| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elxp6 | GIF version | ||
| Description: Membership in a cross product. This version requires no quantifiers or dummy variables. See also elxp4 5158. (Contributed by NM, 9-Oct-2004.) |
| Ref | Expression |
|---|---|
| elxp6 | ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2774 | . 2 ⊢ (𝐴 ∈ (𝐵 × 𝐶) → 𝐴 ∈ V) | |
| 2 | opexg 4262 | . . . 4 ⊢ (((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶) → 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ V) | |
| 3 | 2 | adantl 277 | . . 3 ⊢ ((𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶)) → 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ V) |
| 4 | eleq1 2259 | . . . 4 ⊢ (𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 → (𝐴 ∈ V ↔ 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ V)) | |
| 5 | 4 | adantr 276 | . . 3 ⊢ ((𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶)) → (𝐴 ∈ V ↔ 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ V)) |
| 6 | 3, 5 | mpbird 167 | . 2 ⊢ ((𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶)) → 𝐴 ∈ V) |
| 7 | elxp4 5158 | . . 3 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = 〈∪ dom {𝐴}, ∪ ran {𝐴}〉 ∧ (∪ dom {𝐴} ∈ 𝐵 ∧ ∪ ran {𝐴} ∈ 𝐶))) | |
| 8 | 1stvalg 6209 | . . . . . 6 ⊢ (𝐴 ∈ V → (1st ‘𝐴) = ∪ dom {𝐴}) | |
| 9 | 2ndvalg 6210 | . . . . . 6 ⊢ (𝐴 ∈ V → (2nd ‘𝐴) = ∪ ran {𝐴}) | |
| 10 | 8, 9 | opeq12d 3817 | . . . . 5 ⊢ (𝐴 ∈ V → 〈(1st ‘𝐴), (2nd ‘𝐴)〉 = 〈∪ dom {𝐴}, ∪ ran {𝐴}〉) |
| 11 | 10 | eqeq2d 2208 | . . . 4 ⊢ (𝐴 ∈ V → (𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ↔ 𝐴 = 〈∪ dom {𝐴}, ∪ ran {𝐴}〉)) |
| 12 | 8 | eleq1d 2265 | . . . . 5 ⊢ (𝐴 ∈ V → ((1st ‘𝐴) ∈ 𝐵 ↔ ∪ dom {𝐴} ∈ 𝐵)) |
| 13 | 9 | eleq1d 2265 | . . . . 5 ⊢ (𝐴 ∈ V → ((2nd ‘𝐴) ∈ 𝐶 ↔ ∪ ran {𝐴} ∈ 𝐶)) |
| 14 | 12, 13 | anbi12d 473 | . . . 4 ⊢ (𝐴 ∈ V → (((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶) ↔ (∪ dom {𝐴} ∈ 𝐵 ∧ ∪ ran {𝐴} ∈ 𝐶))) |
| 15 | 11, 14 | anbi12d 473 | . . 3 ⊢ (𝐴 ∈ V → ((𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶)) ↔ (𝐴 = 〈∪ dom {𝐴}, ∪ ran {𝐴}〉 ∧ (∪ dom {𝐴} ∈ 𝐵 ∧ ∪ ran {𝐴} ∈ 𝐶)))) |
| 16 | 7, 15 | bitr4id 199 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶)))) |
| 17 | 1, 6, 16 | pm5.21nii 705 | 1 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶))) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 Vcvv 2763 {csn 3623 〈cop 3626 ∪ cuni 3840 × cxp 4662 dom cdm 4664 ran crn 4665 ‘cfv 5259 1st c1st 6205 2nd c2nd 6206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-iota 5220 df-fun 5261 df-fv 5267 df-1st 6207 df-2nd 6208 |
| This theorem is referenced by: elxp7 6237 oprssdmm 6238 eqopi 6239 1st2nd2 6242 eldju2ndl 7147 eldju2ndr 7148 aptap 8694 qredeu 12290 qnumdencl 12380 tx1cn 14589 tx2cn 14590 psmetxrge0 14652 xmetxpbl 14828 |
| Copyright terms: Public domain | W3C validator |