ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fmptd GIF version

Theorem fmptd 5650
Description: Domain and codomain of the mapping operation; deduction form. (Contributed by Mario Carneiro, 13-Jan-2013.)
Hypotheses
Ref Expression
fmptd.1 ((𝜑𝑥𝐴) → 𝐵𝐶)
fmptd.2 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
fmptd (𝜑𝐹:𝐴𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem fmptd
StepHypRef Expression
1 fmptd.1 . . 3 ((𝜑𝑥𝐴) → 𝐵𝐶)
21ralrimiva 2543 . 2 (𝜑 → ∀𝑥𝐴 𝐵𝐶)
3 fmptd.2 . . 3 𝐹 = (𝑥𝐴𝐵)
43fmpt 5646 . 2 (∀𝑥𝐴 𝐵𝐶𝐹:𝐴𝐶)
52, 4sylib 121 1 (𝜑𝐹:𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wcel 2141  wral 2448  cmpt 4050  wf 5194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206
This theorem is referenced by:  fmpttd  5651  fmptco  5662  fliftrel  5771  off  6073  caofinvl  6083  fdiagfn  6670  mapxpen  6826  xpmapenlem  6827  updjudhf  7056  enumctlemm  7091  fodjuf  7121  nninfwlporlem  7149  nninfwlpoimlemg  7151  cc2lem  7228  caucvgsrlemf  7754  caucvgsrlemofff  7759  axcaucvglemf  7858  monoord2  10433  iseqf1olemqf  10447  cvg1nlemf  10947  resqrexlemsqa  10988  climcvg1nlem  11312  summodclem2a  11344  crth  12178  eulerthlem1  12181  ctiunctlemf  12393  txcnmpt  13067  txlm  13073  mulc1cncf  13370  addccncf  13380  negcncf  13382  lgsfcl2  13701  nnsf  14038  nninfself  14046
  Copyright terms: Public domain W3C validator