| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elxp6 | GIF version | ||
| Description: Membership in a cross product. This version requires no quantifiers or dummy variables. See also elxp4 5179. (Contributed by NM, 9-Oct-2004.) |
| Ref | Expression |
|---|---|
| elxp6 | ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2785 | . 2 ⊢ (𝐴 ∈ (𝐵 × 𝐶) → 𝐴 ∈ V) | |
| 2 | opexg 4280 | . . . 4 ⊢ (((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶) → 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ V) | |
| 3 | 2 | adantl 277 | . . 3 ⊢ ((𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶)) → 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ V) |
| 4 | eleq1 2269 | . . . 4 ⊢ (𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 → (𝐴 ∈ V ↔ 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ V)) | |
| 5 | 4 | adantr 276 | . . 3 ⊢ ((𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶)) → (𝐴 ∈ V ↔ 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ V)) |
| 6 | 3, 5 | mpbird 167 | . 2 ⊢ ((𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶)) → 𝐴 ∈ V) |
| 7 | elxp4 5179 | . . 3 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = 〈∪ dom {𝐴}, ∪ ran {𝐴}〉 ∧ (∪ dom {𝐴} ∈ 𝐵 ∧ ∪ ran {𝐴} ∈ 𝐶))) | |
| 8 | 1stvalg 6241 | . . . . . 6 ⊢ (𝐴 ∈ V → (1st ‘𝐴) = ∪ dom {𝐴}) | |
| 9 | 2ndvalg 6242 | . . . . . 6 ⊢ (𝐴 ∈ V → (2nd ‘𝐴) = ∪ ran {𝐴}) | |
| 10 | 8, 9 | opeq12d 3833 | . . . . 5 ⊢ (𝐴 ∈ V → 〈(1st ‘𝐴), (2nd ‘𝐴)〉 = 〈∪ dom {𝐴}, ∪ ran {𝐴}〉) |
| 11 | 10 | eqeq2d 2218 | . . . 4 ⊢ (𝐴 ∈ V → (𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ↔ 𝐴 = 〈∪ dom {𝐴}, ∪ ran {𝐴}〉)) |
| 12 | 8 | eleq1d 2275 | . . . . 5 ⊢ (𝐴 ∈ V → ((1st ‘𝐴) ∈ 𝐵 ↔ ∪ dom {𝐴} ∈ 𝐵)) |
| 13 | 9 | eleq1d 2275 | . . . . 5 ⊢ (𝐴 ∈ V → ((2nd ‘𝐴) ∈ 𝐶 ↔ ∪ ran {𝐴} ∈ 𝐶)) |
| 14 | 12, 13 | anbi12d 473 | . . . 4 ⊢ (𝐴 ∈ V → (((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶) ↔ (∪ dom {𝐴} ∈ 𝐵 ∧ ∪ ran {𝐴} ∈ 𝐶))) |
| 15 | 11, 14 | anbi12d 473 | . . 3 ⊢ (𝐴 ∈ V → ((𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶)) ↔ (𝐴 = 〈∪ dom {𝐴}, ∪ ran {𝐴}〉 ∧ (∪ dom {𝐴} ∈ 𝐵 ∧ ∪ ran {𝐴} ∈ 𝐶)))) |
| 16 | 7, 15 | bitr4id 199 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶)))) |
| 17 | 1, 6, 16 | pm5.21nii 706 | 1 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶))) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2177 Vcvv 2773 {csn 3638 〈cop 3641 ∪ cuni 3856 × cxp 4681 dom cdm 4683 ran crn 4684 ‘cfv 5280 1st c1st 6237 2nd c2nd 6238 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3003 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-iota 5241 df-fun 5282 df-fv 5288 df-1st 6239 df-2nd 6240 |
| This theorem is referenced by: elxp7 6269 oprssdmm 6270 eqopi 6271 1st2nd2 6274 eldju2ndl 7189 eldju2ndr 7190 aptap 8743 qredeu 12494 qnumdencl 12584 tx1cn 14816 tx2cn 14817 psmetxrge0 14879 xmetxpbl 15055 |
| Copyright terms: Public domain | W3C validator |