Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fnmgp | GIF version |
Description: The multiplicative group operator is a function. (Contributed by Mario Carneiro, 11-Mar-2015.) |
Ref | Expression |
---|---|
fnmgp | ⊢ mulGrp Fn V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2738 | . . 3 ⊢ 𝑥 ∈ V | |
2 | plusgslid 12525 | . . . 4 ⊢ (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ) | |
3 | 2 | simpri 113 | . . 3 ⊢ (+g‘ndx) ∈ ℕ |
4 | mulrslid 12542 | . . . . 5 ⊢ (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ) | |
5 | 4 | slotex 12455 | . . . 4 ⊢ (𝑥 ∈ V → (.r‘𝑥) ∈ V) |
6 | 5 | elv 2739 | . . 3 ⊢ (.r‘𝑥) ∈ V |
7 | setsex 12460 | . . 3 ⊢ ((𝑥 ∈ V ∧ (+g‘ndx) ∈ ℕ ∧ (.r‘𝑥) ∈ V) → (𝑥 sSet 〈(+g‘ndx), (.r‘𝑥)〉) ∈ V) | |
8 | 1, 3, 6, 7 | mp3an 1337 | . 2 ⊢ (𝑥 sSet 〈(+g‘ndx), (.r‘𝑥)〉) ∈ V |
9 | df-mgp 12926 | . 2 ⊢ mulGrp = (𝑥 ∈ V ↦ (𝑥 sSet 〈(+g‘ndx), (.r‘𝑥)〉)) | |
10 | 8, 9 | fnmpti 5336 | 1 ⊢ mulGrp Fn V |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 ∈ wcel 2146 Vcvv 2735 〈cop 3592 Fn wfn 5203 ‘cfv 5208 (class class class)co 5865 ℕcn 8890 ndxcnx 12425 sSet csts 12426 Slot cslot 12427 +gcplusg 12492 .rcmulr 12493 mulGrpcmgp 12925 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-1re 7880 ax-addrcl 7883 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-sbc 2961 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-iota 5170 df-fun 5210 df-fn 5211 df-fv 5216 df-ov 5868 df-oprab 5869 df-mpo 5870 df-inn 8891 df-2 8949 df-3 8950 df-ndx 12431 df-slot 12432 df-sets 12435 df-plusg 12505 df-mulr 12506 df-mgp 12926 |
This theorem is referenced by: mgptopng 12933 ringidvalg 12937 dfur2g 12938 |
Copyright terms: Public domain | W3C validator |