ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumm1 GIF version

Theorem fsumm1 11426
Description: Separate out the last term in a finite sum. (Contributed by Mario Carneiro, 26-Apr-2014.)
Hypotheses
Ref Expression
fsumm1.1 (𝜑𝑁 ∈ (ℤ𝑀))
fsumm1.2 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
fsumm1.3 (𝑘 = 𝑁𝐴 = 𝐵)
Assertion
Ref Expression
fsumm1 (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + 𝐵))
Distinct variable groups:   𝐵,𝑘   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem fsumm1
StepHypRef Expression
1 fsumm1.1 . . . . . . 7 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzelz 9539 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
31, 2syl 14 . . . . . 6 (𝜑𝑁 ∈ ℤ)
4 fzsn 10068 . . . . . 6 (𝑁 ∈ ℤ → (𝑁...𝑁) = {𝑁})
53, 4syl 14 . . . . 5 (𝜑 → (𝑁...𝑁) = {𝑁})
65ineq2d 3338 . . . 4 (𝜑 → ((𝑀...(𝑁 − 1)) ∩ (𝑁...𝑁)) = ((𝑀...(𝑁 − 1)) ∩ {𝑁}))
73zred 9377 . . . . . 6 (𝜑𝑁 ∈ ℝ)
87ltm1d 8891 . . . . 5 (𝜑 → (𝑁 − 1) < 𝑁)
9 fzdisj 10054 . . . . 5 ((𝑁 − 1) < 𝑁 → ((𝑀...(𝑁 − 1)) ∩ (𝑁...𝑁)) = ∅)
108, 9syl 14 . . . 4 (𝜑 → ((𝑀...(𝑁 − 1)) ∩ (𝑁...𝑁)) = ∅)
116, 10eqtr3d 2212 . . 3 (𝜑 → ((𝑀...(𝑁 − 1)) ∩ {𝑁}) = ∅)
12 eluzel2 9535 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
131, 12syl 14 . . . . . 6 (𝜑𝑀 ∈ ℤ)
14 peano2zm 9293 . . . . . . . 8 (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ)
1513, 14syl 14 . . . . . . 7 (𝜑 → (𝑀 − 1) ∈ ℤ)
1613zcnd 9378 . . . . . . . . . 10 (𝜑𝑀 ∈ ℂ)
17 ax-1cn 7906 . . . . . . . . . 10 1 ∈ ℂ
18 npcan 8168 . . . . . . . . . 10 ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑀 − 1) + 1) = 𝑀)
1916, 17, 18sylancl 413 . . . . . . . . 9 (𝜑 → ((𝑀 − 1) + 1) = 𝑀)
2019fveq2d 5521 . . . . . . . 8 (𝜑 → (ℤ‘((𝑀 − 1) + 1)) = (ℤ𝑀))
211, 20eleqtrrd 2257 . . . . . . 7 (𝜑𝑁 ∈ (ℤ‘((𝑀 − 1) + 1)))
22 eluzp1m1 9553 . . . . . . 7 (((𝑀 − 1) ∈ ℤ ∧ 𝑁 ∈ (ℤ‘((𝑀 − 1) + 1))) → (𝑁 − 1) ∈ (ℤ‘(𝑀 − 1)))
2315, 21, 22syl2anc 411 . . . . . 6 (𝜑 → (𝑁 − 1) ∈ (ℤ‘(𝑀 − 1)))
24 fzsuc2 10081 . . . . . 6 ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ (ℤ‘(𝑀 − 1))) → (𝑀...((𝑁 − 1) + 1)) = ((𝑀...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)}))
2513, 23, 24syl2anc 411 . . . . 5 (𝜑 → (𝑀...((𝑁 − 1) + 1)) = ((𝑀...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)}))
263zcnd 9378 . . . . . . 7 (𝜑𝑁 ∈ ℂ)
27 npcan 8168 . . . . . . 7 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
2826, 17, 27sylancl 413 . . . . . 6 (𝜑 → ((𝑁 − 1) + 1) = 𝑁)
2928oveq2d 5893 . . . . 5 (𝜑 → (𝑀...((𝑁 − 1) + 1)) = (𝑀...𝑁))
3025, 29eqtr3d 2212 . . . 4 (𝜑 → ((𝑀...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)}) = (𝑀...𝑁))
3128sneqd 3607 . . . . 5 (𝜑 → {((𝑁 − 1) + 1)} = {𝑁})
3231uneq2d 3291 . . . 4 (𝜑 → ((𝑀...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)}) = ((𝑀...(𝑁 − 1)) ∪ {𝑁}))
3330, 32eqtr3d 2212 . . 3 (𝜑 → (𝑀...𝑁) = ((𝑀...(𝑁 − 1)) ∪ {𝑁}))
3413, 3fzfigd 10433 . . 3 (𝜑 → (𝑀...𝑁) ∈ Fin)
35 fsumm1.2 . . 3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
3611, 33, 34, 35fsumsplit 11417 . 2 (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + Σ𝑘 ∈ {𝑁}𝐴))
37 fsumm1.3 . . . . . 6 (𝑘 = 𝑁𝐴 = 𝐵)
3837eleq1d 2246 . . . . 5 (𝑘 = 𝑁 → (𝐴 ∈ ℂ ↔ 𝐵 ∈ ℂ))
3935ralrimiva 2550 . . . . 5 (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ)
40 eluzfz2 10034 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
411, 40syl 14 . . . . 5 (𝜑𝑁 ∈ (𝑀...𝑁))
4238, 39, 41rspcdva 2848 . . . 4 (𝜑𝐵 ∈ ℂ)
4337sumsn 11421 . . . 4 ((𝑁 ∈ (ℤ𝑀) ∧ 𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑁}𝐴 = 𝐵)
441, 42, 43syl2anc 411 . . 3 (𝜑 → Σ𝑘 ∈ {𝑁}𝐴 = 𝐵)
4544oveq2d 5893 . 2 (𝜑 → (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + Σ𝑘 ∈ {𝑁}𝐴) = (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + 𝐵))
4636, 45eqtrd 2210 1 (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  cun 3129  cin 3130  c0 3424  {csn 3594   class class class wbr 4005  cfv 5218  (class class class)co 5877  cc 7811  1c1 7814   + caddc 7816   < clt 7994  cmin 8130  cz 9255  cuz 9530  ...cfz 10010  Σcsu 11363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931  ax-arch 7932  ax-caucvg 7933
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-isom 5227  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-irdg 6373  df-frec 6394  df-1o 6419  df-oadd 6423  df-er 6537  df-en 6743  df-dom 6744  df-fin 6745  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-n0 9179  df-z 9256  df-uz 9531  df-q 9622  df-rp 9656  df-fz 10011  df-fzo 10145  df-seqfrec 10448  df-exp 10522  df-ihash 10758  df-cj 10853  df-re 10854  df-im 10855  df-rsqrt 11009  df-abs 11010  df-clim 11289  df-sumdc 11364
This theorem is referenced by:  fzosump1  11427  fsump1  11430  telfsumo  11476  fsumparts  11480  binom1dif  11497
  Copyright terms: Public domain W3C validator