ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnco GIF version

Theorem cnco 14400
Description: The composition of two continuous functions is a continuous function. (Contributed by FL, 8-Dec-2006.) (Revised by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
cnco ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) → (𝐺𝐹) ∈ (𝐽 Cn 𝐿))

Proof of Theorem cnco
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cntop1 14380 . . 3 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
2 cntop2 14381 . . 3 (𝐺 ∈ (𝐾 Cn 𝐿) → 𝐿 ∈ Top)
31, 2anim12i 338 . 2 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) → (𝐽 ∈ Top ∧ 𝐿 ∈ Top))
4 eqid 2193 . . . . 5 𝐾 = 𝐾
5 eqid 2193 . . . . 5 𝐿 = 𝐿
64, 5cnf 14383 . . . 4 (𝐺 ∈ (𝐾 Cn 𝐿) → 𝐺: 𝐾 𝐿)
7 eqid 2193 . . . . 5 𝐽 = 𝐽
87, 4cnf 14383 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽 𝐾)
9 fco 5420 . . . 4 ((𝐺: 𝐾 𝐿𝐹: 𝐽 𝐾) → (𝐺𝐹): 𝐽 𝐿)
106, 8, 9syl2anr 290 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) → (𝐺𝐹): 𝐽 𝐿)
11 cnvco 4848 . . . . . . 7 (𝐺𝐹) = (𝐹𝐺)
1211imaeq1i 5003 . . . . . 6 ((𝐺𝐹) “ 𝑥) = ((𝐹𝐺) “ 𝑥)
13 imaco 5172 . . . . . 6 ((𝐹𝐺) “ 𝑥) = (𝐹 “ (𝐺𝑥))
1412, 13eqtri 2214 . . . . 5 ((𝐺𝐹) “ 𝑥) = (𝐹 “ (𝐺𝑥))
15 simpll 527 . . . . . 6 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) ∧ 𝑥𝐿) → 𝐹 ∈ (𝐽 Cn 𝐾))
16 cnima 14399 . . . . . . 7 ((𝐺 ∈ (𝐾 Cn 𝐿) ∧ 𝑥𝐿) → (𝐺𝑥) ∈ 𝐾)
1716adantll 476 . . . . . 6 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) ∧ 𝑥𝐿) → (𝐺𝑥) ∈ 𝐾)
18 cnima 14399 . . . . . 6 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐺𝑥) ∈ 𝐾) → (𝐹 “ (𝐺𝑥)) ∈ 𝐽)
1915, 17, 18syl2anc 411 . . . . 5 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) ∧ 𝑥𝐿) → (𝐹 “ (𝐺𝑥)) ∈ 𝐽)
2014, 19eqeltrid 2280 . . . 4 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) ∧ 𝑥𝐿) → ((𝐺𝐹) “ 𝑥) ∈ 𝐽)
2120ralrimiva 2567 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) → ∀𝑥𝐿 ((𝐺𝐹) “ 𝑥) ∈ 𝐽)
2210, 21jca 306 . 2 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) → ((𝐺𝐹): 𝐽 𝐿 ∧ ∀𝑥𝐿 ((𝐺𝐹) “ 𝑥) ∈ 𝐽))
237, 5iscn2 14379 . 2 ((𝐺𝐹) ∈ (𝐽 Cn 𝐿) ↔ ((𝐽 ∈ Top ∧ 𝐿 ∈ Top) ∧ ((𝐺𝐹): 𝐽 𝐿 ∧ ∀𝑥𝐿 ((𝐺𝐹) “ 𝑥) ∈ 𝐽)))
243, 22, 23sylanbrc 417 1 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) → (𝐺𝐹) ∈ (𝐽 Cn 𝐿))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2164  wral 2472   cuni 3836  ccnv 4659  cima 4663  ccom 4664  wf 5251  (class class class)co 5919  Topctop 14176   Cn ccn 14364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-map 6706  df-top 14177  df-topon 14190  df-cn 14367
This theorem is referenced by:  txcn  14454  cnmpt11  14462  cnmpt21  14470  hmeoco  14495
  Copyright terms: Public domain W3C validator