| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fmptd | GIF version | ||
| Description: Domain and codomain of the mapping operation; deduction form. (Contributed by Mario Carneiro, 13-Jan-2013.) |
| Ref | Expression |
|---|---|
| fmptd.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) |
| fmptd.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| fmptd | ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmptd.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) | |
| 2 | 1 | ralrimiva 2570 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) |
| 3 | fmptd.2 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 4 | 3 | fmpt 5712 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ↔ 𝐹:𝐴⟶𝐶) |
| 5 | 2, 4 | sylib 122 | 1 ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 ∀wral 2475 ↦ cmpt 4094 ⟶wf 5254 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 |
| This theorem is referenced by: fmpttd 5717 fmptco 5728 fliftrel 5839 off 6148 caofinvl 6160 fdiagfn 6751 mapxpen 6909 xpmapenlem 6910 updjudhf 7145 enumctlemm 7180 fodjuf 7211 nninfwlporlem 7239 nninfwlpoimlemg 7241 cc2lem 7333 caucvgsrlemf 7859 caucvgsrlemofff 7864 axcaucvglemf 7963 monoord2 10578 iseqf1olemqf 10596 cvg1nlemf 11148 resqrexlemsqa 11189 climcvg1nlem 11514 summodclem2a 11546 crth 12392 eulerthlem1 12395 4sqlem11 12570 ctiunctlemf 12655 mulgnngsum 13257 conjghm 13406 conjnmz 13409 qusghm 13412 gsumfzmptfidmadd 13469 mulgghm2 14164 txcnmpt 14509 txlm 14515 mulc1cncf 14825 addccncf 14836 negcncf 14841 lgsfcl2 15247 lgseisenlem1 15311 nnsf 15649 nninfself 15657 |
| Copyright terms: Public domain | W3C validator |