ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fmptd GIF version

Theorem fmptd 5788
Description: Domain and codomain of the mapping operation; deduction form. (Contributed by Mario Carneiro, 13-Jan-2013.)
Hypotheses
Ref Expression
fmptd.1 ((𝜑𝑥𝐴) → 𝐵𝐶)
fmptd.2 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
fmptd (𝜑𝐹:𝐴𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem fmptd
StepHypRef Expression
1 fmptd.1 . . 3 ((𝜑𝑥𝐴) → 𝐵𝐶)
21ralrimiva 2603 . 2 (𝜑 → ∀𝑥𝐴 𝐵𝐶)
3 fmptd.2 . . 3 𝐹 = (𝑥𝐴𝐵)
43fmpt 5784 . 2 (∀𝑥𝐴 𝐵𝐶𝐹:𝐴𝐶)
52, 4sylib 122 1 (𝜑𝐹:𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  wral 2508  cmpt 4144  wf 5313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fv 5325
This theorem is referenced by:  fmpttd  5789  fmptco  5800  fliftrel  5915  off  6229  caofinvl  6242  fdiagfn  6837  mapxpen  7005  xpmapenlem  7006  updjudhf  7242  enumctlemm  7277  fodjuf  7308  nninfwlporlem  7336  nninfwlpoimlemg  7338  cc2lem  7448  caucvgsrlemf  7975  caucvgsrlemofff  7980  axcaucvglemf  8079  monoord2  10703  iseqf1olemqf  10721  cvg1nlemf  11489  resqrexlemsqa  11530  climcvg1nlem  11855  summodclem2a  11887  crth  12741  eulerthlem1  12744  4sqlem11  12919  ctiunctlemf  13004  mulgnngsum  13659  conjghm  13808  conjnmz  13811  qusghm  13814  gsumfzmptfidmadd  13871  mulgghm2  14566  psr1clfi  14646  txcnmpt  14941  txlm  14947  mulc1cncf  15257  addccncf  15268  negcncf  15273  lgsfcl2  15679  lgseisenlem1  15743  nnsf  16330  nninfself  16338
  Copyright terms: Public domain W3C validator