ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0opthlem2d GIF version

Theorem nn0opthlem2d 10938
Description: Lemma for nn0opth2 10941. (Contributed by Jim Kingdon, 31-Oct-2021.)
Hypotheses
Ref Expression
nn0opthd.1 (𝜑𝐴 ∈ ℕ0)
nn0opthd.2 (𝜑𝐵 ∈ ℕ0)
nn0opthd.3 (𝜑𝐶 ∈ ℕ0)
nn0opthd.4 (𝜑𝐷 ∈ ℕ0)
Assertion
Ref Expression
nn0opthlem2d (𝜑 → ((𝐴 + 𝐵) < 𝐶 → ((𝐶 · 𝐶) + 𝐷) ≠ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵)))

Proof of Theorem nn0opthlem2d
StepHypRef Expression
1 nn0opthd.1 . . . . . . . 8 (𝜑𝐴 ∈ ℕ0)
2 nn0opthd.2 . . . . . . . 8 (𝜑𝐵 ∈ ℕ0)
31, 2nn0addcld 9422 . . . . . . 7 (𝜑 → (𝐴 + 𝐵) ∈ ℕ0)
43nn0red 9419 . . . . . 6 (𝜑 → (𝐴 + 𝐵) ∈ ℝ)
54, 4remulcld 8173 . . . . 5 (𝜑 → ((𝐴 + 𝐵) · (𝐴 + 𝐵)) ∈ ℝ)
62nn0red 9419 . . . . 5 (𝜑𝐵 ∈ ℝ)
75, 6readdcld 8172 . . . 4 (𝜑 → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ∈ ℝ)
87adantr 276 . . 3 ((𝜑 ∧ (𝐴 + 𝐵) < 𝐶) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ∈ ℝ)
9 nn0opthd.3 . . . . . . 7 (𝜑𝐶 ∈ ℕ0)
109nn0red 9419 . . . . . 6 (𝜑𝐶 ∈ ℝ)
1110, 10remulcld 8173 . . . . 5 (𝜑 → (𝐶 · 𝐶) ∈ ℝ)
1211adantr 276 . . . 4 ((𝜑 ∧ (𝐴 + 𝐵) < 𝐶) → (𝐶 · 𝐶) ∈ ℝ)
13 nn0opthd.4 . . . . . . 7 (𝜑𝐷 ∈ ℕ0)
1413nn0red 9419 . . . . . 6 (𝜑𝐷 ∈ ℝ)
1511, 14readdcld 8172 . . . . 5 (𝜑 → ((𝐶 · 𝐶) + 𝐷) ∈ ℝ)
1615adantr 276 . . . 4 ((𝜑 ∧ (𝐴 + 𝐵) < 𝐶) → ((𝐶 · 𝐶) + 𝐷) ∈ ℝ)
17 2re 9176 . . . . . . . . 9 2 ∈ ℝ
1817a1i 9 . . . . . . . 8 (𝜑 → 2 ∈ ℝ)
1918, 4remulcld 8173 . . . . . . 7 (𝜑 → (2 · (𝐴 + 𝐵)) ∈ ℝ)
205, 19readdcld 8172 . . . . . 6 (𝜑 → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵))) ∈ ℝ)
2120adantr 276 . . . . 5 ((𝜑 ∧ (𝐴 + 𝐵) < 𝐶) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵))) ∈ ℝ)
22 nn0addge2 9412 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ0) → 𝐵 ≤ (𝐴 + 𝐵))
236, 1, 22syl2anc 411 . . . . . . . 8 (𝜑𝐵 ≤ (𝐴 + 𝐵))
24 nn0addge1 9411 . . . . . . . . . 10 (((𝐴 + 𝐵) ∈ ℝ ∧ (𝐴 + 𝐵) ∈ ℕ0) → (𝐴 + 𝐵) ≤ ((𝐴 + 𝐵) + (𝐴 + 𝐵)))
254, 3, 24syl2anc 411 . . . . . . . . 9 (𝜑 → (𝐴 + 𝐵) ≤ ((𝐴 + 𝐵) + (𝐴 + 𝐵)))
264recnd 8171 . . . . . . . . . 10 (𝜑 → (𝐴 + 𝐵) ∈ ℂ)
27262timesd 9350 . . . . . . . . 9 (𝜑 → (2 · (𝐴 + 𝐵)) = ((𝐴 + 𝐵) + (𝐴 + 𝐵)))
2825, 27breqtrrd 4110 . . . . . . . 8 (𝜑 → (𝐴 + 𝐵) ≤ (2 · (𝐴 + 𝐵)))
296, 4, 19, 23, 28letrd 8266 . . . . . . 7 (𝜑𝐵 ≤ (2 · (𝐴 + 𝐵)))
306, 19, 5, 29leadd2dd 8703 . . . . . 6 (𝜑 → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ≤ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵))))
3130adantr 276 . . . . 5 ((𝜑 ∧ (𝐴 + 𝐵) < 𝐶) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ≤ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵))))
323, 9nn0opthlem1d 10937 . . . . . 6 (𝜑 → ((𝐴 + 𝐵) < 𝐶 ↔ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵))) < (𝐶 · 𝐶)))
3332biimpa 296 . . . . 5 ((𝜑 ∧ (𝐴 + 𝐵) < 𝐶) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵))) < (𝐶 · 𝐶))
348, 21, 12, 31, 33lelttrd 8267 . . . 4 ((𝜑 ∧ (𝐴 + 𝐵) < 𝐶) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) < (𝐶 · 𝐶))
35 nn0addge1 9411 . . . . . 6 (((𝐶 · 𝐶) ∈ ℝ ∧ 𝐷 ∈ ℕ0) → (𝐶 · 𝐶) ≤ ((𝐶 · 𝐶) + 𝐷))
3611, 13, 35syl2anc 411 . . . . 5 (𝜑 → (𝐶 · 𝐶) ≤ ((𝐶 · 𝐶) + 𝐷))
3736adantr 276 . . . 4 ((𝜑 ∧ (𝐴 + 𝐵) < 𝐶) → (𝐶 · 𝐶) ≤ ((𝐶 · 𝐶) + 𝐷))
388, 12, 16, 34, 37ltletrd 8566 . . 3 ((𝜑 ∧ (𝐴 + 𝐵) < 𝐶) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) < ((𝐶 · 𝐶) + 𝐷))
398, 38gtned 8255 . 2 ((𝜑 ∧ (𝐴 + 𝐵) < 𝐶) → ((𝐶 · 𝐶) + 𝐷) ≠ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵))
4039ex 115 1 (𝜑 → ((𝐴 + 𝐵) < 𝐶 → ((𝐶 · 𝐶) + 𝐷) ≠ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2200  wne 2400   class class class wbr 4082  (class class class)co 6000  cr 7994   + caddc 7998   · cmul 8000   < clt 8177  cle 8178  2c2 9157  0cn0 9365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-n0 9366  df-z 9443  df-uz 9719  df-seqfrec 10665  df-exp 10756
This theorem is referenced by:  nn0opthd  10939
  Copyright terms: Public domain W3C validator