ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fmptd GIF version

Theorem fmptd 5747
Description: Domain and codomain of the mapping operation; deduction form. (Contributed by Mario Carneiro, 13-Jan-2013.)
Hypotheses
Ref Expression
fmptd.1 ((𝜑𝑥𝐴) → 𝐵𝐶)
fmptd.2 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
fmptd (𝜑𝐹:𝐴𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem fmptd
StepHypRef Expression
1 fmptd.1 . . 3 ((𝜑𝑥𝐴) → 𝐵𝐶)
21ralrimiva 2580 . 2 (𝜑 → ∀𝑥𝐴 𝐵𝐶)
3 fmptd.2 . . 3 𝐹 = (𝑥𝐴𝐵)
43fmpt 5743 . 2 (∀𝑥𝐴 𝐵𝐶𝐹:𝐴𝐶)
52, 4sylib 122 1 (𝜑𝐹:𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  wral 2485  cmpt 4113  wf 5276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-fv 5288
This theorem is referenced by:  fmpttd  5748  fmptco  5759  fliftrel  5874  off  6184  caofinvl  6197  fdiagfn  6792  mapxpen  6960  xpmapenlem  6961  updjudhf  7196  enumctlemm  7231  fodjuf  7262  nninfwlporlem  7290  nninfwlpoimlemg  7292  cc2lem  7398  caucvgsrlemf  7925  caucvgsrlemofff  7930  axcaucvglemf  8029  monoord2  10653  iseqf1olemqf  10671  cvg1nlemf  11369  resqrexlemsqa  11410  climcvg1nlem  11735  summodclem2a  11767  crth  12621  eulerthlem1  12624  4sqlem11  12799  ctiunctlemf  12884  mulgnngsum  13538  conjghm  13687  conjnmz  13690  qusghm  13693  gsumfzmptfidmadd  13750  mulgghm2  14445  psr1clfi  14525  txcnmpt  14820  txlm  14826  mulc1cncf  15136  addccncf  15147  negcncf  15152  lgsfcl2  15558  lgseisenlem1  15622  nnsf  16083  nninfself  16091
  Copyright terms: Public domain W3C validator