![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cnco | GIF version |
Description: The composition of two continuous functions is a continuous function. (Contributed by FL, 8-Dec-2006.) (Revised by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
cnco | ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) → (𝐺 ∘ 𝐹) ∈ (𝐽 Cn 𝐿)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cntop1 13704 | . . 3 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) | |
2 | cntop2 13705 | . . 3 ⊢ (𝐺 ∈ (𝐾 Cn 𝐿) → 𝐿 ∈ Top) | |
3 | 1, 2 | anim12i 338 | . 2 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) → (𝐽 ∈ Top ∧ 𝐿 ∈ Top)) |
4 | eqid 2177 | . . . . 5 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
5 | eqid 2177 | . . . . 5 ⊢ ∪ 𝐿 = ∪ 𝐿 | |
6 | 4, 5 | cnf 13707 | . . . 4 ⊢ (𝐺 ∈ (𝐾 Cn 𝐿) → 𝐺:∪ 𝐾⟶∪ 𝐿) |
7 | eqid 2177 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
8 | 7, 4 | cnf 13707 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:∪ 𝐽⟶∪ 𝐾) |
9 | fco 5382 | . . . 4 ⊢ ((𝐺:∪ 𝐾⟶∪ 𝐿 ∧ 𝐹:∪ 𝐽⟶∪ 𝐾) → (𝐺 ∘ 𝐹):∪ 𝐽⟶∪ 𝐿) | |
10 | 6, 8, 9 | syl2anr 290 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) → (𝐺 ∘ 𝐹):∪ 𝐽⟶∪ 𝐿) |
11 | cnvco 4813 | . . . . . . 7 ⊢ ◡(𝐺 ∘ 𝐹) = (◡𝐹 ∘ ◡𝐺) | |
12 | 11 | imaeq1i 4968 | . . . . . 6 ⊢ (◡(𝐺 ∘ 𝐹) “ 𝑥) = ((◡𝐹 ∘ ◡𝐺) “ 𝑥) |
13 | imaco 5135 | . . . . . 6 ⊢ ((◡𝐹 ∘ ◡𝐺) “ 𝑥) = (◡𝐹 “ (◡𝐺 “ 𝑥)) | |
14 | 12, 13 | eqtri 2198 | . . . . 5 ⊢ (◡(𝐺 ∘ 𝐹) “ 𝑥) = (◡𝐹 “ (◡𝐺 “ 𝑥)) |
15 | simpll 527 | . . . . . 6 ⊢ (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) ∧ 𝑥 ∈ 𝐿) → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
16 | cnima 13723 | . . . . . . 7 ⊢ ((𝐺 ∈ (𝐾 Cn 𝐿) ∧ 𝑥 ∈ 𝐿) → (◡𝐺 “ 𝑥) ∈ 𝐾) | |
17 | 16 | adantll 476 | . . . . . 6 ⊢ (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) ∧ 𝑥 ∈ 𝐿) → (◡𝐺 “ 𝑥) ∈ 𝐾) |
18 | cnima 13723 | . . . . . 6 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (◡𝐺 “ 𝑥) ∈ 𝐾) → (◡𝐹 “ (◡𝐺 “ 𝑥)) ∈ 𝐽) | |
19 | 15, 17, 18 | syl2anc 411 | . . . . 5 ⊢ (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) ∧ 𝑥 ∈ 𝐿) → (◡𝐹 “ (◡𝐺 “ 𝑥)) ∈ 𝐽) |
20 | 14, 19 | eqeltrid 2264 | . . . 4 ⊢ (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) ∧ 𝑥 ∈ 𝐿) → (◡(𝐺 ∘ 𝐹) “ 𝑥) ∈ 𝐽) |
21 | 20 | ralrimiva 2550 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) → ∀𝑥 ∈ 𝐿 (◡(𝐺 ∘ 𝐹) “ 𝑥) ∈ 𝐽) |
22 | 10, 21 | jca 306 | . 2 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) → ((𝐺 ∘ 𝐹):∪ 𝐽⟶∪ 𝐿 ∧ ∀𝑥 ∈ 𝐿 (◡(𝐺 ∘ 𝐹) “ 𝑥) ∈ 𝐽)) |
23 | 7, 5 | iscn2 13703 | . 2 ⊢ ((𝐺 ∘ 𝐹) ∈ (𝐽 Cn 𝐿) ↔ ((𝐽 ∈ Top ∧ 𝐿 ∈ Top) ∧ ((𝐺 ∘ 𝐹):∪ 𝐽⟶∪ 𝐿 ∧ ∀𝑥 ∈ 𝐿 (◡(𝐺 ∘ 𝐹) “ 𝑥) ∈ 𝐽))) |
24 | 3, 22, 23 | sylanbrc 417 | 1 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) → (𝐺 ∘ 𝐹) ∈ (𝐽 Cn 𝐿)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2148 ∀wral 2455 ∪ cuni 3810 ◡ccnv 4626 “ cima 4630 ∘ ccom 4631 ⟶wf 5213 (class class class)co 5875 Topctop 13500 Cn ccn 13688 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-pow 4175 ax-pr 4210 ax-un 4434 ax-setind 4537 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2740 df-sbc 2964 df-csb 3059 df-dif 3132 df-un 3134 df-in 3136 df-ss 3143 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-iun 3889 df-br 4005 df-opab 4066 df-mpt 4067 df-id 4294 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-rn 4638 df-res 4639 df-ima 4640 df-iota 5179 df-fun 5219 df-fn 5220 df-f 5221 df-fv 5225 df-ov 5878 df-oprab 5879 df-mpo 5880 df-1st 6141 df-2nd 6142 df-map 6650 df-top 13501 df-topon 13514 df-cn 13691 |
This theorem is referenced by: txcn 13778 cnmpt11 13786 cnmpt21 13794 hmeoco 13819 |
Copyright terms: Public domain | W3C validator |