![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > srngstrd | GIF version |
Description: A constructed star ring is a structure. (Contributed by Mario Carneiro, 18-Nov-2013.) (Revised by Jim Kingdon, 5-Feb-2023.) |
Ref | Expression |
---|---|
srngstr.r | ⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗ 〉}) |
srngstrd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
srngstrd.p | ⊢ (𝜑 → + ∈ 𝑊) |
srngstrd.m | ⊢ (𝜑 → · ∈ 𝑋) |
srngstrd.s | ⊢ (𝜑 → ∗ ∈ 𝑌) |
Ref | Expression |
---|---|
srngstrd | ⊢ (𝜑 → 𝑅 Struct 〈1, 4〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | srngstr.r | . 2 ⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗ 〉}) | |
2 | srngstrd.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
3 | srngstrd.p | . . . 4 ⊢ (𝜑 → + ∈ 𝑊) | |
4 | srngstrd.m | . . . 4 ⊢ (𝜑 → · ∈ 𝑋) | |
5 | eqid 2193 | . . . . 5 ⊢ {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} | |
6 | 5 | rngstrg 12752 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊 ∧ · ∈ 𝑋) → {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} Struct 〈1, 3〉) |
7 | 2, 3, 4, 6 | syl3anc 1249 | . . 3 ⊢ (𝜑 → {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} Struct 〈1, 3〉) |
8 | srngstrd.s | . . . 4 ⊢ (𝜑 → ∗ ∈ 𝑌) | |
9 | 4nn 9145 | . . . . 5 ⊢ 4 ∈ ℕ | |
10 | starvndx 12756 | . . . . 5 ⊢ (*𝑟‘ndx) = 4 | |
11 | 9, 10 | strle1g 12724 | . . . 4 ⊢ ( ∗ ∈ 𝑌 → {〈(*𝑟‘ndx), ∗ 〉} Struct 〈4, 4〉) |
12 | 8, 11 | syl 14 | . . 3 ⊢ (𝜑 → {〈(*𝑟‘ndx), ∗ 〉} Struct 〈4, 4〉) |
13 | 3lt4 9154 | . . . 4 ⊢ 3 < 4 | |
14 | 13 | a1i 9 | . . 3 ⊢ (𝜑 → 3 < 4) |
15 | 7, 12, 14 | strleund 12721 | . 2 ⊢ (𝜑 → ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗ 〉}) Struct 〈1, 4〉) |
16 | 1, 15 | eqbrtrid 4064 | 1 ⊢ (𝜑 → 𝑅 Struct 〈1, 4〉) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 ∪ cun 3151 {csn 3618 {ctp 3620 〈cop 3621 class class class wbr 4029 ‘cfv 5254 1c1 7873 < clt 8054 3c3 9034 4c4 9035 Struct cstr 12614 ndxcnx 12615 Basecbs 12618 +gcplusg 12695 .rcmulr 12696 *𝑟cstv 12697 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-tp 3626 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-inn 8983 df-2 9041 df-3 9042 df-4 9043 df-n0 9241 df-z 9318 df-uz 9593 df-fz 10075 df-struct 12620 df-ndx 12621 df-slot 12622 df-base 12624 df-plusg 12708 df-mulr 12709 df-starv 12710 |
This theorem is referenced by: srngbased 12764 srngplusgd 12765 srngmulrd 12766 srnginvld 12767 cnfldstr 14049 |
Copyright terms: Public domain | W3C validator |