| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sqrtsq | GIF version | ||
| Description: Square root of square. (Contributed by NM, 14-Jan-2006.) (Revised by Mario Carneiro, 29-May-2016.) |
| Ref | Expression |
|---|---|
| sqrtsq | ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘(𝐴↑2)) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ ℝ) | |
| 2 | 1 | resqcld 10888 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴↑2) ∈ ℝ) |
| 3 | sqrtrval 11477 | . . 3 ⊢ ((𝐴↑2) ∈ ℝ → (√‘(𝐴↑2)) = (℩𝑥 ∈ ℝ ((𝑥↑2) = (𝐴↑2) ∧ 0 ≤ 𝑥))) | |
| 4 | 2, 3 | syl 14 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘(𝐴↑2)) = (℩𝑥 ∈ ℝ ((𝑥↑2) = (𝐴↑2) ∧ 0 ≤ 𝑥))) |
| 5 | simplr 528 | . . . . . 6 ⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ) ∧ ((𝑥↑2) = (𝐴↑2) ∧ 0 ≤ 𝑥)) → 𝑥 ∈ ℝ) | |
| 6 | simplll 533 | . . . . . 6 ⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ) ∧ ((𝑥↑2) = (𝐴↑2) ∧ 0 ≤ 𝑥)) → 𝐴 ∈ ℝ) | |
| 7 | simprr 531 | . . . . . 6 ⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ) ∧ ((𝑥↑2) = (𝐴↑2) ∧ 0 ≤ 𝑥)) → 0 ≤ 𝑥) | |
| 8 | simpllr 534 | . . . . . 6 ⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ) ∧ ((𝑥↑2) = (𝐴↑2) ∧ 0 ≤ 𝑥)) → 0 ≤ 𝐴) | |
| 9 | simprl 529 | . . . . . 6 ⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ) ∧ ((𝑥↑2) = (𝐴↑2) ∧ 0 ≤ 𝑥)) → (𝑥↑2) = (𝐴↑2)) | |
| 10 | 5, 6, 7, 8, 9 | sq11d 10895 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ) ∧ ((𝑥↑2) = (𝐴↑2) ∧ 0 ≤ 𝑥)) → 𝑥 = 𝐴) |
| 11 | 10 | ex 115 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ) → (((𝑥↑2) = (𝐴↑2) ∧ 0 ≤ 𝑥) → 𝑥 = 𝐴)) |
| 12 | oveq1 5981 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑥↑2) = (𝐴↑2)) | |
| 13 | 12 | a1i 9 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ) → (𝑥 = 𝐴 → (𝑥↑2) = (𝐴↑2))) |
| 14 | simplr 528 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ) → 0 ≤ 𝐴) | |
| 15 | breq2 4066 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (0 ≤ 𝑥 ↔ 0 ≤ 𝐴)) | |
| 16 | 14, 15 | syl5ibrcom 157 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ) → (𝑥 = 𝐴 → 0 ≤ 𝑥)) |
| 17 | 13, 16 | jcad 307 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ) → (𝑥 = 𝐴 → ((𝑥↑2) = (𝐴↑2) ∧ 0 ≤ 𝑥))) |
| 18 | 11, 17 | impbid 129 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℝ) → (((𝑥↑2) = (𝐴↑2) ∧ 0 ≤ 𝑥) ↔ 𝑥 = 𝐴)) |
| 19 | 1, 18 | riota5 5955 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (℩𝑥 ∈ ℝ ((𝑥↑2) = (𝐴↑2) ∧ 0 ≤ 𝑥)) = 𝐴) |
| 20 | 4, 19 | eqtrd 2242 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘(𝐴↑2)) = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1375 ∈ wcel 2180 class class class wbr 4062 ‘cfv 5294 ℩crio 5926 (class class class)co 5974 ℝcr 7966 0cc0 7967 ≤ cle 8150 2c2 9129 ↑cexp 10727 √csqrt 11473 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-mulrcl 8066 ax-addcom 8067 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-1rid 8074 ax-0id 8075 ax-rnegex 8076 ax-precex 8077 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-apti 8082 ax-pre-ltadd 8083 ax-pre-mulgt0 8084 ax-pre-mulext 8085 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rmo 2496 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-if 3583 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-id 4361 df-po 4364 df-iso 4365 df-iord 4434 df-on 4436 df-ilim 4437 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-recs 6421 df-frec 6507 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-reap 8690 df-ap 8697 df-div 8788 df-inn 9079 df-2 9137 df-n0 9338 df-z 9415 df-uz 9691 df-seqfrec 10637 df-exp 10728 df-rsqrt 11475 |
| This theorem is referenced by: sqrtmsq 11522 sqrt1 11523 sqrt4 11524 sqrt9 11525 absreim 11545 absid 11548 sqrtsqi 11600 sqrtsqd 11642 |
| Copyright terms: Public domain | W3C validator |