| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnco | GIF version | ||
| Description: The composition of two continuous functions is a continuous function. (Contributed by FL, 8-Dec-2006.) (Revised by Mario Carneiro, 21-Aug-2015.) |
| Ref | Expression |
|---|---|
| cnco | ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) → (𝐺 ∘ 𝐹) ∈ (𝐽 Cn 𝐿)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntop1 14788 | . . 3 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) | |
| 2 | cntop2 14789 | . . 3 ⊢ (𝐺 ∈ (𝐾 Cn 𝐿) → 𝐿 ∈ Top) | |
| 3 | 1, 2 | anim12i 338 | . 2 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) → (𝐽 ∈ Top ∧ 𝐿 ∈ Top)) |
| 4 | eqid 2207 | . . . . 5 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 5 | eqid 2207 | . . . . 5 ⊢ ∪ 𝐿 = ∪ 𝐿 | |
| 6 | 4, 5 | cnf 14791 | . . . 4 ⊢ (𝐺 ∈ (𝐾 Cn 𝐿) → 𝐺:∪ 𝐾⟶∪ 𝐿) |
| 7 | eqid 2207 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 8 | 7, 4 | cnf 14791 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:∪ 𝐽⟶∪ 𝐾) |
| 9 | fco 5461 | . . . 4 ⊢ ((𝐺:∪ 𝐾⟶∪ 𝐿 ∧ 𝐹:∪ 𝐽⟶∪ 𝐾) → (𝐺 ∘ 𝐹):∪ 𝐽⟶∪ 𝐿) | |
| 10 | 6, 8, 9 | syl2anr 290 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) → (𝐺 ∘ 𝐹):∪ 𝐽⟶∪ 𝐿) |
| 11 | cnvco 4881 | . . . . . . 7 ⊢ ◡(𝐺 ∘ 𝐹) = (◡𝐹 ∘ ◡𝐺) | |
| 12 | 11 | imaeq1i 5038 | . . . . . 6 ⊢ (◡(𝐺 ∘ 𝐹) “ 𝑥) = ((◡𝐹 ∘ ◡𝐺) “ 𝑥) |
| 13 | imaco 5207 | . . . . . 6 ⊢ ((◡𝐹 ∘ ◡𝐺) “ 𝑥) = (◡𝐹 “ (◡𝐺 “ 𝑥)) | |
| 14 | 12, 13 | eqtri 2228 | . . . . 5 ⊢ (◡(𝐺 ∘ 𝐹) “ 𝑥) = (◡𝐹 “ (◡𝐺 “ 𝑥)) |
| 15 | simpll 527 | . . . . . 6 ⊢ (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) ∧ 𝑥 ∈ 𝐿) → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
| 16 | cnima 14807 | . . . . . . 7 ⊢ ((𝐺 ∈ (𝐾 Cn 𝐿) ∧ 𝑥 ∈ 𝐿) → (◡𝐺 “ 𝑥) ∈ 𝐾) | |
| 17 | 16 | adantll 476 | . . . . . 6 ⊢ (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) ∧ 𝑥 ∈ 𝐿) → (◡𝐺 “ 𝑥) ∈ 𝐾) |
| 18 | cnima 14807 | . . . . . 6 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (◡𝐺 “ 𝑥) ∈ 𝐾) → (◡𝐹 “ (◡𝐺 “ 𝑥)) ∈ 𝐽) | |
| 19 | 15, 17, 18 | syl2anc 411 | . . . . 5 ⊢ (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) ∧ 𝑥 ∈ 𝐿) → (◡𝐹 “ (◡𝐺 “ 𝑥)) ∈ 𝐽) |
| 20 | 14, 19 | eqeltrid 2294 | . . . 4 ⊢ (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) ∧ 𝑥 ∈ 𝐿) → (◡(𝐺 ∘ 𝐹) “ 𝑥) ∈ 𝐽) |
| 21 | 20 | ralrimiva 2581 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) → ∀𝑥 ∈ 𝐿 (◡(𝐺 ∘ 𝐹) “ 𝑥) ∈ 𝐽) |
| 22 | 10, 21 | jca 306 | . 2 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) → ((𝐺 ∘ 𝐹):∪ 𝐽⟶∪ 𝐿 ∧ ∀𝑥 ∈ 𝐿 (◡(𝐺 ∘ 𝐹) “ 𝑥) ∈ 𝐽)) |
| 23 | 7, 5 | iscn2 14787 | . 2 ⊢ ((𝐺 ∘ 𝐹) ∈ (𝐽 Cn 𝐿) ↔ ((𝐽 ∈ Top ∧ 𝐿 ∈ Top) ∧ ((𝐺 ∘ 𝐹):∪ 𝐽⟶∪ 𝐿 ∧ ∀𝑥 ∈ 𝐿 (◡(𝐺 ∘ 𝐹) “ 𝑥) ∈ 𝐽))) |
| 24 | 3, 22, 23 | sylanbrc 417 | 1 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) → (𝐺 ∘ 𝐹) ∈ (𝐽 Cn 𝐿)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2178 ∀wral 2486 ∪ cuni 3864 ◡ccnv 4692 “ cima 4696 ∘ ccom 4697 ⟶wf 5286 (class class class)co 5967 Topctop 14584 Cn ccn 14772 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-map 6760 df-top 14585 df-topon 14598 df-cn 14775 |
| This theorem is referenced by: txcn 14862 cnmpt11 14870 cnmpt21 14878 hmeoco 14903 |
| Copyright terms: Public domain | W3C validator |