Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  psmetge0 GIF version

Theorem psmetge0 12559
 Description: The distance function of a pseudometric space is nonnegative. (Contributed by Thierry Arnoux, 7-Feb-2018.) (Revised by Jim Kingdon, 19-Apr-2023.)
Assertion
Ref Expression
psmetge0 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → 0 ≤ (𝐴𝐷𝐵))

Proof of Theorem psmetge0
StepHypRef Expression
1 0xr 7856 . . . 4 0 ∈ ℝ*
2 xaddid1 9695 . . . 4 (0 ∈ ℝ* → (0 +𝑒 0) = 0)
31, 2ax-mp 5 . . 3 (0 +𝑒 0) = 0
4 psmet0 12555 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐵𝑋) → (𝐵𝐷𝐵) = 0)
543adant2 1001 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐵𝐷𝐵) = 0)
6 simp1 982 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → 𝐷 ∈ (PsMet‘𝑋))
7 simp2 983 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → 𝐴𝑋)
8 simp3 984 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → 𝐵𝑋)
9 psmettri2 12556 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐵𝑋)) → (𝐵𝐷𝐵) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐴𝐷𝐵)))
106, 7, 8, 8, 9syl13anc 1219 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐵𝐷𝐵) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐴𝐷𝐵)))
115, 10eqbrtrrd 3961 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → 0 ≤ ((𝐴𝐷𝐵) +𝑒 (𝐴𝐷𝐵)))
123, 11eqbrtrid 3972 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (0 +𝑒 0) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐴𝐷𝐵)))
13 psmetcl 12554 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) ∈ ℝ*)
14 xleaddadd 9720 . . 3 ((0 ∈ ℝ* ∧ (𝐴𝐷𝐵) ∈ ℝ*) → (0 ≤ (𝐴𝐷𝐵) ↔ (0 +𝑒 0) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐴𝐷𝐵))))
151, 13, 14sylancr 411 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (0 ≤ (𝐴𝐷𝐵) ↔ (0 +𝑒 0) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐴𝐷𝐵))))
1612, 15mpbird 166 1 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → 0 ≤ (𝐴𝐷𝐵))
 Colors of variables: wff set class Syntax hints:   → wi 4   ↔ wb 104   ∧ w3a 963   = wceq 1332   ∈ wcel 1481   class class class wbr 3938  ‘cfv 5132  (class class class)co 5783  0cc0 7664  ℝ*cxr 7843   ≤ cle 7845   +𝑒 cxad 9607  PsMetcpsmet 12207 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4055  ax-pow 4107  ax-pr 4140  ax-un 4364  ax-setind 4461  ax-cnex 7755  ax-resscn 7756  ax-1cn 7757  ax-1re 7758  ax-icn 7759  ax-addcl 7760  ax-addrcl 7761  ax-mulcl 7762  ax-mulrcl 7763  ax-addcom 7764  ax-mulcom 7765  ax-addass 7766  ax-mulass 7767  ax-distr 7768  ax-i2m1 7769  ax-0lt1 7770  ax-1rid 7771  ax-0id 7772  ax-rnegex 7773  ax-precex 7774  ax-cnre 7775  ax-pre-ltirr 7776  ax-pre-lttrn 7778  ax-pre-ltadd 7780  ax-pre-mulgt0 7781 This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2692  df-sbc 2915  df-csb 3009  df-dif 3079  df-un 3081  df-in 3083  df-ss 3090  df-if 3481  df-pw 3518  df-sn 3539  df-pr 3540  df-op 3542  df-uni 3746  df-iun 3824  df-br 3939  df-opab 3999  df-mpt 4000  df-id 4224  df-xp 4554  df-rel 4555  df-cnv 4556  df-co 4557  df-dm 4558  df-rn 4559  df-res 4560  df-ima 4561  df-iota 5097  df-fun 5134  df-fn 5135  df-f 5136  df-fv 5140  df-riota 5739  df-ov 5786  df-oprab 5787  df-mpo 5788  df-1st 6047  df-2nd 6048  df-map 6553  df-pnf 7846  df-mnf 7847  df-xr 7848  df-ltxr 7849  df-le 7850  df-sub 7979  df-neg 7980  df-2 8823  df-xadd 9610  df-psmet 12215 This theorem is referenced by:  psmetxrge0  12560  psmetlecl  12562  distspace  12563  xblpnfps  12626  xblss2ps  12632
 Copyright terms: Public domain W3C validator