![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fmptd | GIF version |
Description: Domain and codomain of the mapping operation; deduction form. (Contributed by Mario Carneiro, 13-Jan-2013.) |
Ref | Expression |
---|---|
fmptd.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) |
fmptd.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
fmptd | ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmptd.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) | |
2 | 1 | ralrimiva 2479 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) |
3 | fmptd.2 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
4 | 3 | fmpt 5524 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ↔ 𝐹:𝐴⟶𝐶) |
5 | 2, 4 | sylib 121 | 1 ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1314 ∈ wcel 1463 ∀wral 2390 ↦ cmpt 3949 ⟶wf 5077 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-14 1475 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 ax-sep 4006 ax-pow 4058 ax-pr 4091 |
This theorem depends on definitions: df-bi 116 df-3an 947 df-tru 1317 df-nf 1420 df-sb 1719 df-eu 1978 df-mo 1979 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ral 2395 df-rex 2396 df-rab 2399 df-v 2659 df-sbc 2879 df-un 3041 df-in 3043 df-ss 3050 df-pw 3478 df-sn 3499 df-pr 3500 df-op 3502 df-uni 3703 df-br 3896 df-opab 3950 df-mpt 3951 df-id 4175 df-xp 4505 df-rel 4506 df-cnv 4507 df-co 4508 df-dm 4509 df-rn 4510 df-res 4511 df-ima 4512 df-iota 5046 df-fun 5083 df-fn 5084 df-f 5085 df-fv 5089 |
This theorem is referenced by: fmpttd 5529 fmptco 5540 fliftrel 5647 off 5948 caofinvl 5958 fdiagfn 6540 mapxpen 6695 xpmapenlem 6696 updjudhf 6916 enumctlemm 6951 fodjuf 6967 nnnninf 6973 caucvgsrlemf 7534 caucvgsrlemofff 7539 axcaucvglemf 7631 monoord2 10143 iseqf1olemqf 10157 cvg1nlemf 10647 resqrexlemsqa 10688 climcvg1nlem 11010 summodclem2a 11042 crth 11745 ctiunctlemf 11794 txcnmpt 12284 txlm 12290 mulc1cncf 12562 addccncf 12572 negcncf 12574 nnsf 12889 nninfself 12899 |
Copyright terms: Public domain | W3C validator |