ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmodass GIF version

Theorem lmodass 14150
Description: Left module vector sum is associative. (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lmodvacl.v 𝑉 = (Base‘𝑊)
lmodvacl.a + = (+g𝑊)
Assertion
Ref Expression
lmodass ((𝑊 ∈ LMod ∧ (𝑋𝑉𝑌𝑉𝑍𝑉)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍)))

Proof of Theorem lmodass
StepHypRef Expression
1 lmodgrp 14141 . 2 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
2 lmodvacl.v . . 3 𝑉 = (Base‘𝑊)
3 lmodvacl.a . . 3 + = (+g𝑊)
42, 3grpass 13426 . 2 ((𝑊 ∈ Grp ∧ (𝑋𝑉𝑌𝑉𝑍𝑉)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍)))
51, 4sylan 283 1 ((𝑊 ∈ LMod ∧ (𝑋𝑉𝑌𝑉𝑍𝑉)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981   = wceq 1373  wcel 2177  cfv 5285  (class class class)co 5962  Basecbs 12917  +gcplusg 12994  Grpcgrp 13417  LModclmod 14134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-cnex 8046  ax-resscn 8047  ax-1re 8049  ax-addrcl 8052
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-br 4055  df-opab 4117  df-mpt 4118  df-id 4353  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-iota 5246  df-fun 5287  df-fn 5288  df-fv 5293  df-ov 5965  df-inn 9067  df-2 9125  df-3 9126  df-4 9127  df-5 9128  df-6 9129  df-ndx 12920  df-slot 12921  df-base 12923  df-plusg 13007  df-mulr 13008  df-sca 13010  df-vsca 13011  df-sgrp 13319  df-mnd 13334  df-grp 13420  df-lmod 14136
This theorem is referenced by:  lmodvneg1  14177  lmodcom  14180
  Copyright terms: Public domain W3C validator