![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cnco | GIF version |
Description: The composition of two continuous functions is a continuous function. (Contributed by FL, 8-Dec-2006.) (Revised by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
cnco | ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) → (𝐺 ∘ 𝐹) ∈ (𝐽 Cn 𝐿)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cntop1 12212 | . . 3 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) | |
2 | cntop2 12213 | . . 3 ⊢ (𝐺 ∈ (𝐾 Cn 𝐿) → 𝐿 ∈ Top) | |
3 | 1, 2 | anim12i 334 | . 2 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) → (𝐽 ∈ Top ∧ 𝐿 ∈ Top)) |
4 | eqid 2115 | . . . . 5 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
5 | eqid 2115 | . . . . 5 ⊢ ∪ 𝐿 = ∪ 𝐿 | |
6 | 4, 5 | cnf 12215 | . . . 4 ⊢ (𝐺 ∈ (𝐾 Cn 𝐿) → 𝐺:∪ 𝐾⟶∪ 𝐿) |
7 | eqid 2115 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
8 | 7, 4 | cnf 12215 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:∪ 𝐽⟶∪ 𝐾) |
9 | fco 5246 | . . . 4 ⊢ ((𝐺:∪ 𝐾⟶∪ 𝐿 ∧ 𝐹:∪ 𝐽⟶∪ 𝐾) → (𝐺 ∘ 𝐹):∪ 𝐽⟶∪ 𝐿) | |
10 | 6, 8, 9 | syl2anr 286 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) → (𝐺 ∘ 𝐹):∪ 𝐽⟶∪ 𝐿) |
11 | cnvco 4684 | . . . . . . 7 ⊢ ◡(𝐺 ∘ 𝐹) = (◡𝐹 ∘ ◡𝐺) | |
12 | 11 | imaeq1i 4836 | . . . . . 6 ⊢ (◡(𝐺 ∘ 𝐹) “ 𝑥) = ((◡𝐹 ∘ ◡𝐺) “ 𝑥) |
13 | imaco 5002 | . . . . . 6 ⊢ ((◡𝐹 ∘ ◡𝐺) “ 𝑥) = (◡𝐹 “ (◡𝐺 “ 𝑥)) | |
14 | 12, 13 | eqtri 2135 | . . . . 5 ⊢ (◡(𝐺 ∘ 𝐹) “ 𝑥) = (◡𝐹 “ (◡𝐺 “ 𝑥)) |
15 | simpll 501 | . . . . . 6 ⊢ (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) ∧ 𝑥 ∈ 𝐿) → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
16 | cnima 12231 | . . . . . . 7 ⊢ ((𝐺 ∈ (𝐾 Cn 𝐿) ∧ 𝑥 ∈ 𝐿) → (◡𝐺 “ 𝑥) ∈ 𝐾) | |
17 | 16 | adantll 465 | . . . . . 6 ⊢ (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) ∧ 𝑥 ∈ 𝐿) → (◡𝐺 “ 𝑥) ∈ 𝐾) |
18 | cnima 12231 | . . . . . 6 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (◡𝐺 “ 𝑥) ∈ 𝐾) → (◡𝐹 “ (◡𝐺 “ 𝑥)) ∈ 𝐽) | |
19 | 15, 17, 18 | syl2anc 406 | . . . . 5 ⊢ (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) ∧ 𝑥 ∈ 𝐿) → (◡𝐹 “ (◡𝐺 “ 𝑥)) ∈ 𝐽) |
20 | 14, 19 | syl5eqel 2201 | . . . 4 ⊢ (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) ∧ 𝑥 ∈ 𝐿) → (◡(𝐺 ∘ 𝐹) “ 𝑥) ∈ 𝐽) |
21 | 20 | ralrimiva 2479 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) → ∀𝑥 ∈ 𝐿 (◡(𝐺 ∘ 𝐹) “ 𝑥) ∈ 𝐽) |
22 | 10, 21 | jca 302 | . 2 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) → ((𝐺 ∘ 𝐹):∪ 𝐽⟶∪ 𝐿 ∧ ∀𝑥 ∈ 𝐿 (◡(𝐺 ∘ 𝐹) “ 𝑥) ∈ 𝐽)) |
23 | 7, 5 | iscn2 12211 | . 2 ⊢ ((𝐺 ∘ 𝐹) ∈ (𝐽 Cn 𝐿) ↔ ((𝐽 ∈ Top ∧ 𝐿 ∈ Top) ∧ ((𝐺 ∘ 𝐹):∪ 𝐽⟶∪ 𝐿 ∧ ∀𝑥 ∈ 𝐿 (◡(𝐺 ∘ 𝐹) “ 𝑥) ∈ 𝐽))) |
24 | 3, 22, 23 | sylanbrc 411 | 1 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) → (𝐺 ∘ 𝐹) ∈ (𝐽 Cn 𝐿)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 1463 ∀wral 2390 ∪ cuni 3702 ◡ccnv 4498 “ cima 4502 ∘ ccom 4503 ⟶wf 5077 (class class class)co 5728 Topctop 12007 Cn ccn 12197 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-13 1474 ax-14 1475 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 ax-sep 4006 ax-pow 4058 ax-pr 4091 ax-un 4315 ax-setind 4412 |
This theorem depends on definitions: df-bi 116 df-3an 947 df-tru 1317 df-fal 1320 df-nf 1420 df-sb 1719 df-eu 1978 df-mo 1979 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ne 2283 df-ral 2395 df-rex 2396 df-rab 2399 df-v 2659 df-sbc 2879 df-csb 2972 df-dif 3039 df-un 3041 df-in 3043 df-ss 3050 df-pw 3478 df-sn 3499 df-pr 3500 df-op 3502 df-uni 3703 df-iun 3781 df-br 3896 df-opab 3950 df-mpt 3951 df-id 4175 df-xp 4505 df-rel 4506 df-cnv 4507 df-co 4508 df-dm 4509 df-rn 4510 df-res 4511 df-ima 4512 df-iota 5046 df-fun 5083 df-fn 5084 df-f 5085 df-fv 5089 df-ov 5731 df-oprab 5732 df-mpo 5733 df-1st 5992 df-2nd 5993 df-map 6498 df-top 12008 df-topon 12021 df-cn 12200 |
This theorem is referenced by: txcn 12286 cnmpt11 12294 cnmpt21 12302 |
Copyright terms: Public domain | W3C validator |