14722  xmetxpbl  14898
  Copyright terms: Public domain W3C validator