ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmodvneg1 GIF version

Theorem lmodvneg1 14010
Description: Minus 1 times a vector is the negative of the vector. Equation 2 of [Kreyszig] p. 51. (Contributed by NM, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lmodvneg1.v 𝑉 = (Base‘𝑊)
lmodvneg1.n 𝑁 = (invg𝑊)
lmodvneg1.f 𝐹 = (Scalar‘𝑊)
lmodvneg1.s · = ( ·𝑠𝑊)
lmodvneg1.u 1 = (1r𝐹)
lmodvneg1.m 𝑀 = (invg𝐹)
Assertion
Ref Expression
lmodvneg1 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((𝑀1 ) · 𝑋) = (𝑁𝑋))

Proof of Theorem lmodvneg1
StepHypRef Expression
1 simpl 109 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑊 ∈ LMod)
2 lmodvneg1.f . . . . . 6 𝐹 = (Scalar‘𝑊)
32lmodfgrp 13976 . . . . 5 (𝑊 ∈ LMod → 𝐹 ∈ Grp)
4 eqid 2204 . . . . . . 7 (Base‘𝐹) = (Base‘𝐹)
5 lmodvneg1.u . . . . . . 7 1 = (1r𝐹)
62, 4, 5lmod1cl 13995 . . . . . 6 (𝑊 ∈ LMod → 1 ∈ (Base‘𝐹))
76adantr 276 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 1 ∈ (Base‘𝐹))
8 lmodvneg1.m . . . . . 6 𝑀 = (invg𝐹)
94, 8grpinvcl 13298 . . . . 5 ((𝐹 ∈ Grp ∧ 1 ∈ (Base‘𝐹)) → (𝑀1 ) ∈ (Base‘𝐹))
103, 7, 9syl2an2r 595 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑀1 ) ∈ (Base‘𝐹))
11 simpr 110 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑋𝑉)
12 lmodvneg1.v . . . . 5 𝑉 = (Base‘𝑊)
13 lmodvneg1.s . . . . 5 · = ( ·𝑠𝑊)
1412, 2, 13, 4lmodvscl 13985 . . . 4 ((𝑊 ∈ LMod ∧ (𝑀1 ) ∈ (Base‘𝐹) ∧ 𝑋𝑉) → ((𝑀1 ) · 𝑋) ∈ 𝑉)
151, 10, 11, 14syl3anc 1249 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((𝑀1 ) · 𝑋) ∈ 𝑉)
16 eqid 2204 . . . 4 (+g𝑊) = (+g𝑊)
17 eqid 2204 . . . 4 (0g𝑊) = (0g𝑊)
1812, 16, 17lmod0vrid 13999 . . 3 ((𝑊 ∈ LMod ∧ ((𝑀1 ) · 𝑋) ∈ 𝑉) → (((𝑀1 ) · 𝑋)(+g𝑊)(0g𝑊)) = ((𝑀1 ) · 𝑋))
1915, 18syldan 282 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (((𝑀1 ) · 𝑋)(+g𝑊)(0g𝑊)) = ((𝑀1 ) · 𝑋))
20 lmodvneg1.n . . . . . 6 𝑁 = (invg𝑊)
2112, 20lmodvnegcl 14008 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁𝑋) ∈ 𝑉)
2212, 16lmodass 13983 . . . . 5 ((𝑊 ∈ LMod ∧ (((𝑀1 ) · 𝑋) ∈ 𝑉𝑋𝑉 ∧ (𝑁𝑋) ∈ 𝑉)) → ((((𝑀1 ) · 𝑋)(+g𝑊)𝑋)(+g𝑊)(𝑁𝑋)) = (((𝑀1 ) · 𝑋)(+g𝑊)(𝑋(+g𝑊)(𝑁𝑋))))
231, 15, 11, 21, 22syl13anc 1251 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((((𝑀1 ) · 𝑋)(+g𝑊)𝑋)(+g𝑊)(𝑁𝑋)) = (((𝑀1 ) · 𝑋)(+g𝑊)(𝑋(+g𝑊)(𝑁𝑋))))
2412, 2, 13, 5lmodvs1 13996 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ( 1 · 𝑋) = 𝑋)
2524oveq2d 5950 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (((𝑀1 ) · 𝑋)(+g𝑊)( 1 · 𝑋)) = (((𝑀1 ) · 𝑋)(+g𝑊)𝑋))
26 eqid 2204 . . . . . . . . . 10 (+g𝐹) = (+g𝐹)
27 eqid 2204 . . . . . . . . . 10 (0g𝐹) = (0g𝐹)
284, 26, 27, 8grplinv 13300 . . . . . . . . 9 ((𝐹 ∈ Grp ∧ 1 ∈ (Base‘𝐹)) → ((𝑀1 )(+g𝐹) 1 ) = (0g𝐹))
293, 7, 28syl2an2r 595 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((𝑀1 )(+g𝐹) 1 ) = (0g𝐹))
3029oveq1d 5949 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (((𝑀1 )(+g𝐹) 1 ) · 𝑋) = ((0g𝐹) · 𝑋))
3112, 16, 2, 13, 4, 26lmodvsdir 13992 . . . . . . . 8 ((𝑊 ∈ LMod ∧ ((𝑀1 ) ∈ (Base‘𝐹) ∧ 1 ∈ (Base‘𝐹) ∧ 𝑋𝑉)) → (((𝑀1 )(+g𝐹) 1 ) · 𝑋) = (((𝑀1 ) · 𝑋)(+g𝑊)( 1 · 𝑋)))
321, 10, 7, 11, 31syl13anc 1251 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (((𝑀1 )(+g𝐹) 1 ) · 𝑋) = (((𝑀1 ) · 𝑋)(+g𝑊)( 1 · 𝑋)))
3312, 2, 13, 27, 17lmod0vs 14001 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((0g𝐹) · 𝑋) = (0g𝑊))
3430, 32, 333eqtr3d 2245 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (((𝑀1 ) · 𝑋)(+g𝑊)( 1 · 𝑋)) = (0g𝑊))
3525, 34eqtr3d 2239 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (((𝑀1 ) · 𝑋)(+g𝑊)𝑋) = (0g𝑊))
3635oveq1d 5949 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((((𝑀1 ) · 𝑋)(+g𝑊)𝑋)(+g𝑊)(𝑁𝑋)) = ((0g𝑊)(+g𝑊)(𝑁𝑋)))
3723, 36eqtr3d 2239 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (((𝑀1 ) · 𝑋)(+g𝑊)(𝑋(+g𝑊)(𝑁𝑋))) = ((0g𝑊)(+g𝑊)(𝑁𝑋)))
3812, 16, 17, 20lmodvnegid 14009 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑋(+g𝑊)(𝑁𝑋)) = (0g𝑊))
3938oveq2d 5950 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (((𝑀1 ) · 𝑋)(+g𝑊)(𝑋(+g𝑊)(𝑁𝑋))) = (((𝑀1 ) · 𝑋)(+g𝑊)(0g𝑊)))
4012, 16, 17lmod0vlid 13998 . . . 4 ((𝑊 ∈ LMod ∧ (𝑁𝑋) ∈ 𝑉) → ((0g𝑊)(+g𝑊)(𝑁𝑋)) = (𝑁𝑋))
4121, 40syldan 282 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((0g𝑊)(+g𝑊)(𝑁𝑋)) = (𝑁𝑋))
4237, 39, 413eqtr3d 2245 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (((𝑀1 ) · 𝑋)(+g𝑊)(0g𝑊)) = (𝑁𝑋))
4319, 42eqtr3d 2239 1 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((𝑀1 ) · 𝑋) = (𝑁𝑋))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1372  wcel 2175  cfv 5268  (class class class)co 5934  Basecbs 12751  +gcplusg 12828  Scalarcsca 12831   ·𝑠 cvsca 12832  0gc0g 13006  Grpcgrp 13250  invgcminusg 13251  1rcur 13639  LModclmod 13967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-addcom 8007  ax-addass 8009  ax-i2m1 8012  ax-0lt1 8013  ax-0id 8015  ax-rnegex 8016  ax-pre-ltirr 8019  ax-pre-ltadd 8023
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-pnf 8091  df-mnf 8092  df-ltxr 8094  df-inn 9019  df-2 9077  df-3 9078  df-4 9079  df-5 9080  df-6 9081  df-ndx 12754  df-slot 12755  df-base 12757  df-sets 12758  df-plusg 12841  df-mulr 12842  df-sca 12844  df-vsca 12845  df-0g 13008  df-mgm 13106  df-sgrp 13152  df-mnd 13167  df-grp 13253  df-minusg 13254  df-mgp 13601  df-ur 13640  df-ring 13678  df-lmod 13969
This theorem is referenced by:  lmodvsneg  14011  lmodvsubval2  14022  lssvnegcl  14056  lspsnneg  14100
  Copyright terms: Public domain W3C validator