Step | Hyp | Ref
| Expression |
1 | | simpl 109 |
. . . 4
β’ ((π β LMod β§ π β π) β π β LMod) |
2 | | lmodvneg1.f |
. . . . . 6
β’ πΉ = (Scalarβπ) |
3 | 2 | lmodfgrp 13391 |
. . . . 5
β’ (π β LMod β πΉ β Grp) |
4 | | eqid 2177 |
. . . . . . 7
β’
(BaseβπΉ) =
(BaseβπΉ) |
5 | | lmodvneg1.u |
. . . . . . 7
β’ 1 =
(1rβπΉ) |
6 | 2, 4, 5 | lmod1cl 13410 |
. . . . . 6
β’ (π β LMod β 1 β
(BaseβπΉ)) |
7 | 6 | adantr 276 |
. . . . 5
β’ ((π β LMod β§ π β π) β 1 β (BaseβπΉ)) |
8 | | lmodvneg1.m |
. . . . . 6
β’ π = (invgβπΉ) |
9 | 4, 8 | grpinvcl 12926 |
. . . . 5
β’ ((πΉ β Grp β§ 1 β
(BaseβπΉ)) β
(πβ 1 ) β
(BaseβπΉ)) |
10 | 3, 7, 9 | syl2an2r 595 |
. . . 4
β’ ((π β LMod β§ π β π) β (πβ 1 ) β (BaseβπΉ)) |
11 | | simpr 110 |
. . . 4
β’ ((π β LMod β§ π β π) β π β π) |
12 | | lmodvneg1.v |
. . . . 5
β’ π = (Baseβπ) |
13 | | lmodvneg1.s |
. . . . 5
β’ Β· = (
Β·π βπ) |
14 | 12, 2, 13, 4 | lmodvscl 13400 |
. . . 4
β’ ((π β LMod β§ (πβ 1 ) β (BaseβπΉ) β§ π β π) β ((πβ 1 ) Β· π) β π) |
15 | 1, 10, 11, 14 | syl3anc 1238 |
. . 3
β’ ((π β LMod β§ π β π) β ((πβ 1 ) Β· π) β π) |
16 | | eqid 2177 |
. . . 4
β’
(+gβπ) = (+gβπ) |
17 | | eqid 2177 |
. . . 4
β’
(0gβπ) = (0gβπ) |
18 | 12, 16, 17 | lmod0vrid 13414 |
. . 3
β’ ((π β LMod β§ ((πβ 1 ) Β· π) β π) β (((πβ 1 ) Β· π)(+gβπ)(0gβπ)) = ((πβ 1 ) Β· π)) |
19 | 15, 18 | syldan 282 |
. 2
β’ ((π β LMod β§ π β π) β (((πβ 1 ) Β· π)(+gβπ)(0gβπ)) = ((πβ 1 ) Β· π)) |
20 | | lmodvneg1.n |
. . . . . 6
β’ π = (invgβπ) |
21 | 12, 20 | lmodvnegcl 13423 |
. . . . 5
β’ ((π β LMod β§ π β π) β (πβπ) β π) |
22 | 12, 16 | lmodass 13398 |
. . . . 5
β’ ((π β LMod β§ (((πβ 1 ) Β· π) β π β§ π β π β§ (πβπ) β π)) β ((((πβ 1 ) Β· π)(+gβπ)π)(+gβπ)(πβπ)) = (((πβ 1 ) Β· π)(+gβπ)(π(+gβπ)(πβπ)))) |
23 | 1, 15, 11, 21, 22 | syl13anc 1240 |
. . . 4
β’ ((π β LMod β§ π β π) β ((((πβ 1 ) Β· π)(+gβπ)π)(+gβπ)(πβπ)) = (((πβ 1 ) Β· π)(+gβπ)(π(+gβπ)(πβπ)))) |
24 | 12, 2, 13, 5 | lmodvs1 13411 |
. . . . . . 7
β’ ((π β LMod β§ π β π) β ( 1 Β· π) = π) |
25 | 24 | oveq2d 5893 |
. . . . . 6
β’ ((π β LMod β§ π β π) β (((πβ 1 ) Β· π)(+gβπ)( 1 Β· π)) = (((πβ 1 ) Β· π)(+gβπ)π)) |
26 | | eqid 2177 |
. . . . . . . . . 10
β’
(+gβπΉ) = (+gβπΉ) |
27 | | eqid 2177 |
. . . . . . . . . 10
β’
(0gβπΉ) = (0gβπΉ) |
28 | 4, 26, 27, 8 | grplinv 12927 |
. . . . . . . . 9
β’ ((πΉ β Grp β§ 1 β
(BaseβπΉ)) β
((πβ 1
)(+gβπΉ)
1 ) =
(0gβπΉ)) |
29 | 3, 7, 28 | syl2an2r 595 |
. . . . . . . 8
β’ ((π β LMod β§ π β π) β ((πβ 1
)(+gβπΉ)
1 ) =
(0gβπΉ)) |
30 | 29 | oveq1d 5892 |
. . . . . . 7
β’ ((π β LMod β§ π β π) β (((πβ 1
)(+gβπΉ)
1 ) Β· π) = ((0gβπΉ) Β· π)) |
31 | 12, 16, 2, 13, 4, 26 | lmodvsdir 13407 |
. . . . . . . 8
β’ ((π β LMod β§ ((πβ 1 ) β (BaseβπΉ) β§ 1 β (BaseβπΉ) β§ π β π)) β (((πβ 1
)(+gβπΉ)
1 ) Β· π) = (((πβ 1 ) Β· π)(+gβπ)( 1 Β· π))) |
32 | 1, 10, 7, 11, 31 | syl13anc 1240 |
. . . . . . 7
β’ ((π β LMod β§ π β π) β (((πβ 1
)(+gβπΉ)
1 ) Β· π) = (((πβ 1 ) Β· π)(+gβπ)( 1 Β· π))) |
33 | 12, 2, 13, 27, 17 | lmod0vs 13416 |
. . . . . . 7
β’ ((π β LMod β§ π β π) β ((0gβπΉ) Β· π) = (0gβπ)) |
34 | 30, 32, 33 | 3eqtr3d 2218 |
. . . . . 6
β’ ((π β LMod β§ π β π) β (((πβ 1 ) Β· π)(+gβπ)( 1 Β· π)) = (0gβπ)) |
35 | 25, 34 | eqtr3d 2212 |
. . . . 5
β’ ((π β LMod β§ π β π) β (((πβ 1 ) Β· π)(+gβπ)π) = (0gβπ)) |
36 | 35 | oveq1d 5892 |
. . . 4
β’ ((π β LMod β§ π β π) β ((((πβ 1 ) Β· π)(+gβπ)π)(+gβπ)(πβπ)) = ((0gβπ)(+gβπ)(πβπ))) |
37 | 23, 36 | eqtr3d 2212 |
. . 3
β’ ((π β LMod β§ π β π) β (((πβ 1 ) Β· π)(+gβπ)(π(+gβπ)(πβπ))) = ((0gβπ)(+gβπ)(πβπ))) |
38 | 12, 16, 17, 20 | lmodvnegid 13424 |
. . . 4
β’ ((π β LMod β§ π β π) β (π(+gβπ)(πβπ)) = (0gβπ)) |
39 | 38 | oveq2d 5893 |
. . 3
β’ ((π β LMod β§ π β π) β (((πβ 1 ) Β· π)(+gβπ)(π(+gβπ)(πβπ))) = (((πβ 1 ) Β· π)(+gβπ)(0gβπ))) |
40 | 12, 16, 17 | lmod0vlid 13413 |
. . . 4
β’ ((π β LMod β§ (πβπ) β π) β ((0gβπ)(+gβπ)(πβπ)) = (πβπ)) |
41 | 21, 40 | syldan 282 |
. . 3
β’ ((π β LMod β§ π β π) β ((0gβπ)(+gβπ)(πβπ)) = (πβπ)) |
42 | 37, 39, 41 | 3eqtr3d 2218 |
. 2
β’ ((π β LMod β§ π β π) β (((πβ 1 ) Β· π)(+gβπ)(0gβπ)) = (πβπ)) |
43 | 19, 42 | eqtr3d 2212 |
1
β’ ((π β LMod β§ π β π) β ((πβ 1 ) Β· π) = (πβπ)) |