ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0opthlem2d GIF version

Theorem nn0opthlem2d 10888
Description: Lemma for nn0opth2 10891. (Contributed by Jim Kingdon, 31-Oct-2021.)
Hypotheses
Ref Expression
nn0opthd.1 (𝜑𝐴 ∈ ℕ0)
nn0opthd.2 (𝜑𝐵 ∈ ℕ0)
nn0opthd.3 (𝜑𝐶 ∈ ℕ0)
nn0opthd.4 (𝜑𝐷 ∈ ℕ0)
Assertion
Ref Expression
nn0opthlem2d (𝜑 → ((𝐴 + 𝐵) < 𝐶 → ((𝐶 · 𝐶) + 𝐷) ≠ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵)))

Proof of Theorem nn0opthlem2d
StepHypRef Expression
1 nn0opthd.1 . . . . . . . 8 (𝜑𝐴 ∈ ℕ0)
2 nn0opthd.2 . . . . . . . 8 (𝜑𝐵 ∈ ℕ0)
31, 2nn0addcld 9372 . . . . . . 7 (𝜑 → (𝐴 + 𝐵) ∈ ℕ0)
43nn0red 9369 . . . . . 6 (𝜑 → (𝐴 + 𝐵) ∈ ℝ)
54, 4remulcld 8123 . . . . 5 (𝜑 → ((𝐴 + 𝐵) · (𝐴 + 𝐵)) ∈ ℝ)
62nn0red 9369 . . . . 5 (𝜑𝐵 ∈ ℝ)
75, 6readdcld 8122 . . . 4 (𝜑 → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ∈ ℝ)
87adantr 276 . . 3 ((𝜑 ∧ (𝐴 + 𝐵) < 𝐶) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ∈ ℝ)
9 nn0opthd.3 . . . . . . 7 (𝜑𝐶 ∈ ℕ0)
109nn0red 9369 . . . . . 6 (𝜑𝐶 ∈ ℝ)
1110, 10remulcld 8123 . . . . 5 (𝜑 → (𝐶 · 𝐶) ∈ ℝ)
1211adantr 276 . . . 4 ((𝜑 ∧ (𝐴 + 𝐵) < 𝐶) → (𝐶 · 𝐶) ∈ ℝ)
13 nn0opthd.4 . . . . . . 7 (𝜑𝐷 ∈ ℕ0)
1413nn0red 9369 . . . . . 6 (𝜑𝐷 ∈ ℝ)
1511, 14readdcld 8122 . . . . 5 (𝜑 → ((𝐶 · 𝐶) + 𝐷) ∈ ℝ)
1615adantr 276 . . . 4 ((𝜑 ∧ (𝐴 + 𝐵) < 𝐶) → ((𝐶 · 𝐶) + 𝐷) ∈ ℝ)
17 2re 9126 . . . . . . . . 9 2 ∈ ℝ
1817a1i 9 . . . . . . . 8 (𝜑 → 2 ∈ ℝ)
1918, 4remulcld 8123 . . . . . . 7 (𝜑 → (2 · (𝐴 + 𝐵)) ∈ ℝ)
205, 19readdcld 8122 . . . . . 6 (𝜑 → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵))) ∈ ℝ)
2120adantr 276 . . . . 5 ((𝜑 ∧ (𝐴 + 𝐵) < 𝐶) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵))) ∈ ℝ)
22 nn0addge2 9362 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ0) → 𝐵 ≤ (𝐴 + 𝐵))
236, 1, 22syl2anc 411 . . . . . . . 8 (𝜑𝐵 ≤ (𝐴 + 𝐵))
24 nn0addge1 9361 . . . . . . . . . 10 (((𝐴 + 𝐵) ∈ ℝ ∧ (𝐴 + 𝐵) ∈ ℕ0) → (𝐴 + 𝐵) ≤ ((𝐴 + 𝐵) + (𝐴 + 𝐵)))
254, 3, 24syl2anc 411 . . . . . . . . 9 (𝜑 → (𝐴 + 𝐵) ≤ ((𝐴 + 𝐵) + (𝐴 + 𝐵)))
264recnd 8121 . . . . . . . . . 10 (𝜑 → (𝐴 + 𝐵) ∈ ℂ)
27262timesd 9300 . . . . . . . . 9 (𝜑 → (2 · (𝐴 + 𝐵)) = ((𝐴 + 𝐵) + (𝐴 + 𝐵)))
2825, 27breqtrrd 4079 . . . . . . . 8 (𝜑 → (𝐴 + 𝐵) ≤ (2 · (𝐴 + 𝐵)))
296, 4, 19, 23, 28letrd 8216 . . . . . . 7 (𝜑𝐵 ≤ (2 · (𝐴 + 𝐵)))
306, 19, 5, 29leadd2dd 8653 . . . . . 6 (𝜑 → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ≤ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵))))
3130adantr 276 . . . . 5 ((𝜑 ∧ (𝐴 + 𝐵) < 𝐶) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ≤ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵))))
323, 9nn0opthlem1d 10887 . . . . . 6 (𝜑 → ((𝐴 + 𝐵) < 𝐶 ↔ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵))) < (𝐶 · 𝐶)))
3332biimpa 296 . . . . 5 ((𝜑 ∧ (𝐴 + 𝐵) < 𝐶) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵))) < (𝐶 · 𝐶))
348, 21, 12, 31, 33lelttrd 8217 . . . 4 ((𝜑 ∧ (𝐴 + 𝐵) < 𝐶) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) < (𝐶 · 𝐶))
35 nn0addge1 9361 . . . . . 6 (((𝐶 · 𝐶) ∈ ℝ ∧ 𝐷 ∈ ℕ0) → (𝐶 · 𝐶) ≤ ((𝐶 · 𝐶) + 𝐷))
3611, 13, 35syl2anc 411 . . . . 5 (𝜑 → (𝐶 · 𝐶) ≤ ((𝐶 · 𝐶) + 𝐷))
3736adantr 276 . . . 4 ((𝜑 ∧ (𝐴 + 𝐵) < 𝐶) → (𝐶 · 𝐶) ≤ ((𝐶 · 𝐶) + 𝐷))
388, 12, 16, 34, 37ltletrd 8516 . . 3 ((𝜑 ∧ (𝐴 + 𝐵) < 𝐶) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) < ((𝐶 · 𝐶) + 𝐷))
398, 38gtned 8205 . 2 ((𝜑 ∧ (𝐴 + 𝐵) < 𝐶) → ((𝐶 · 𝐶) + 𝐷) ≠ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵))
4039ex 115 1 (𝜑 → ((𝐴 + 𝐵) < 𝐶 → ((𝐶 · 𝐶) + 𝐷) ≠ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2177  wne 2377   class class class wbr 4051  (class class class)co 5957  cr 7944   + caddc 7948   · cmul 7950   < clt 8127  cle 8128  2c2 9107  0cn0 9315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-mulrcl 8044  ax-addcom 8045  ax-mulcom 8046  ax-addass 8047  ax-mulass 8048  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-1rid 8052  ax-0id 8053  ax-rnegex 8054  ax-precex 8055  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-apti 8060  ax-pre-ltadd 8061  ax-pre-mulgt0 8062  ax-pre-mulext 8063
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-po 4351  df-iso 4352  df-iord 4421  df-on 4423  df-ilim 4424  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-recs 6404  df-frec 6490  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-reap 8668  df-ap 8675  df-div 8766  df-inn 9057  df-2 9115  df-n0 9316  df-z 9393  df-uz 9669  df-seqfrec 10615  df-exp 10706
This theorem is referenced by:  nn0opthd  10889
  Copyright terms: Public domain W3C validator