ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zssinfcl GIF version

Theorem zssinfcl 11903
Description: The infimum of a set of integers is an element of the set. (Contributed by Jim Kingdon, 16-Jan-2022.)
Hypotheses
Ref Expression
zssinfcl.ex (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐵 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐵 𝑧 < 𝑦)))
zssinfcl.ss (𝜑𝐵 ⊆ ℤ)
zssinfcl.zz (𝜑 → inf(𝐵, ℝ, < ) ∈ ℤ)
Assertion
Ref Expression
zssinfcl (𝜑 → inf(𝐵, ℝ, < ) ∈ 𝐵)
Distinct variable groups:   𝑥,𝐵,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧

Proof of Theorem zssinfcl
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zssinfcl.zz . . . . 5 (𝜑 → inf(𝐵, ℝ, < ) ∈ ℤ)
21zred 9334 . . . 4 (𝜑 → inf(𝐵, ℝ, < ) ∈ ℝ)
3 1red 7935 . . . 4 (𝜑 → 1 ∈ ℝ)
42, 3readdcld 7949 . . 3 (𝜑 → (inf(𝐵, ℝ, < ) + 1) ∈ ℝ)
52ltp1d 8846 . . 3 (𝜑 → inf(𝐵, ℝ, < ) < (inf(𝐵, ℝ, < ) + 1))
6 lttri3 7999 . . . . 5 ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
76adantl 275 . . . 4 ((𝜑 ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
8 zssinfcl.ex . . . 4 (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐵 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐵 𝑧 < 𝑦)))
97, 8infglbti 7002 . . 3 (𝜑 → (((inf(𝐵, ℝ, < ) + 1) ∈ ℝ ∧ inf(𝐵, ℝ, < ) < (inf(𝐵, ℝ, < ) + 1)) → ∃𝑧𝐵 𝑧 < (inf(𝐵, ℝ, < ) + 1)))
104, 5, 9mp2and 431 . 2 (𝜑 → ∃𝑧𝐵 𝑧 < (inf(𝐵, ℝ, < ) + 1))
112adantr 274 . . . . 5 ((𝜑 ∧ (𝑧𝐵𝑧 < (inf(𝐵, ℝ, < ) + 1))) → inf(𝐵, ℝ, < ) ∈ ℝ)
12 zssinfcl.ss . . . . . . . 8 (𝜑𝐵 ⊆ ℤ)
1312adantr 274 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑧 < (inf(𝐵, ℝ, < ) + 1))) → 𝐵 ⊆ ℤ)
14 simprl 526 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑧 < (inf(𝐵, ℝ, < ) + 1))) → 𝑧𝐵)
1513, 14sseldd 3148 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑧 < (inf(𝐵, ℝ, < ) + 1))) → 𝑧 ∈ ℤ)
1615zred 9334 . . . . 5 ((𝜑 ∧ (𝑧𝐵𝑧 < (inf(𝐵, ℝ, < ) + 1))) → 𝑧 ∈ ℝ)
177, 8inflbti 7001 . . . . . . 7 (𝜑 → (𝑧𝐵 → ¬ 𝑧 < inf(𝐵, ℝ, < )))
1817imp 123 . . . . . 6 ((𝜑𝑧𝐵) → ¬ 𝑧 < inf(𝐵, ℝ, < ))
1918adantrr 476 . . . . 5 ((𝜑 ∧ (𝑧𝐵𝑧 < (inf(𝐵, ℝ, < ) + 1))) → ¬ 𝑧 < inf(𝐵, ℝ, < ))
2011, 16, 19nltled 8040 . . . 4 ((𝜑 ∧ (𝑧𝐵𝑧 < (inf(𝐵, ℝ, < ) + 1))) → inf(𝐵, ℝ, < ) ≤ 𝑧)
21 simprr 527 . . . . 5 ((𝜑 ∧ (𝑧𝐵𝑧 < (inf(𝐵, ℝ, < ) + 1))) → 𝑧 < (inf(𝐵, ℝ, < ) + 1))
221adantr 274 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑧 < (inf(𝐵, ℝ, < ) + 1))) → inf(𝐵, ℝ, < ) ∈ ℤ)
23 zleltp1 9267 . . . . . 6 ((𝑧 ∈ ℤ ∧ inf(𝐵, ℝ, < ) ∈ ℤ) → (𝑧 ≤ inf(𝐵, ℝ, < ) ↔ 𝑧 < (inf(𝐵, ℝ, < ) + 1)))
2415, 22, 23syl2anc 409 . . . . 5 ((𝜑 ∧ (𝑧𝐵𝑧 < (inf(𝐵, ℝ, < ) + 1))) → (𝑧 ≤ inf(𝐵, ℝ, < ) ↔ 𝑧 < (inf(𝐵, ℝ, < ) + 1)))
2521, 24mpbird 166 . . . 4 ((𝜑 ∧ (𝑧𝐵𝑧 < (inf(𝐵, ℝ, < ) + 1))) → 𝑧 ≤ inf(𝐵, ℝ, < ))
2611, 16letri3d 8035 . . . 4 ((𝜑 ∧ (𝑧𝐵𝑧 < (inf(𝐵, ℝ, < ) + 1))) → (inf(𝐵, ℝ, < ) = 𝑧 ↔ (inf(𝐵, ℝ, < ) ≤ 𝑧𝑧 ≤ inf(𝐵, ℝ, < ))))
2720, 25, 26mpbir2and 939 . . 3 ((𝜑 ∧ (𝑧𝐵𝑧 < (inf(𝐵, ℝ, < ) + 1))) → inf(𝐵, ℝ, < ) = 𝑧)
2827, 14eqeltrd 2247 . 2 ((𝜑 ∧ (𝑧𝐵𝑧 < (inf(𝐵, ℝ, < ) + 1))) → inf(𝐵, ℝ, < ) ∈ 𝐵)
2910, 28rexlimddv 2592 1 (𝜑 → inf(𝐵, ℝ, < ) ∈ 𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104   = wceq 1348  wcel 2141  wral 2448  wrex 2449  wss 3121   class class class wbr 3989  (class class class)co 5853  infcinf 6960  cr 7773  1c1 7775   + caddc 7777   < clt 7954  cle 7955  cz 9212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-sup 6961  df-inf 6962  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-n0 9136  df-z 9213
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator