ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0opthlem2d GIF version

Theorem nn0opthlem2d 10499
Description: Lemma for nn0opth2 10502. (Contributed by Jim Kingdon, 31-Oct-2021.)
Hypotheses
Ref Expression
nn0opthd.1 (𝜑𝐴 ∈ ℕ0)
nn0opthd.2 (𝜑𝐵 ∈ ℕ0)
nn0opthd.3 (𝜑𝐶 ∈ ℕ0)
nn0opthd.4 (𝜑𝐷 ∈ ℕ0)
Assertion
Ref Expression
nn0opthlem2d (𝜑 → ((𝐴 + 𝐵) < 𝐶 → ((𝐶 · 𝐶) + 𝐷) ≠ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵)))

Proof of Theorem nn0opthlem2d
StepHypRef Expression
1 nn0opthd.1 . . . . . . . 8 (𝜑𝐴 ∈ ℕ0)
2 nn0opthd.2 . . . . . . . 8 (𝜑𝐵 ∈ ℕ0)
31, 2nn0addcld 9058 . . . . . . 7 (𝜑 → (𝐴 + 𝐵) ∈ ℕ0)
43nn0red 9055 . . . . . 6 (𝜑 → (𝐴 + 𝐵) ∈ ℝ)
54, 4remulcld 7820 . . . . 5 (𝜑 → ((𝐴 + 𝐵) · (𝐴 + 𝐵)) ∈ ℝ)
62nn0red 9055 . . . . 5 (𝜑𝐵 ∈ ℝ)
75, 6readdcld 7819 . . . 4 (𝜑 → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ∈ ℝ)
87adantr 274 . . 3 ((𝜑 ∧ (𝐴 + 𝐵) < 𝐶) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ∈ ℝ)
9 nn0opthd.3 . . . . . . 7 (𝜑𝐶 ∈ ℕ0)
109nn0red 9055 . . . . . 6 (𝜑𝐶 ∈ ℝ)
1110, 10remulcld 7820 . . . . 5 (𝜑 → (𝐶 · 𝐶) ∈ ℝ)
1211adantr 274 . . . 4 ((𝜑 ∧ (𝐴 + 𝐵) < 𝐶) → (𝐶 · 𝐶) ∈ ℝ)
13 nn0opthd.4 . . . . . . 7 (𝜑𝐷 ∈ ℕ0)
1413nn0red 9055 . . . . . 6 (𝜑𝐷 ∈ ℝ)
1511, 14readdcld 7819 . . . . 5 (𝜑 → ((𝐶 · 𝐶) + 𝐷) ∈ ℝ)
1615adantr 274 . . . 4 ((𝜑 ∧ (𝐴 + 𝐵) < 𝐶) → ((𝐶 · 𝐶) + 𝐷) ∈ ℝ)
17 2re 8814 . . . . . . . . 9 2 ∈ ℝ
1817a1i 9 . . . . . . . 8 (𝜑 → 2 ∈ ℝ)
1918, 4remulcld 7820 . . . . . . 7 (𝜑 → (2 · (𝐴 + 𝐵)) ∈ ℝ)
205, 19readdcld 7819 . . . . . 6 (𝜑 → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵))) ∈ ℝ)
2120adantr 274 . . . . 5 ((𝜑 ∧ (𝐴 + 𝐵) < 𝐶) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵))) ∈ ℝ)
22 nn0addge2 9048 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ0) → 𝐵 ≤ (𝐴 + 𝐵))
236, 1, 22syl2anc 409 . . . . . . . 8 (𝜑𝐵 ≤ (𝐴 + 𝐵))
24 nn0addge1 9047 . . . . . . . . . 10 (((𝐴 + 𝐵) ∈ ℝ ∧ (𝐴 + 𝐵) ∈ ℕ0) → (𝐴 + 𝐵) ≤ ((𝐴 + 𝐵) + (𝐴 + 𝐵)))
254, 3, 24syl2anc 409 . . . . . . . . 9 (𝜑 → (𝐴 + 𝐵) ≤ ((𝐴 + 𝐵) + (𝐴 + 𝐵)))
264recnd 7818 . . . . . . . . . 10 (𝜑 → (𝐴 + 𝐵) ∈ ℂ)
27262timesd 8986 . . . . . . . . 9 (𝜑 → (2 · (𝐴 + 𝐵)) = ((𝐴 + 𝐵) + (𝐴 + 𝐵)))
2825, 27breqtrrd 3964 . . . . . . . 8 (𝜑 → (𝐴 + 𝐵) ≤ (2 · (𝐴 + 𝐵)))
296, 4, 19, 23, 28letrd 7910 . . . . . . 7 (𝜑𝐵 ≤ (2 · (𝐴 + 𝐵)))
306, 19, 5, 29leadd2dd 8346 . . . . . 6 (𝜑 → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ≤ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵))))
3130adantr 274 . . . . 5 ((𝜑 ∧ (𝐴 + 𝐵) < 𝐶) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ≤ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵))))
323, 9nn0opthlem1d 10498 . . . . . 6 (𝜑 → ((𝐴 + 𝐵) < 𝐶 ↔ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵))) < (𝐶 · 𝐶)))
3332biimpa 294 . . . . 5 ((𝜑 ∧ (𝐴 + 𝐵) < 𝐶) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵))) < (𝐶 · 𝐶))
348, 21, 12, 31, 33lelttrd 7911 . . . 4 ((𝜑 ∧ (𝐴 + 𝐵) < 𝐶) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) < (𝐶 · 𝐶))
35 nn0addge1 9047 . . . . . 6 (((𝐶 · 𝐶) ∈ ℝ ∧ 𝐷 ∈ ℕ0) → (𝐶 · 𝐶) ≤ ((𝐶 · 𝐶) + 𝐷))
3611, 13, 35syl2anc 409 . . . . 5 (𝜑 → (𝐶 · 𝐶) ≤ ((𝐶 · 𝐶) + 𝐷))
3736adantr 274 . . . 4 ((𝜑 ∧ (𝐴 + 𝐵) < 𝐶) → (𝐶 · 𝐶) ≤ ((𝐶 · 𝐶) + 𝐷))
388, 12, 16, 34, 37ltletrd 8209 . . 3 ((𝜑 ∧ (𝐴 + 𝐵) < 𝐶) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) < ((𝐶 · 𝐶) + 𝐷))
398, 38gtned 7900 . 2 ((𝜑 ∧ (𝐴 + 𝐵) < 𝐶) → ((𝐶 · 𝐶) + 𝐷) ≠ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵))
4039ex 114 1 (𝜑 → ((𝐴 + 𝐵) < 𝐶 → ((𝐶 · 𝐶) + 𝐷) ≠ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wcel 1481  wne 2309   class class class wbr 3937  (class class class)co 5782  cr 7643   + caddc 7647   · cmul 7649   < clt 7824  cle 7825  2c2 8795  0cn0 9001
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-frec 6296  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-n0 9002  df-z 9079  df-uz 9351  df-seqfrec 10250  df-exp 10324
This theorem is referenced by:  nn0opthd  10500
  Copyright terms: Public domain W3C validator