ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elxp6 GIF version

Theorem elxp6 6268
Description: Membership in a cross product. This version requires no quantifiers or dummy variables. See also elxp4 5179. (Contributed by NM, 9-Oct-2004.)
Assertion
Ref Expression
elxp6 (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩ ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶)))

Proof of Theorem elxp6
StepHypRef Expression
1 elex 2785 . 2 (𝐴 ∈ (𝐵 × 𝐶) → 𝐴 ∈ V)
2 opexg 4280 . . . 4 (((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶) → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ V)
32adantl 277 . . 3 ((𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩ ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶)) → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ V)
4 eleq1 2269 . . . 4 (𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩ → (𝐴 ∈ V ↔ ⟨(1st𝐴), (2nd𝐴)⟩ ∈ V))
54adantr 276 . . 3 ((𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩ ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶)) → (𝐴 ∈ V ↔ ⟨(1st𝐴), (2nd𝐴)⟩ ∈ V))
63, 5mpbird 167 . 2 ((𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩ ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶)) → 𝐴 ∈ V)
7 elxp4 5179 . . 3 (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = ⟨ dom {𝐴}, ran {𝐴}⟩ ∧ ( dom {𝐴} ∈ 𝐵 ran {𝐴} ∈ 𝐶)))
8 1stvalg 6241 . . . . . 6 (𝐴 ∈ V → (1st𝐴) = dom {𝐴})
9 2ndvalg 6242 . . . . . 6 (𝐴 ∈ V → (2nd𝐴) = ran {𝐴})
108, 9opeq12d 3833 . . . . 5 (𝐴 ∈ V → ⟨(1st𝐴), (2nd𝐴)⟩ = ⟨ dom {𝐴}, ran {𝐴}⟩)
1110eqeq2d 2218 . . . 4 (𝐴 ∈ V → (𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩ ↔ 𝐴 = ⟨ dom {𝐴}, ran {𝐴}⟩))
128eleq1d 2275 . . . . 5 (𝐴 ∈ V → ((1st𝐴) ∈ 𝐵 dom {𝐴} ∈ 𝐵))
139eleq1d 2275 . . . . 5 (𝐴 ∈ V → ((2nd𝐴) ∈ 𝐶 ran {𝐴} ∈ 𝐶))
1412, 13anbi12d 473 . . . 4 (𝐴 ∈ V → (((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶) ↔ ( dom {𝐴} ∈ 𝐵 ran {𝐴} ∈ 𝐶)))
1511, 14anbi12d 473 . . 3 (𝐴 ∈ V → ((𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩ ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶)) ↔ (𝐴 = ⟨ dom {𝐴}, ran {𝐴}⟩ ∧ ( dom {𝐴} ∈ 𝐵 ran {𝐴} ∈ 𝐶))))
167, 15bitr4id 199 . 2 (𝐴 ∈ V → (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩ ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶))))
171, 6, 16pm5.21nii 706 1 (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩ ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶)))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1373  wcel 2177  Vcvv 2773  {csn 3638  cop 3641   cuni 3856   × cxp 4681  dom cdm 4683  ran crn 4684  cfv 5280  1st c1st 6237  2nd c2nd 6238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3003  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-iota 5241  df-fun 5282  df-fv 5288  df-1st 6239  df-2nd 6240
This theorem is referenced by:  elxp7  6269  oprssdmm  6270  eqopi  6271  1st2nd2  6274  eldju2ndl  7189  eldju2ndr  7190  aptap  8743  qredeu  12494  qnumdencl  12584  tx1cn  14816  tx2cn  14817  psmetxrge0  14879  xmetxpbl  15055
  Copyright terms: Public domain W3C validator