ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elxp6 GIF version

Theorem elxp6 6195
Description: Membership in a cross product. This version requires no quantifiers or dummy variables. See also elxp4 5134. (Contributed by NM, 9-Oct-2004.)
Assertion
Ref Expression
elxp6 (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩ ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶)))

Proof of Theorem elxp6
StepHypRef Expression
1 elex 2763 . 2 (𝐴 ∈ (𝐵 × 𝐶) → 𝐴 ∈ V)
2 opexg 4246 . . . 4 (((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶) → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ V)
32adantl 277 . . 3 ((𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩ ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶)) → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ V)
4 eleq1 2252 . . . 4 (𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩ → (𝐴 ∈ V ↔ ⟨(1st𝐴), (2nd𝐴)⟩ ∈ V))
54adantr 276 . . 3 ((𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩ ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶)) → (𝐴 ∈ V ↔ ⟨(1st𝐴), (2nd𝐴)⟩ ∈ V))
63, 5mpbird 167 . 2 ((𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩ ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶)) → 𝐴 ∈ V)
7 elxp4 5134 . . 3 (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = ⟨ dom {𝐴}, ran {𝐴}⟩ ∧ ( dom {𝐴} ∈ 𝐵 ran {𝐴} ∈ 𝐶)))
8 1stvalg 6168 . . . . . 6 (𝐴 ∈ V → (1st𝐴) = dom {𝐴})
9 2ndvalg 6169 . . . . . 6 (𝐴 ∈ V → (2nd𝐴) = ran {𝐴})
108, 9opeq12d 3801 . . . . 5 (𝐴 ∈ V → ⟨(1st𝐴), (2nd𝐴)⟩ = ⟨ dom {𝐴}, ran {𝐴}⟩)
1110eqeq2d 2201 . . . 4 (𝐴 ∈ V → (𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩ ↔ 𝐴 = ⟨ dom {𝐴}, ran {𝐴}⟩))
128eleq1d 2258 . . . . 5 (𝐴 ∈ V → ((1st𝐴) ∈ 𝐵 dom {𝐴} ∈ 𝐵))
139eleq1d 2258 . . . . 5 (𝐴 ∈ V → ((2nd𝐴) ∈ 𝐶 ran {𝐴} ∈ 𝐶))
1412, 13anbi12d 473 . . . 4 (𝐴 ∈ V → (((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶) ↔ ( dom {𝐴} ∈ 𝐵 ran {𝐴} ∈ 𝐶)))
1511, 14anbi12d 473 . . 3 (𝐴 ∈ V → ((𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩ ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶)) ↔ (𝐴 = ⟨ dom {𝐴}, ran {𝐴}⟩ ∧ ( dom {𝐴} ∈ 𝐵 ran {𝐴} ∈ 𝐶))))
167, 15bitr4id 199 . 2 (𝐴 ∈ V → (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩ ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶))))
171, 6, 16pm5.21nii 705 1 (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩ ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶)))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1364  wcel 2160  Vcvv 2752  {csn 3607  cop 3610   cuni 3824   × cxp 4642  dom cdm 4644  ran crn 4645  cfv 5235  1st c1st 6164  2nd c2nd 6165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-sbc 2978  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-iota 5196  df-fun 5237  df-fv 5243  df-1st 6166  df-2nd 6167
This theorem is referenced by:  elxp7  6196  oprssdmm  6197  eqopi  6198  1st2nd2  6201  eldju2ndl  7102  eldju2ndr  7103  aptap  8638  qredeu  12132  qnumdencl  12222  tx1cn  14246  tx2cn  14247  psmetxrge0  14309  xmetxpbl  14485
  Copyright terms: Public domain W3C validator