| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > elxp6 | GIF version | ||
| Description: Membership in a cross product. This version requires no quantifiers or dummy variables. See also elxp4 5157. (Contributed by NM, 9-Oct-2004.) | 
| Ref | Expression | 
|---|---|
| elxp6 | ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elex 2774 | . 2 ⊢ (𝐴 ∈ (𝐵 × 𝐶) → 𝐴 ∈ V) | |
| 2 | opexg 4261 | . . . 4 ⊢ (((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶) → 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ V) | |
| 3 | 2 | adantl 277 | . . 3 ⊢ ((𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶)) → 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ V) | 
| 4 | eleq1 2259 | . . . 4 ⊢ (𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 → (𝐴 ∈ V ↔ 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ V)) | |
| 5 | 4 | adantr 276 | . . 3 ⊢ ((𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶)) → (𝐴 ∈ V ↔ 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ V)) | 
| 6 | 3, 5 | mpbird 167 | . 2 ⊢ ((𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶)) → 𝐴 ∈ V) | 
| 7 | elxp4 5157 | . . 3 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = 〈∪ dom {𝐴}, ∪ ran {𝐴}〉 ∧ (∪ dom {𝐴} ∈ 𝐵 ∧ ∪ ran {𝐴} ∈ 𝐶))) | |
| 8 | 1stvalg 6200 | . . . . . 6 ⊢ (𝐴 ∈ V → (1st ‘𝐴) = ∪ dom {𝐴}) | |
| 9 | 2ndvalg 6201 | . . . . . 6 ⊢ (𝐴 ∈ V → (2nd ‘𝐴) = ∪ ran {𝐴}) | |
| 10 | 8, 9 | opeq12d 3816 | . . . . 5 ⊢ (𝐴 ∈ V → 〈(1st ‘𝐴), (2nd ‘𝐴)〉 = 〈∪ dom {𝐴}, ∪ ran {𝐴}〉) | 
| 11 | 10 | eqeq2d 2208 | . . . 4 ⊢ (𝐴 ∈ V → (𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ↔ 𝐴 = 〈∪ dom {𝐴}, ∪ ran {𝐴}〉)) | 
| 12 | 8 | eleq1d 2265 | . . . . 5 ⊢ (𝐴 ∈ V → ((1st ‘𝐴) ∈ 𝐵 ↔ ∪ dom {𝐴} ∈ 𝐵)) | 
| 13 | 9 | eleq1d 2265 | . . . . 5 ⊢ (𝐴 ∈ V → ((2nd ‘𝐴) ∈ 𝐶 ↔ ∪ ran {𝐴} ∈ 𝐶)) | 
| 14 | 12, 13 | anbi12d 473 | . . . 4 ⊢ (𝐴 ∈ V → (((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶) ↔ (∪ dom {𝐴} ∈ 𝐵 ∧ ∪ ran {𝐴} ∈ 𝐶))) | 
| 15 | 11, 14 | anbi12d 473 | . . 3 ⊢ (𝐴 ∈ V → ((𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶)) ↔ (𝐴 = 〈∪ dom {𝐴}, ∪ ran {𝐴}〉 ∧ (∪ dom {𝐴} ∈ 𝐵 ∧ ∪ ran {𝐴} ∈ 𝐶)))) | 
| 16 | 7, 15 | bitr4id 199 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶)))) | 
| 17 | 1, 6, 16 | pm5.21nii 705 | 1 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶))) | 
| Colors of variables: wff set class | 
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 Vcvv 2763 {csn 3622 〈cop 3625 ∪ cuni 3839 × cxp 4661 dom cdm 4663 ran crn 4664 ‘cfv 5258 1st c1st 6196 2nd c2nd 6197 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-iota 5219 df-fun 5260 df-fv 5266 df-1st 6198 df-2nd 6199 | 
| This theorem is referenced by: elxp7 6228 oprssdmm 6229 eqopi 6230 1st2nd2 6233 eldju2ndl 7138 eldju2ndr 7139 aptap 8677 qredeu 12265 qnumdencl 12355 tx1cn 14505 tx2cn 14506 psmetxrge0 14568 xmetxpbl 14744 | 
| Copyright terms: Public domain | W3C validator |