| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elxp6 | GIF version | ||
| Description: Membership in a cross product. This version requires no quantifiers or dummy variables. See also elxp4 5167. (Contributed by NM, 9-Oct-2004.) |
| Ref | Expression |
|---|---|
| elxp6 | ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2782 | . 2 ⊢ (𝐴 ∈ (𝐵 × 𝐶) → 𝐴 ∈ V) | |
| 2 | opexg 4271 | . . . 4 ⊢ (((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶) → 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ V) | |
| 3 | 2 | adantl 277 | . . 3 ⊢ ((𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶)) → 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ V) |
| 4 | eleq1 2267 | . . . 4 ⊢ (𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 → (𝐴 ∈ V ↔ 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ V)) | |
| 5 | 4 | adantr 276 | . . 3 ⊢ ((𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶)) → (𝐴 ∈ V ↔ 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ V)) |
| 6 | 3, 5 | mpbird 167 | . 2 ⊢ ((𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶)) → 𝐴 ∈ V) |
| 7 | elxp4 5167 | . . 3 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = 〈∪ dom {𝐴}, ∪ ran {𝐴}〉 ∧ (∪ dom {𝐴} ∈ 𝐵 ∧ ∪ ran {𝐴} ∈ 𝐶))) | |
| 8 | 1stvalg 6218 | . . . . . 6 ⊢ (𝐴 ∈ V → (1st ‘𝐴) = ∪ dom {𝐴}) | |
| 9 | 2ndvalg 6219 | . . . . . 6 ⊢ (𝐴 ∈ V → (2nd ‘𝐴) = ∪ ran {𝐴}) | |
| 10 | 8, 9 | opeq12d 3826 | . . . . 5 ⊢ (𝐴 ∈ V → 〈(1st ‘𝐴), (2nd ‘𝐴)〉 = 〈∪ dom {𝐴}, ∪ ran {𝐴}〉) |
| 11 | 10 | eqeq2d 2216 | . . . 4 ⊢ (𝐴 ∈ V → (𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ↔ 𝐴 = 〈∪ dom {𝐴}, ∪ ran {𝐴}〉)) |
| 12 | 8 | eleq1d 2273 | . . . . 5 ⊢ (𝐴 ∈ V → ((1st ‘𝐴) ∈ 𝐵 ↔ ∪ dom {𝐴} ∈ 𝐵)) |
| 13 | 9 | eleq1d 2273 | . . . . 5 ⊢ (𝐴 ∈ V → ((2nd ‘𝐴) ∈ 𝐶 ↔ ∪ ran {𝐴} ∈ 𝐶)) |
| 14 | 12, 13 | anbi12d 473 | . . . 4 ⊢ (𝐴 ∈ V → (((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶) ↔ (∪ dom {𝐴} ∈ 𝐵 ∧ ∪ ran {𝐴} ∈ 𝐶))) |
| 15 | 11, 14 | anbi12d 473 | . . 3 ⊢ (𝐴 ∈ V → ((𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶)) ↔ (𝐴 = 〈∪ dom {𝐴}, ∪ ran {𝐴}〉 ∧ (∪ dom {𝐴} ∈ 𝐵 ∧ ∪ ran {𝐴} ∈ 𝐶)))) |
| 16 | 7, 15 | bitr4id 199 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶)))) |
| 17 | 1, 6, 16 | pm5.21nii 705 | 1 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶))) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1372 ∈ wcel 2175 Vcvv 2771 {csn 3632 〈cop 3635 ∪ cuni 3849 × cxp 4671 dom cdm 4673 ran crn 4674 ‘cfv 5268 1st c1st 6214 2nd c2nd 6215 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4478 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-sbc 2998 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4338 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-iota 5229 df-fun 5270 df-fv 5276 df-1st 6216 df-2nd 6217 |
| This theorem is referenced by: elxp7 6246 oprssdmm 6247 eqopi 6248 1st2nd2 6251 eldju2ndl 7156 eldju2ndr 7157 aptap 8705 qredeu 12338 qnumdencl 12428 tx1cn 14659 tx2cn 14660 psmetxrge0 14722 xmetxpbl 14898 |
| Copyright terms: Public domain | W3C validator |