ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0opthlem2d GIF version

Theorem nn0opthlem2d 10648
Description: Lemma for nn0opth2 10651. (Contributed by Jim Kingdon, 31-Oct-2021.)
Hypotheses
Ref Expression
nn0opthd.1 (𝜑𝐴 ∈ ℕ0)
nn0opthd.2 (𝜑𝐵 ∈ ℕ0)
nn0opthd.3 (𝜑𝐶 ∈ ℕ0)
nn0opthd.4 (𝜑𝐷 ∈ ℕ0)
Assertion
Ref Expression
nn0opthlem2d (𝜑 → ((𝐴 + 𝐵) < 𝐶 → ((𝐶 · 𝐶) + 𝐷) ≠ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵)))

Proof of Theorem nn0opthlem2d
StepHypRef Expression
1 nn0opthd.1 . . . . . . . 8 (𝜑𝐴 ∈ ℕ0)
2 nn0opthd.2 . . . . . . . 8 (𝜑𝐵 ∈ ℕ0)
31, 2nn0addcld 9185 . . . . . . 7 (𝜑 → (𝐴 + 𝐵) ∈ ℕ0)
43nn0red 9182 . . . . . 6 (𝜑 → (𝐴 + 𝐵) ∈ ℝ)
54, 4remulcld 7943 . . . . 5 (𝜑 → ((𝐴 + 𝐵) · (𝐴 + 𝐵)) ∈ ℝ)
62nn0red 9182 . . . . 5 (𝜑𝐵 ∈ ℝ)
75, 6readdcld 7942 . . . 4 (𝜑 → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ∈ ℝ)
87adantr 274 . . 3 ((𝜑 ∧ (𝐴 + 𝐵) < 𝐶) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ∈ ℝ)
9 nn0opthd.3 . . . . . . 7 (𝜑𝐶 ∈ ℕ0)
109nn0red 9182 . . . . . 6 (𝜑𝐶 ∈ ℝ)
1110, 10remulcld 7943 . . . . 5 (𝜑 → (𝐶 · 𝐶) ∈ ℝ)
1211adantr 274 . . . 4 ((𝜑 ∧ (𝐴 + 𝐵) < 𝐶) → (𝐶 · 𝐶) ∈ ℝ)
13 nn0opthd.4 . . . . . . 7 (𝜑𝐷 ∈ ℕ0)
1413nn0red 9182 . . . . . 6 (𝜑𝐷 ∈ ℝ)
1511, 14readdcld 7942 . . . . 5 (𝜑 → ((𝐶 · 𝐶) + 𝐷) ∈ ℝ)
1615adantr 274 . . . 4 ((𝜑 ∧ (𝐴 + 𝐵) < 𝐶) → ((𝐶 · 𝐶) + 𝐷) ∈ ℝ)
17 2re 8941 . . . . . . . . 9 2 ∈ ℝ
1817a1i 9 . . . . . . . 8 (𝜑 → 2 ∈ ℝ)
1918, 4remulcld 7943 . . . . . . 7 (𝜑 → (2 · (𝐴 + 𝐵)) ∈ ℝ)
205, 19readdcld 7942 . . . . . 6 (𝜑 → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵))) ∈ ℝ)
2120adantr 274 . . . . 5 ((𝜑 ∧ (𝐴 + 𝐵) < 𝐶) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵))) ∈ ℝ)
22 nn0addge2 9175 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ0) → 𝐵 ≤ (𝐴 + 𝐵))
236, 1, 22syl2anc 409 . . . . . . . 8 (𝜑𝐵 ≤ (𝐴 + 𝐵))
24 nn0addge1 9174 . . . . . . . . . 10 (((𝐴 + 𝐵) ∈ ℝ ∧ (𝐴 + 𝐵) ∈ ℕ0) → (𝐴 + 𝐵) ≤ ((𝐴 + 𝐵) + (𝐴 + 𝐵)))
254, 3, 24syl2anc 409 . . . . . . . . 9 (𝜑 → (𝐴 + 𝐵) ≤ ((𝐴 + 𝐵) + (𝐴 + 𝐵)))
264recnd 7941 . . . . . . . . . 10 (𝜑 → (𝐴 + 𝐵) ∈ ℂ)
27262timesd 9113 . . . . . . . . 9 (𝜑 → (2 · (𝐴 + 𝐵)) = ((𝐴 + 𝐵) + (𝐴 + 𝐵)))
2825, 27breqtrrd 4015 . . . . . . . 8 (𝜑 → (𝐴 + 𝐵) ≤ (2 · (𝐴 + 𝐵)))
296, 4, 19, 23, 28letrd 8036 . . . . . . 7 (𝜑𝐵 ≤ (2 · (𝐴 + 𝐵)))
306, 19, 5, 29leadd2dd 8472 . . . . . 6 (𝜑 → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ≤ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵))))
3130adantr 274 . . . . 5 ((𝜑 ∧ (𝐴 + 𝐵) < 𝐶) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ≤ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵))))
323, 9nn0opthlem1d 10647 . . . . . 6 (𝜑 → ((𝐴 + 𝐵) < 𝐶 ↔ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵))) < (𝐶 · 𝐶)))
3332biimpa 294 . . . . 5 ((𝜑 ∧ (𝐴 + 𝐵) < 𝐶) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵))) < (𝐶 · 𝐶))
348, 21, 12, 31, 33lelttrd 8037 . . . 4 ((𝜑 ∧ (𝐴 + 𝐵) < 𝐶) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) < (𝐶 · 𝐶))
35 nn0addge1 9174 . . . . . 6 (((𝐶 · 𝐶) ∈ ℝ ∧ 𝐷 ∈ ℕ0) → (𝐶 · 𝐶) ≤ ((𝐶 · 𝐶) + 𝐷))
3611, 13, 35syl2anc 409 . . . . 5 (𝜑 → (𝐶 · 𝐶) ≤ ((𝐶 · 𝐶) + 𝐷))
3736adantr 274 . . . 4 ((𝜑 ∧ (𝐴 + 𝐵) < 𝐶) → (𝐶 · 𝐶) ≤ ((𝐶 · 𝐶) + 𝐷))
388, 12, 16, 34, 37ltletrd 8335 . . 3 ((𝜑 ∧ (𝐴 + 𝐵) < 𝐶) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) < ((𝐶 · 𝐶) + 𝐷))
398, 38gtned 8025 . 2 ((𝜑 ∧ (𝐴 + 𝐵) < 𝐶) → ((𝐶 · 𝐶) + 𝐷) ≠ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵))
4039ex 114 1 (𝜑 → ((𝐴 + 𝐵) < 𝐶 → ((𝐶 · 𝐶) + 𝐷) ≠ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wcel 2141  wne 2340   class class class wbr 3987  (class class class)co 5851  cr 7766   + caddc 7770   · cmul 7772   < clt 7947  cle 7948  2c2 8922  0cn0 9128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570  ax-cnex 7858  ax-resscn 7859  ax-1cn 7860  ax-1re 7861  ax-icn 7862  ax-addcl 7863  ax-addrcl 7864  ax-mulcl 7865  ax-mulrcl 7866  ax-addcom 7867  ax-mulcom 7868  ax-addass 7869  ax-mulass 7870  ax-distr 7871  ax-i2m1 7872  ax-0lt1 7873  ax-1rid 7874  ax-0id 7875  ax-rnegex 7876  ax-precex 7877  ax-cnre 7878  ax-pre-ltirr 7879  ax-pre-ltwlin 7880  ax-pre-lttrn 7881  ax-pre-apti 7882  ax-pre-ltadd 7883  ax-pre-mulgt0 7884  ax-pre-mulext 7885
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3526  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-po 4279  df-iso 4280  df-iord 4349  df-on 4351  df-ilim 4352  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-riota 5807  df-ov 5854  df-oprab 5855  df-mpo 5856  df-1st 6117  df-2nd 6118  df-recs 6282  df-frec 6368  df-pnf 7949  df-mnf 7950  df-xr 7951  df-ltxr 7952  df-le 7953  df-sub 8085  df-neg 8086  df-reap 8487  df-ap 8494  df-div 8583  df-inn 8872  df-2 8930  df-n0 9129  df-z 9206  df-uz 9481  df-seqfrec 10395  df-exp 10469
This theorem is referenced by:  nn0opthd  10649
  Copyright terms: Public domain W3C validator