Step | Hyp | Ref
| Expression |
1 | | zssinfcl.zz |
. . . . 5
⊢ (𝜑 → inf(𝐵, ℝ, < ) ∈
ℤ) |
2 | 1 | zred 9334 |
. . . 4
⊢ (𝜑 → inf(𝐵, ℝ, < ) ∈
ℝ) |
3 | | 1red 7935 |
. . . 4
⊢ (𝜑 → 1 ∈
ℝ) |
4 | 2, 3 | readdcld 7949 |
. . 3
⊢ (𝜑 → (inf(𝐵, ℝ, < ) + 1) ∈
ℝ) |
5 | 2 | ltp1d 8846 |
. . 3
⊢ (𝜑 → inf(𝐵, ℝ, < ) < (inf(𝐵, ℝ, < ) +
1)) |
6 | | lttri3 7999 |
. . . . 5
⊢ ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓))) |
7 | 6 | adantl 275 |
. . . 4
⊢ ((𝜑 ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓))) |
8 | | zssinfcl.ex |
. . . 4
⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐵 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐵 𝑧 < 𝑦))) |
9 | 7, 8 | infglbti 7002 |
. . 3
⊢ (𝜑 → (((inf(𝐵, ℝ, < ) + 1) ∈ ℝ ∧
inf(𝐵, ℝ, < ) <
(inf(𝐵, ℝ, < ) +
1)) → ∃𝑧 ∈
𝐵 𝑧 < (inf(𝐵, ℝ, < ) + 1))) |
10 | 4, 5, 9 | mp2and 431 |
. 2
⊢ (𝜑 → ∃𝑧 ∈ 𝐵 𝑧 < (inf(𝐵, ℝ, < ) + 1)) |
11 | 2 | adantr 274 |
. . . . 5
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 < (inf(𝐵, ℝ, < ) + 1))) → inf(𝐵, ℝ, < ) ∈
ℝ) |
12 | | zssinfcl.ss |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ⊆ ℤ) |
13 | 12 | adantr 274 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 < (inf(𝐵, ℝ, < ) + 1))) → 𝐵 ⊆
ℤ) |
14 | | simprl 526 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 < (inf(𝐵, ℝ, < ) + 1))) → 𝑧 ∈ 𝐵) |
15 | 13, 14 | sseldd 3148 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 < (inf(𝐵, ℝ, < ) + 1))) → 𝑧 ∈
ℤ) |
16 | 15 | zred 9334 |
. . . . 5
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 < (inf(𝐵, ℝ, < ) + 1))) → 𝑧 ∈
ℝ) |
17 | 7, 8 | inflbti 7001 |
. . . . . . 7
⊢ (𝜑 → (𝑧 ∈ 𝐵 → ¬ 𝑧 < inf(𝐵, ℝ, < ))) |
18 | 17 | imp 123 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → ¬ 𝑧 < inf(𝐵, ℝ, < )) |
19 | 18 | adantrr 476 |
. . . . 5
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 < (inf(𝐵, ℝ, < ) + 1))) → ¬ 𝑧 < inf(𝐵, ℝ, < )) |
20 | 11, 16, 19 | nltled 8040 |
. . . 4
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 < (inf(𝐵, ℝ, < ) + 1))) → inf(𝐵, ℝ, < ) ≤ 𝑧) |
21 | | simprr 527 |
. . . . 5
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 < (inf(𝐵, ℝ, < ) + 1))) → 𝑧 < (inf(𝐵, ℝ, < ) + 1)) |
22 | 1 | adantr 274 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 < (inf(𝐵, ℝ, < ) + 1))) → inf(𝐵, ℝ, < ) ∈
ℤ) |
23 | | zleltp1 9267 |
. . . . . 6
⊢ ((𝑧 ∈ ℤ ∧ inf(𝐵, ℝ, < ) ∈
ℤ) → (𝑧 ≤
inf(𝐵, ℝ, < )
↔ 𝑧 < (inf(𝐵, ℝ, < ) +
1))) |
24 | 15, 22, 23 | syl2anc 409 |
. . . . 5
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 < (inf(𝐵, ℝ, < ) + 1))) → (𝑧 ≤ inf(𝐵, ℝ, < ) ↔ 𝑧 < (inf(𝐵, ℝ, < ) + 1))) |
25 | 21, 24 | mpbird 166 |
. . . 4
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 < (inf(𝐵, ℝ, < ) + 1))) → 𝑧 ≤ inf(𝐵, ℝ, < )) |
26 | 11, 16 | letri3d 8035 |
. . . 4
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 < (inf(𝐵, ℝ, < ) + 1))) → (inf(𝐵, ℝ, < ) = 𝑧 ↔ (inf(𝐵, ℝ, < ) ≤ 𝑧 ∧ 𝑧 ≤ inf(𝐵, ℝ, < )))) |
27 | 20, 25, 26 | mpbir2and 939 |
. . 3
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 < (inf(𝐵, ℝ, < ) + 1))) → inf(𝐵, ℝ, < ) = 𝑧) |
28 | 27, 14 | eqeltrd 2247 |
. 2
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 < (inf(𝐵, ℝ, < ) + 1))) → inf(𝐵, ℝ, < ) ∈ 𝐵) |
29 | 10, 28 | rexlimddv 2592 |
1
⊢ (𝜑 → inf(𝐵, ℝ, < ) ∈ 𝐵) |