| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fnmgp | GIF version | ||
| Description: The multiplicative group operator is a function. (Contributed by Mario Carneiro, 11-Mar-2015.) |
| Ref | Expression |
|---|---|
| fnmgp | ⊢ mulGrp Fn V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2776 | . . 3 ⊢ 𝑥 ∈ V | |
| 2 | plusgslid 12994 | . . . 4 ⊢ (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ) | |
| 3 | 2 | simpri 113 | . . 3 ⊢ (+g‘ndx) ∈ ℕ |
| 4 | mulrslid 13014 | . . . . 5 ⊢ (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ) | |
| 5 | 4 | slotex 12909 | . . . 4 ⊢ (𝑥 ∈ V → (.r‘𝑥) ∈ V) |
| 6 | 5 | elv 2777 | . . 3 ⊢ (.r‘𝑥) ∈ V |
| 7 | setsex 12914 | . . 3 ⊢ ((𝑥 ∈ V ∧ (+g‘ndx) ∈ ℕ ∧ (.r‘𝑥) ∈ V) → (𝑥 sSet 〈(+g‘ndx), (.r‘𝑥)〉) ∈ V) | |
| 8 | 1, 3, 6, 7 | mp3an 1350 | . 2 ⊢ (𝑥 sSet 〈(+g‘ndx), (.r‘𝑥)〉) ∈ V |
| 9 | df-mgp 13733 | . 2 ⊢ mulGrp = (𝑥 ∈ V ↦ (𝑥 sSet 〈(+g‘ndx), (.r‘𝑥)〉)) | |
| 10 | 8, 9 | fnmpti 5411 | 1 ⊢ mulGrp Fn V |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∈ wcel 2177 Vcvv 2773 〈cop 3638 Fn wfn 5272 ‘cfv 5277 (class class class)co 5954 ℕcn 9049 ndxcnx 12879 sSet csts 12880 Slot cslot 12881 +gcplusg 12959 .rcmulr 12960 mulGrpcmgp 13732 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-cnex 8029 ax-resscn 8030 ax-1re 8032 ax-addrcl 8035 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3001 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-br 4049 df-opab 4111 df-mpt 4112 df-id 4345 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-iota 5238 df-fun 5279 df-fn 5280 df-fv 5285 df-ov 5957 df-oprab 5958 df-mpo 5959 df-inn 9050 df-2 9108 df-3 9109 df-ndx 12885 df-slot 12886 df-sets 12889 df-plusg 12972 df-mulr 12973 df-mgp 13733 |
| This theorem is referenced by: mgptopng 13741 rngmgpf 13749 ringidvalg 13773 dfur2g 13774 mgpf 13823 |
| Copyright terms: Public domain | W3C validator |