Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cnco | GIF version |
Description: The composition of two continuous functions is a continuous function. (Contributed by FL, 8-Dec-2006.) (Revised by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
cnco | ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) → (𝐺 ∘ 𝐹) ∈ (𝐽 Cn 𝐿)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cntop1 12995 | . . 3 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) | |
2 | cntop2 12996 | . . 3 ⊢ (𝐺 ∈ (𝐾 Cn 𝐿) → 𝐿 ∈ Top) | |
3 | 1, 2 | anim12i 336 | . 2 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) → (𝐽 ∈ Top ∧ 𝐿 ∈ Top)) |
4 | eqid 2170 | . . . . 5 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
5 | eqid 2170 | . . . . 5 ⊢ ∪ 𝐿 = ∪ 𝐿 | |
6 | 4, 5 | cnf 12998 | . . . 4 ⊢ (𝐺 ∈ (𝐾 Cn 𝐿) → 𝐺:∪ 𝐾⟶∪ 𝐿) |
7 | eqid 2170 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
8 | 7, 4 | cnf 12998 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:∪ 𝐽⟶∪ 𝐾) |
9 | fco 5363 | . . . 4 ⊢ ((𝐺:∪ 𝐾⟶∪ 𝐿 ∧ 𝐹:∪ 𝐽⟶∪ 𝐾) → (𝐺 ∘ 𝐹):∪ 𝐽⟶∪ 𝐿) | |
10 | 6, 8, 9 | syl2anr 288 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) → (𝐺 ∘ 𝐹):∪ 𝐽⟶∪ 𝐿) |
11 | cnvco 4796 | . . . . . . 7 ⊢ ◡(𝐺 ∘ 𝐹) = (◡𝐹 ∘ ◡𝐺) | |
12 | 11 | imaeq1i 4950 | . . . . . 6 ⊢ (◡(𝐺 ∘ 𝐹) “ 𝑥) = ((◡𝐹 ∘ ◡𝐺) “ 𝑥) |
13 | imaco 5116 | . . . . . 6 ⊢ ((◡𝐹 ∘ ◡𝐺) “ 𝑥) = (◡𝐹 “ (◡𝐺 “ 𝑥)) | |
14 | 12, 13 | eqtri 2191 | . . . . 5 ⊢ (◡(𝐺 ∘ 𝐹) “ 𝑥) = (◡𝐹 “ (◡𝐺 “ 𝑥)) |
15 | simpll 524 | . . . . . 6 ⊢ (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) ∧ 𝑥 ∈ 𝐿) → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
16 | cnima 13014 | . . . . . . 7 ⊢ ((𝐺 ∈ (𝐾 Cn 𝐿) ∧ 𝑥 ∈ 𝐿) → (◡𝐺 “ 𝑥) ∈ 𝐾) | |
17 | 16 | adantll 473 | . . . . . 6 ⊢ (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) ∧ 𝑥 ∈ 𝐿) → (◡𝐺 “ 𝑥) ∈ 𝐾) |
18 | cnima 13014 | . . . . . 6 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (◡𝐺 “ 𝑥) ∈ 𝐾) → (◡𝐹 “ (◡𝐺 “ 𝑥)) ∈ 𝐽) | |
19 | 15, 17, 18 | syl2anc 409 | . . . . 5 ⊢ (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) ∧ 𝑥 ∈ 𝐿) → (◡𝐹 “ (◡𝐺 “ 𝑥)) ∈ 𝐽) |
20 | 14, 19 | eqeltrid 2257 | . . . 4 ⊢ (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) ∧ 𝑥 ∈ 𝐿) → (◡(𝐺 ∘ 𝐹) “ 𝑥) ∈ 𝐽) |
21 | 20 | ralrimiva 2543 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) → ∀𝑥 ∈ 𝐿 (◡(𝐺 ∘ 𝐹) “ 𝑥) ∈ 𝐽) |
22 | 10, 21 | jca 304 | . 2 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) → ((𝐺 ∘ 𝐹):∪ 𝐽⟶∪ 𝐿 ∧ ∀𝑥 ∈ 𝐿 (◡(𝐺 ∘ 𝐹) “ 𝑥) ∈ 𝐽)) |
23 | 7, 5 | iscn2 12994 | . 2 ⊢ ((𝐺 ∘ 𝐹) ∈ (𝐽 Cn 𝐿) ↔ ((𝐽 ∈ Top ∧ 𝐿 ∈ Top) ∧ ((𝐺 ∘ 𝐹):∪ 𝐽⟶∪ 𝐿 ∧ ∀𝑥 ∈ 𝐿 (◡(𝐺 ∘ 𝐹) “ 𝑥) ∈ 𝐽))) |
24 | 3, 22, 23 | sylanbrc 415 | 1 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) → (𝐺 ∘ 𝐹) ∈ (𝐽 Cn 𝐿)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2141 ∀wral 2448 ∪ cuni 3796 ◡ccnv 4610 “ cima 4614 ∘ ccom 4615 ⟶wf 5194 (class class class)co 5853 Topctop 12789 Cn ccn 12979 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-map 6628 df-top 12790 df-topon 12803 df-cn 12982 |
This theorem is referenced by: txcn 13069 cnmpt11 13077 cnmpt21 13085 hmeoco 13110 |
Copyright terms: Public domain | W3C validator |