ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zssinfcl GIF version

Theorem zssinfcl 11951
Description: The infimum of a set of integers is an element of the set. (Contributed by Jim Kingdon, 16-Jan-2022.)
Hypotheses
Ref Expression
zssinfcl.ex (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐵 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐵 𝑧 < 𝑦)))
zssinfcl.ss (𝜑𝐵 ⊆ ℤ)
zssinfcl.zz (𝜑 → inf(𝐵, ℝ, < ) ∈ ℤ)
Assertion
Ref Expression
zssinfcl (𝜑 → inf(𝐵, ℝ, < ) ∈ 𝐵)
Distinct variable groups:   𝑥,𝐵,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧

Proof of Theorem zssinfcl
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zssinfcl.zz . . . . 5 (𝜑 → inf(𝐵, ℝ, < ) ∈ ℤ)
21zred 9377 . . . 4 (𝜑 → inf(𝐵, ℝ, < ) ∈ ℝ)
3 1red 7974 . . . 4 (𝜑 → 1 ∈ ℝ)
42, 3readdcld 7989 . . 3 (𝜑 → (inf(𝐵, ℝ, < ) + 1) ∈ ℝ)
52ltp1d 8889 . . 3 (𝜑 → inf(𝐵, ℝ, < ) < (inf(𝐵, ℝ, < ) + 1))
6 lttri3 8039 . . . . 5 ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
76adantl 277 . . . 4 ((𝜑 ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
8 zssinfcl.ex . . . 4 (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐵 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐵 𝑧 < 𝑦)))
97, 8infglbti 7026 . . 3 (𝜑 → (((inf(𝐵, ℝ, < ) + 1) ∈ ℝ ∧ inf(𝐵, ℝ, < ) < (inf(𝐵, ℝ, < ) + 1)) → ∃𝑧𝐵 𝑧 < (inf(𝐵, ℝ, < ) + 1)))
104, 5, 9mp2and 433 . 2 (𝜑 → ∃𝑧𝐵 𝑧 < (inf(𝐵, ℝ, < ) + 1))
112adantr 276 . . . . 5 ((𝜑 ∧ (𝑧𝐵𝑧 < (inf(𝐵, ℝ, < ) + 1))) → inf(𝐵, ℝ, < ) ∈ ℝ)
12 zssinfcl.ss . . . . . . . 8 (𝜑𝐵 ⊆ ℤ)
1312adantr 276 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑧 < (inf(𝐵, ℝ, < ) + 1))) → 𝐵 ⊆ ℤ)
14 simprl 529 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑧 < (inf(𝐵, ℝ, < ) + 1))) → 𝑧𝐵)
1513, 14sseldd 3158 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑧 < (inf(𝐵, ℝ, < ) + 1))) → 𝑧 ∈ ℤ)
1615zred 9377 . . . . 5 ((𝜑 ∧ (𝑧𝐵𝑧 < (inf(𝐵, ℝ, < ) + 1))) → 𝑧 ∈ ℝ)
177, 8inflbti 7025 . . . . . . 7 (𝜑 → (𝑧𝐵 → ¬ 𝑧 < inf(𝐵, ℝ, < )))
1817imp 124 . . . . . 6 ((𝜑𝑧𝐵) → ¬ 𝑧 < inf(𝐵, ℝ, < ))
1918adantrr 479 . . . . 5 ((𝜑 ∧ (𝑧𝐵𝑧 < (inf(𝐵, ℝ, < ) + 1))) → ¬ 𝑧 < inf(𝐵, ℝ, < ))
2011, 16, 19nltled 8080 . . . 4 ((𝜑 ∧ (𝑧𝐵𝑧 < (inf(𝐵, ℝ, < ) + 1))) → inf(𝐵, ℝ, < ) ≤ 𝑧)
21 simprr 531 . . . . 5 ((𝜑 ∧ (𝑧𝐵𝑧 < (inf(𝐵, ℝ, < ) + 1))) → 𝑧 < (inf(𝐵, ℝ, < ) + 1))
221adantr 276 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑧 < (inf(𝐵, ℝ, < ) + 1))) → inf(𝐵, ℝ, < ) ∈ ℤ)
23 zleltp1 9310 . . . . . 6 ((𝑧 ∈ ℤ ∧ inf(𝐵, ℝ, < ) ∈ ℤ) → (𝑧 ≤ inf(𝐵, ℝ, < ) ↔ 𝑧 < (inf(𝐵, ℝ, < ) + 1)))
2415, 22, 23syl2anc 411 . . . . 5 ((𝜑 ∧ (𝑧𝐵𝑧 < (inf(𝐵, ℝ, < ) + 1))) → (𝑧 ≤ inf(𝐵, ℝ, < ) ↔ 𝑧 < (inf(𝐵, ℝ, < ) + 1)))
2521, 24mpbird 167 . . . 4 ((𝜑 ∧ (𝑧𝐵𝑧 < (inf(𝐵, ℝ, < ) + 1))) → 𝑧 ≤ inf(𝐵, ℝ, < ))
2611, 16letri3d 8075 . . . 4 ((𝜑 ∧ (𝑧𝐵𝑧 < (inf(𝐵, ℝ, < ) + 1))) → (inf(𝐵, ℝ, < ) = 𝑧 ↔ (inf(𝐵, ℝ, < ) ≤ 𝑧𝑧 ≤ inf(𝐵, ℝ, < ))))
2720, 25, 26mpbir2and 944 . . 3 ((𝜑 ∧ (𝑧𝐵𝑧 < (inf(𝐵, ℝ, < ) + 1))) → inf(𝐵, ℝ, < ) = 𝑧)
2827, 14eqeltrd 2254 . 2 ((𝜑 ∧ (𝑧𝐵𝑧 < (inf(𝐵, ℝ, < ) + 1))) → inf(𝐵, ℝ, < ) ∈ 𝐵)
2910, 28rexlimddv 2599 1 (𝜑 → inf(𝐵, ℝ, < ) ∈ 𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1353  wcel 2148  wral 2455  wrex 2456  wss 3131   class class class wbr 4005  (class class class)co 5877  infcinf 6984  cr 7812  1c1 7814   + caddc 7816   < clt 7994  cle 7995  cz 9255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-sup 6985  df-inf 6986  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-inn 8922  df-n0 9179  df-z 9256
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator