Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  zssinfcl GIF version

Theorem zssinfcl 11654
 Description: The infimum of a set of integers is an element of the set. (Contributed by Jim Kingdon, 16-Jan-2022.)
Hypotheses
Ref Expression
zssinfcl.ex (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐵 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐵 𝑧 < 𝑦)))
zssinfcl.ss (𝜑𝐵 ⊆ ℤ)
zssinfcl.zz (𝜑 → inf(𝐵, ℝ, < ) ∈ ℤ)
Assertion
Ref Expression
zssinfcl (𝜑 → inf(𝐵, ℝ, < ) ∈ 𝐵)
Distinct variable groups:   𝑥,𝐵,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧

Proof of Theorem zssinfcl
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zssinfcl.zz . . . . 5 (𝜑 → inf(𝐵, ℝ, < ) ∈ ℤ)
21zred 9187 . . . 4 (𝜑 → inf(𝐵, ℝ, < ) ∈ ℝ)
3 1red 7795 . . . 4 (𝜑 → 1 ∈ ℝ)
42, 3readdcld 7809 . . 3 (𝜑 → (inf(𝐵, ℝ, < ) + 1) ∈ ℝ)
52ltp1d 8702 . . 3 (𝜑 → inf(𝐵, ℝ, < ) < (inf(𝐵, ℝ, < ) + 1))
6 lttri3 7858 . . . . 5 ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
76adantl 275 . . . 4 ((𝜑 ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
8 zssinfcl.ex . . . 4 (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐵 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐵 𝑧 < 𝑦)))
97, 8infglbti 6912 . . 3 (𝜑 → (((inf(𝐵, ℝ, < ) + 1) ∈ ℝ ∧ inf(𝐵, ℝ, < ) < (inf(𝐵, ℝ, < ) + 1)) → ∃𝑧𝐵 𝑧 < (inf(𝐵, ℝ, < ) + 1)))
104, 5, 9mp2and 429 . 2 (𝜑 → ∃𝑧𝐵 𝑧 < (inf(𝐵, ℝ, < ) + 1))
112adantr 274 . . . . 5 ((𝜑 ∧ (𝑧𝐵𝑧 < (inf(𝐵, ℝ, < ) + 1))) → inf(𝐵, ℝ, < ) ∈ ℝ)
12 zssinfcl.ss . . . . . . . 8 (𝜑𝐵 ⊆ ℤ)
1312adantr 274 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑧 < (inf(𝐵, ℝ, < ) + 1))) → 𝐵 ⊆ ℤ)
14 simprl 520 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑧 < (inf(𝐵, ℝ, < ) + 1))) → 𝑧𝐵)
1513, 14sseldd 3098 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑧 < (inf(𝐵, ℝ, < ) + 1))) → 𝑧 ∈ ℤ)
1615zred 9187 . . . . 5 ((𝜑 ∧ (𝑧𝐵𝑧 < (inf(𝐵, ℝ, < ) + 1))) → 𝑧 ∈ ℝ)
177, 8inflbti 6911 . . . . . . 7 (𝜑 → (𝑧𝐵 → ¬ 𝑧 < inf(𝐵, ℝ, < )))
1817imp 123 . . . . . 6 ((𝜑𝑧𝐵) → ¬ 𝑧 < inf(𝐵, ℝ, < ))
1918adantrr 470 . . . . 5 ((𝜑 ∧ (𝑧𝐵𝑧 < (inf(𝐵, ℝ, < ) + 1))) → ¬ 𝑧 < inf(𝐵, ℝ, < ))
2011, 16, 19nltled 7897 . . . 4 ((𝜑 ∧ (𝑧𝐵𝑧 < (inf(𝐵, ℝ, < ) + 1))) → inf(𝐵, ℝ, < ) ≤ 𝑧)
21 simprr 521 . . . . 5 ((𝜑 ∧ (𝑧𝐵𝑧 < (inf(𝐵, ℝ, < ) + 1))) → 𝑧 < (inf(𝐵, ℝ, < ) + 1))
221adantr 274 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑧 < (inf(𝐵, ℝ, < ) + 1))) → inf(𝐵, ℝ, < ) ∈ ℤ)
23 zleltp1 9123 . . . . . 6 ((𝑧 ∈ ℤ ∧ inf(𝐵, ℝ, < ) ∈ ℤ) → (𝑧 ≤ inf(𝐵, ℝ, < ) ↔ 𝑧 < (inf(𝐵, ℝ, < ) + 1)))
2415, 22, 23syl2anc 408 . . . . 5 ((𝜑 ∧ (𝑧𝐵𝑧 < (inf(𝐵, ℝ, < ) + 1))) → (𝑧 ≤ inf(𝐵, ℝ, < ) ↔ 𝑧 < (inf(𝐵, ℝ, < ) + 1)))
2521, 24mpbird 166 . . . 4 ((𝜑 ∧ (𝑧𝐵𝑧 < (inf(𝐵, ℝ, < ) + 1))) → 𝑧 ≤ inf(𝐵, ℝ, < ))
2611, 16letri3d 7893 . . . 4 ((𝜑 ∧ (𝑧𝐵𝑧 < (inf(𝐵, ℝ, < ) + 1))) → (inf(𝐵, ℝ, < ) = 𝑧 ↔ (inf(𝐵, ℝ, < ) ≤ 𝑧𝑧 ≤ inf(𝐵, ℝ, < ))))
2720, 25, 26mpbir2and 928 . . 3 ((𝜑 ∧ (𝑧𝐵𝑧 < (inf(𝐵, ℝ, < ) + 1))) → inf(𝐵, ℝ, < ) = 𝑧)
2827, 14eqeltrd 2216 . 2 ((𝜑 ∧ (𝑧𝐵𝑧 < (inf(𝐵, ℝ, < ) + 1))) → inf(𝐵, ℝ, < ) ∈ 𝐵)
2910, 28rexlimddv 2554 1 (𝜑 → inf(𝐵, ℝ, < ) ∈ 𝐵)
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 103   ↔ wb 104   = wceq 1331   ∈ wcel 1480  ∀wral 2416  ∃wrex 2417   ⊆ wss 3071   class class class wbr 3929  (class class class)co 5774  infcinf 6870  ℝcr 7633  1c1 7635   + caddc 7637   < clt 7814   ≤ cle 7815  ℤcz 9068 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7725  ax-resscn 7726  ax-1cn 7727  ax-1re 7728  ax-icn 7729  ax-addcl 7730  ax-addrcl 7731  ax-mulcl 7732  ax-addcom 7734  ax-addass 7736  ax-distr 7738  ax-i2m1 7739  ax-0lt1 7740  ax-0id 7742  ax-rnegex 7743  ax-cnre 7745  ax-pre-ltirr 7746  ax-pre-ltwlin 7747  ax-pre-lttrn 7748  ax-pre-apti 7749  ax-pre-ltadd 7750 This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-sup 6871  df-inf 6872  df-pnf 7816  df-mnf 7817  df-xr 7818  df-ltxr 7819  df-le 7820  df-sub 7949  df-neg 7950  df-inn 8735  df-n0 8992  df-z 9069 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator