Proof of Theorem lmodvneg1
| Step | Hyp | Ref
 | Expression | 
| 1 |   | simpl 109 | 
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑊 ∈ LMod) | 
| 2 |   | lmodvneg1.f | 
. . . . . 6
⊢ 𝐹 = (Scalar‘𝑊) | 
| 3 | 2 | lmodfgrp 13852 | 
. . . . 5
⊢ (𝑊 ∈ LMod → 𝐹 ∈ Grp) | 
| 4 |   | eqid 2196 | 
. . . . . . 7
⊢
(Base‘𝐹) =
(Base‘𝐹) | 
| 5 |   | lmodvneg1.u | 
. . . . . . 7
⊢  1 =
(1r‘𝐹) | 
| 6 | 2, 4, 5 | lmod1cl 13871 | 
. . . . . 6
⊢ (𝑊 ∈ LMod → 1 ∈
(Base‘𝐹)) | 
| 7 | 6 | adantr 276 | 
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 1 ∈ (Base‘𝐹)) | 
| 8 |   | lmodvneg1.m | 
. . . . . 6
⊢ 𝑀 = (invg‘𝐹) | 
| 9 | 4, 8 | grpinvcl 13180 | 
. . . . 5
⊢ ((𝐹 ∈ Grp ∧ 1 ∈
(Base‘𝐹)) →
(𝑀‘ 1 ) ∈
(Base‘𝐹)) | 
| 10 | 3, 7, 9 | syl2an2r 595 | 
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑀‘ 1 ) ∈ (Base‘𝐹)) | 
| 11 |   | simpr 110 | 
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ 𝑉) | 
| 12 |   | lmodvneg1.v | 
. . . . 5
⊢ 𝑉 = (Base‘𝑊) | 
| 13 |   | lmodvneg1.s | 
. . . . 5
⊢  · = (
·𝑠 ‘𝑊) | 
| 14 | 12, 2, 13, 4 | lmodvscl 13861 | 
. . . 4
⊢ ((𝑊 ∈ LMod ∧ (𝑀‘ 1 ) ∈ (Base‘𝐹) ∧ 𝑋 ∈ 𝑉) → ((𝑀‘ 1 ) · 𝑋) ∈ 𝑉) | 
| 15 | 1, 10, 11, 14 | syl3anc 1249 | 
. . 3
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((𝑀‘ 1 ) · 𝑋) ∈ 𝑉) | 
| 16 |   | eqid 2196 | 
. . . 4
⊢
(+g‘𝑊) = (+g‘𝑊) | 
| 17 |   | eqid 2196 | 
. . . 4
⊢
(0g‘𝑊) = (0g‘𝑊) | 
| 18 | 12, 16, 17 | lmod0vrid 13875 | 
. . 3
⊢ ((𝑊 ∈ LMod ∧ ((𝑀‘ 1 ) · 𝑋) ∈ 𝑉) → (((𝑀‘ 1 ) · 𝑋)(+g‘𝑊)(0g‘𝑊)) = ((𝑀‘ 1 ) · 𝑋)) | 
| 19 | 15, 18 | syldan 282 | 
. 2
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (((𝑀‘ 1 ) · 𝑋)(+g‘𝑊)(0g‘𝑊)) = ((𝑀‘ 1 ) · 𝑋)) | 
| 20 |   | lmodvneg1.n | 
. . . . . 6
⊢ 𝑁 = (invg‘𝑊) | 
| 21 | 12, 20 | lmodvnegcl 13884 | 
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘𝑋) ∈ 𝑉) | 
| 22 | 12, 16 | lmodass 13859 | 
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ (((𝑀‘ 1 ) · 𝑋) ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ (𝑁‘𝑋) ∈ 𝑉)) → ((((𝑀‘ 1 ) · 𝑋)(+g‘𝑊)𝑋)(+g‘𝑊)(𝑁‘𝑋)) = (((𝑀‘ 1 ) · 𝑋)(+g‘𝑊)(𝑋(+g‘𝑊)(𝑁‘𝑋)))) | 
| 23 | 1, 15, 11, 21, 22 | syl13anc 1251 | 
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((((𝑀‘ 1 ) · 𝑋)(+g‘𝑊)𝑋)(+g‘𝑊)(𝑁‘𝑋)) = (((𝑀‘ 1 ) · 𝑋)(+g‘𝑊)(𝑋(+g‘𝑊)(𝑁‘𝑋)))) | 
| 24 | 12, 2, 13, 5 | lmodvs1 13872 | 
. . . . . . 7
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ( 1 · 𝑋) = 𝑋) | 
| 25 | 24 | oveq2d 5938 | 
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (((𝑀‘ 1 ) · 𝑋)(+g‘𝑊)( 1 · 𝑋)) = (((𝑀‘ 1 ) · 𝑋)(+g‘𝑊)𝑋)) | 
| 26 |   | eqid 2196 | 
. . . . . . . . . 10
⊢
(+g‘𝐹) = (+g‘𝐹) | 
| 27 |   | eqid 2196 | 
. . . . . . . . . 10
⊢
(0g‘𝐹) = (0g‘𝐹) | 
| 28 | 4, 26, 27, 8 | grplinv 13182 | 
. . . . . . . . 9
⊢ ((𝐹 ∈ Grp ∧ 1 ∈
(Base‘𝐹)) →
((𝑀‘ 1
)(+g‘𝐹)
1 ) =
(0g‘𝐹)) | 
| 29 | 3, 7, 28 | syl2an2r 595 | 
. . . . . . . 8
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((𝑀‘ 1
)(+g‘𝐹)
1 ) =
(0g‘𝐹)) | 
| 30 | 29 | oveq1d 5937 | 
. . . . . . 7
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (((𝑀‘ 1
)(+g‘𝐹)
1 ) · 𝑋) = ((0g‘𝐹) · 𝑋)) | 
| 31 | 12, 16, 2, 13, 4, 26 | lmodvsdir 13868 | 
. . . . . . . 8
⊢ ((𝑊 ∈ LMod ∧ ((𝑀‘ 1 ) ∈ (Base‘𝐹) ∧ 1 ∈ (Base‘𝐹) ∧ 𝑋 ∈ 𝑉)) → (((𝑀‘ 1
)(+g‘𝐹)
1 ) · 𝑋) = (((𝑀‘ 1 ) · 𝑋)(+g‘𝑊)( 1 · 𝑋))) | 
| 32 | 1, 10, 7, 11, 31 | syl13anc 1251 | 
. . . . . . 7
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (((𝑀‘ 1
)(+g‘𝐹)
1 ) · 𝑋) = (((𝑀‘ 1 ) · 𝑋)(+g‘𝑊)( 1 · 𝑋))) | 
| 33 | 12, 2, 13, 27, 17 | lmod0vs 13877 | 
. . . . . . 7
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((0g‘𝐹) · 𝑋) = (0g‘𝑊)) | 
| 34 | 30, 32, 33 | 3eqtr3d 2237 | 
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (((𝑀‘ 1 ) · 𝑋)(+g‘𝑊)( 1 · 𝑋)) = (0g‘𝑊)) | 
| 35 | 25, 34 | eqtr3d 2231 | 
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (((𝑀‘ 1 ) · 𝑋)(+g‘𝑊)𝑋) = (0g‘𝑊)) | 
| 36 | 35 | oveq1d 5937 | 
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((((𝑀‘ 1 ) · 𝑋)(+g‘𝑊)𝑋)(+g‘𝑊)(𝑁‘𝑋)) = ((0g‘𝑊)(+g‘𝑊)(𝑁‘𝑋))) | 
| 37 | 23, 36 | eqtr3d 2231 | 
. . 3
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (((𝑀‘ 1 ) · 𝑋)(+g‘𝑊)(𝑋(+g‘𝑊)(𝑁‘𝑋))) = ((0g‘𝑊)(+g‘𝑊)(𝑁‘𝑋))) | 
| 38 | 12, 16, 17, 20 | lmodvnegid 13885 | 
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑋(+g‘𝑊)(𝑁‘𝑋)) = (0g‘𝑊)) | 
| 39 | 38 | oveq2d 5938 | 
. . 3
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (((𝑀‘ 1 ) · 𝑋)(+g‘𝑊)(𝑋(+g‘𝑊)(𝑁‘𝑋))) = (((𝑀‘ 1 ) · 𝑋)(+g‘𝑊)(0g‘𝑊))) | 
| 40 | 12, 16, 17 | lmod0vlid 13874 | 
. . . 4
⊢ ((𝑊 ∈ LMod ∧ (𝑁‘𝑋) ∈ 𝑉) → ((0g‘𝑊)(+g‘𝑊)(𝑁‘𝑋)) = (𝑁‘𝑋)) | 
| 41 | 21, 40 | syldan 282 | 
. . 3
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((0g‘𝑊)(+g‘𝑊)(𝑁‘𝑋)) = (𝑁‘𝑋)) | 
| 42 | 37, 39, 41 | 3eqtr3d 2237 | 
. 2
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (((𝑀‘ 1 ) · 𝑋)(+g‘𝑊)(0g‘𝑊)) = (𝑁‘𝑋)) | 
| 43 | 19, 42 | eqtr3d 2231 | 
1
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((𝑀‘ 1 ) · 𝑋) = (𝑁‘𝑋)) |