| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sqrtsq | GIF version | ||
| Description: Square root of square. (Contributed by NM, 14-Jan-2006.) (Revised by Mario Carneiro, 29-May-2016.) |
| Ref | Expression |
|---|---|
| sqrtsq | ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘(𝐴↑2)) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ ℝ) | |
| 2 | 1 | resqcld 10851 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴↑2) ∈ ℝ) |
| 3 | sqrtrval 11355 | . . 3 ⊢ ((𝐴↑2) ∈ ℝ → (√‘(𝐴↑2)) = (℩𝑥 ∈ ℝ ((𝑥↑2) = (𝐴↑2) ∧ 0 ≤ 𝑥))) | |
| 4 | 2, 3 | syl 14 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘(𝐴↑2)) = (℩𝑥 ∈ ℝ ((𝑥↑2) = (𝐴↑2) ∧ 0 ≤ 𝑥))) |
| 5 | simplr 528 | . . . . . 6 ⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ) ∧ ((𝑥↑2) = (𝐴↑2) ∧ 0 ≤ 𝑥)) → 𝑥 ∈ ℝ) | |
| 6 | simplll 533 | . . . . . 6 ⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ) ∧ ((𝑥↑2) = (𝐴↑2) ∧ 0 ≤ 𝑥)) → 𝐴 ∈ ℝ) | |
| 7 | simprr 531 | . . . . . 6 ⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ) ∧ ((𝑥↑2) = (𝐴↑2) ∧ 0 ≤ 𝑥)) → 0 ≤ 𝑥) | |
| 8 | simpllr 534 | . . . . . 6 ⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ) ∧ ((𝑥↑2) = (𝐴↑2) ∧ 0 ≤ 𝑥)) → 0 ≤ 𝐴) | |
| 9 | simprl 529 | . . . . . 6 ⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ) ∧ ((𝑥↑2) = (𝐴↑2) ∧ 0 ≤ 𝑥)) → (𝑥↑2) = (𝐴↑2)) | |
| 10 | 5, 6, 7, 8, 9 | sq11d 10858 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ) ∧ ((𝑥↑2) = (𝐴↑2) ∧ 0 ≤ 𝑥)) → 𝑥 = 𝐴) |
| 11 | 10 | ex 115 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ) → (((𝑥↑2) = (𝐴↑2) ∧ 0 ≤ 𝑥) → 𝑥 = 𝐴)) |
| 12 | oveq1 5958 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑥↑2) = (𝐴↑2)) | |
| 13 | 12 | a1i 9 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ) → (𝑥 = 𝐴 → (𝑥↑2) = (𝐴↑2))) |
| 14 | simplr 528 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ) → 0 ≤ 𝐴) | |
| 15 | breq2 4051 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (0 ≤ 𝑥 ↔ 0 ≤ 𝐴)) | |
| 16 | 14, 15 | syl5ibrcom 157 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ) → (𝑥 = 𝐴 → 0 ≤ 𝑥)) |
| 17 | 13, 16 | jcad 307 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ) → (𝑥 = 𝐴 → ((𝑥↑2) = (𝐴↑2) ∧ 0 ≤ 𝑥))) |
| 18 | 11, 17 | impbid 129 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ) → (((𝑥↑2) = (𝐴↑2) ∧ 0 ≤ 𝑥) ↔ 𝑥 = 𝐴)) |
| 19 | 1, 18 | riota5 5932 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (℩𝑥 ∈ ℝ ((𝑥↑2) = (𝐴↑2) ∧ 0 ≤ 𝑥)) = 𝐴) |
| 20 | 4, 19 | eqtrd 2239 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘(𝐴↑2)) = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 class class class wbr 4047 ‘cfv 5276 ℩crio 5905 (class class class)co 5951 ℝcr 7931 0cc0 7932 ≤ cle 8115 2c2 9094 ↑cexp 10690 √csqrt 11351 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-mulrcl 8031 ax-addcom 8032 ax-mulcom 8033 ax-addass 8034 ax-mulass 8035 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-1rid 8039 ax-0id 8040 ax-rnegex 8041 ax-precex 8042 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-apti 8047 ax-pre-ltadd 8048 ax-pre-mulgt0 8049 ax-pre-mulext 8050 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-if 3573 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-id 4344 df-po 4347 df-iso 4348 df-iord 4417 df-on 4419 df-ilim 4420 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-recs 6398 df-frec 6484 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-reap 8655 df-ap 8662 df-div 8753 df-inn 9044 df-2 9102 df-n0 9303 df-z 9380 df-uz 9656 df-seqfrec 10600 df-exp 10691 df-rsqrt 11353 |
| This theorem is referenced by: sqrtmsq 11400 sqrt1 11401 sqrt4 11402 sqrt9 11403 absreim 11423 absid 11426 sqrtsqi 11478 sqrtsqd 11520 |
| Copyright terms: Public domain | W3C validator |