ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmodcom GIF version

Theorem lmodcom 13423
Description: Left module vector sum is commutative. (Contributed by GΓ©rard Lang, 25-Jun-2014.)
Hypotheses
Ref Expression
lmodcom.v 𝑉 = (Baseβ€˜π‘Š)
lmodcom.a + = (+gβ€˜π‘Š)
Assertion
Ref Expression
lmodcom ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ (𝑋 + π‘Œ) = (π‘Œ + 𝑋))

Proof of Theorem lmodcom
StepHypRef Expression
1 simp1 997 . . . . . . . 8 ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ π‘Š ∈ LMod)
2 eqid 2177 . . . . . . . . . . 11 (Scalarβ€˜π‘Š) = (Scalarβ€˜π‘Š)
3 eqid 2177 . . . . . . . . . . 11 (Baseβ€˜(Scalarβ€˜π‘Š)) = (Baseβ€˜(Scalarβ€˜π‘Š))
4 eqid 2177 . . . . . . . . . . 11 (1rβ€˜(Scalarβ€˜π‘Š)) = (1rβ€˜(Scalarβ€˜π‘Š))
52, 3, 4lmod1cl 13405 . . . . . . . . . 10 (π‘Š ∈ LMod β†’ (1rβ€˜(Scalarβ€˜π‘Š)) ∈ (Baseβ€˜(Scalarβ€˜π‘Š)))
61, 5syl 14 . . . . . . . . 9 ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ (1rβ€˜(Scalarβ€˜π‘Š)) ∈ (Baseβ€˜(Scalarβ€˜π‘Š)))
7 eqid 2177 . . . . . . . . . 10 (+gβ€˜(Scalarβ€˜π‘Š)) = (+gβ€˜(Scalarβ€˜π‘Š))
82, 3, 7lmodacl 13389 . . . . . . . . 9 ((π‘Š ∈ LMod ∧ (1rβ€˜(Scalarβ€˜π‘Š)) ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ (1rβ€˜(Scalarβ€˜π‘Š)) ∈ (Baseβ€˜(Scalarβ€˜π‘Š))) β†’ ((1rβ€˜(Scalarβ€˜π‘Š))(+gβ€˜(Scalarβ€˜π‘Š))(1rβ€˜(Scalarβ€˜π‘Š))) ∈ (Baseβ€˜(Scalarβ€˜π‘Š)))
91, 6, 6, 8syl3anc 1238 . . . . . . . 8 ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ ((1rβ€˜(Scalarβ€˜π‘Š))(+gβ€˜(Scalarβ€˜π‘Š))(1rβ€˜(Scalarβ€˜π‘Š))) ∈ (Baseβ€˜(Scalarβ€˜π‘Š)))
10 simp2 998 . . . . . . . 8 ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ 𝑋 ∈ 𝑉)
11 simp3 999 . . . . . . . 8 ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ π‘Œ ∈ 𝑉)
12 lmodcom.v . . . . . . . . 9 𝑉 = (Baseβ€˜π‘Š)
13 lmodcom.a . . . . . . . . 9 + = (+gβ€˜π‘Š)
14 eqid 2177 . . . . . . . . 9 ( ·𝑠 β€˜π‘Š) = ( ·𝑠 β€˜π‘Š)
1512, 13, 2, 14, 3lmodvsdi 13401 . . . . . . . 8 ((π‘Š ∈ LMod ∧ (((1rβ€˜(Scalarβ€˜π‘Š))(+gβ€˜(Scalarβ€˜π‘Š))(1rβ€˜(Scalarβ€˜π‘Š))) ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉)) β†’ (((1rβ€˜(Scalarβ€˜π‘Š))(+gβ€˜(Scalarβ€˜π‘Š))(1rβ€˜(Scalarβ€˜π‘Š)))( ·𝑠 β€˜π‘Š)(𝑋 + π‘Œ)) = ((((1rβ€˜(Scalarβ€˜π‘Š))(+gβ€˜(Scalarβ€˜π‘Š))(1rβ€˜(Scalarβ€˜π‘Š)))( ·𝑠 β€˜π‘Š)𝑋) + (((1rβ€˜(Scalarβ€˜π‘Š))(+gβ€˜(Scalarβ€˜π‘Š))(1rβ€˜(Scalarβ€˜π‘Š)))( ·𝑠 β€˜π‘Š)π‘Œ)))
161, 9, 10, 11, 15syl13anc 1240 . . . . . . 7 ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ (((1rβ€˜(Scalarβ€˜π‘Š))(+gβ€˜(Scalarβ€˜π‘Š))(1rβ€˜(Scalarβ€˜π‘Š)))( ·𝑠 β€˜π‘Š)(𝑋 + π‘Œ)) = ((((1rβ€˜(Scalarβ€˜π‘Š))(+gβ€˜(Scalarβ€˜π‘Š))(1rβ€˜(Scalarβ€˜π‘Š)))( ·𝑠 β€˜π‘Š)𝑋) + (((1rβ€˜(Scalarβ€˜π‘Š))(+gβ€˜(Scalarβ€˜π‘Š))(1rβ€˜(Scalarβ€˜π‘Š)))( ·𝑠 β€˜π‘Š)π‘Œ)))
1712, 13lmodvacl 13392 . . . . . . . 8 ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ (𝑋 + π‘Œ) ∈ 𝑉)
1812, 13, 2, 14, 3, 7lmodvsdir 13402 . . . . . . . 8 ((π‘Š ∈ LMod ∧ ((1rβ€˜(Scalarβ€˜π‘Š)) ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ (1rβ€˜(Scalarβ€˜π‘Š)) ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ (𝑋 + π‘Œ) ∈ 𝑉)) β†’ (((1rβ€˜(Scalarβ€˜π‘Š))(+gβ€˜(Scalarβ€˜π‘Š))(1rβ€˜(Scalarβ€˜π‘Š)))( ·𝑠 β€˜π‘Š)(𝑋 + π‘Œ)) = (((1rβ€˜(Scalarβ€˜π‘Š))( ·𝑠 β€˜π‘Š)(𝑋 + π‘Œ)) + ((1rβ€˜(Scalarβ€˜π‘Š))( ·𝑠 β€˜π‘Š)(𝑋 + π‘Œ))))
191, 6, 6, 17, 18syl13anc 1240 . . . . . . 7 ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ (((1rβ€˜(Scalarβ€˜π‘Š))(+gβ€˜(Scalarβ€˜π‘Š))(1rβ€˜(Scalarβ€˜π‘Š)))( ·𝑠 β€˜π‘Š)(𝑋 + π‘Œ)) = (((1rβ€˜(Scalarβ€˜π‘Š))( ·𝑠 β€˜π‘Š)(𝑋 + π‘Œ)) + ((1rβ€˜(Scalarβ€˜π‘Š))( ·𝑠 β€˜π‘Š)(𝑋 + π‘Œ))))
2016, 19eqtr3d 2212 . . . . . 6 ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ ((((1rβ€˜(Scalarβ€˜π‘Š))(+gβ€˜(Scalarβ€˜π‘Š))(1rβ€˜(Scalarβ€˜π‘Š)))( ·𝑠 β€˜π‘Š)𝑋) + (((1rβ€˜(Scalarβ€˜π‘Š))(+gβ€˜(Scalarβ€˜π‘Š))(1rβ€˜(Scalarβ€˜π‘Š)))( ·𝑠 β€˜π‘Š)π‘Œ)) = (((1rβ€˜(Scalarβ€˜π‘Š))( ·𝑠 β€˜π‘Š)(𝑋 + π‘Œ)) + ((1rβ€˜(Scalarβ€˜π‘Š))( ·𝑠 β€˜π‘Š)(𝑋 + π‘Œ))))
2112, 13, 2, 14, 3, 7lmodvsdir 13402 . . . . . . . . 9 ((π‘Š ∈ LMod ∧ ((1rβ€˜(Scalarβ€˜π‘Š)) ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ (1rβ€˜(Scalarβ€˜π‘Š)) ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ 𝑋 ∈ 𝑉)) β†’ (((1rβ€˜(Scalarβ€˜π‘Š))(+gβ€˜(Scalarβ€˜π‘Š))(1rβ€˜(Scalarβ€˜π‘Š)))( ·𝑠 β€˜π‘Š)𝑋) = (((1rβ€˜(Scalarβ€˜π‘Š))( ·𝑠 β€˜π‘Š)𝑋) + ((1rβ€˜(Scalarβ€˜π‘Š))( ·𝑠 β€˜π‘Š)𝑋)))
221, 6, 6, 10, 21syl13anc 1240 . . . . . . . 8 ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ (((1rβ€˜(Scalarβ€˜π‘Š))(+gβ€˜(Scalarβ€˜π‘Š))(1rβ€˜(Scalarβ€˜π‘Š)))( ·𝑠 β€˜π‘Š)𝑋) = (((1rβ€˜(Scalarβ€˜π‘Š))( ·𝑠 β€˜π‘Š)𝑋) + ((1rβ€˜(Scalarβ€˜π‘Š))( ·𝑠 β€˜π‘Š)𝑋)))
2312, 2, 14, 4lmodvs1 13406 . . . . . . . . . 10 ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝑉) β†’ ((1rβ€˜(Scalarβ€˜π‘Š))( ·𝑠 β€˜π‘Š)𝑋) = 𝑋)
241, 10, 23syl2anc 411 . . . . . . . . 9 ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ ((1rβ€˜(Scalarβ€˜π‘Š))( ·𝑠 β€˜π‘Š)𝑋) = 𝑋)
2524, 24oveq12d 5893 . . . . . . . 8 ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ (((1rβ€˜(Scalarβ€˜π‘Š))( ·𝑠 β€˜π‘Š)𝑋) + ((1rβ€˜(Scalarβ€˜π‘Š))( ·𝑠 β€˜π‘Š)𝑋)) = (𝑋 + 𝑋))
2622, 25eqtrd 2210 . . . . . . 7 ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ (((1rβ€˜(Scalarβ€˜π‘Š))(+gβ€˜(Scalarβ€˜π‘Š))(1rβ€˜(Scalarβ€˜π‘Š)))( ·𝑠 β€˜π‘Š)𝑋) = (𝑋 + 𝑋))
2712, 13, 2, 14, 3, 7lmodvsdir 13402 . . . . . . . . 9 ((π‘Š ∈ LMod ∧ ((1rβ€˜(Scalarβ€˜π‘Š)) ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ (1rβ€˜(Scalarβ€˜π‘Š)) ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ π‘Œ ∈ 𝑉)) β†’ (((1rβ€˜(Scalarβ€˜π‘Š))(+gβ€˜(Scalarβ€˜π‘Š))(1rβ€˜(Scalarβ€˜π‘Š)))( ·𝑠 β€˜π‘Š)π‘Œ) = (((1rβ€˜(Scalarβ€˜π‘Š))( ·𝑠 β€˜π‘Š)π‘Œ) + ((1rβ€˜(Scalarβ€˜π‘Š))( ·𝑠 β€˜π‘Š)π‘Œ)))
281, 6, 6, 11, 27syl13anc 1240 . . . . . . . 8 ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ (((1rβ€˜(Scalarβ€˜π‘Š))(+gβ€˜(Scalarβ€˜π‘Š))(1rβ€˜(Scalarβ€˜π‘Š)))( ·𝑠 β€˜π‘Š)π‘Œ) = (((1rβ€˜(Scalarβ€˜π‘Š))( ·𝑠 β€˜π‘Š)π‘Œ) + ((1rβ€˜(Scalarβ€˜π‘Š))( ·𝑠 β€˜π‘Š)π‘Œ)))
2912, 2, 14, 4lmodvs1 13406 . . . . . . . . . 10 ((π‘Š ∈ LMod ∧ π‘Œ ∈ 𝑉) β†’ ((1rβ€˜(Scalarβ€˜π‘Š))( ·𝑠 β€˜π‘Š)π‘Œ) = π‘Œ)
301, 11, 29syl2anc 411 . . . . . . . . 9 ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ ((1rβ€˜(Scalarβ€˜π‘Š))( ·𝑠 β€˜π‘Š)π‘Œ) = π‘Œ)
3130, 30oveq12d 5893 . . . . . . . 8 ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ (((1rβ€˜(Scalarβ€˜π‘Š))( ·𝑠 β€˜π‘Š)π‘Œ) + ((1rβ€˜(Scalarβ€˜π‘Š))( ·𝑠 β€˜π‘Š)π‘Œ)) = (π‘Œ + π‘Œ))
3228, 31eqtrd 2210 . . . . . . 7 ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ (((1rβ€˜(Scalarβ€˜π‘Š))(+gβ€˜(Scalarβ€˜π‘Š))(1rβ€˜(Scalarβ€˜π‘Š)))( ·𝑠 β€˜π‘Š)π‘Œ) = (π‘Œ + π‘Œ))
3326, 32oveq12d 5893 . . . . . 6 ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ ((((1rβ€˜(Scalarβ€˜π‘Š))(+gβ€˜(Scalarβ€˜π‘Š))(1rβ€˜(Scalarβ€˜π‘Š)))( ·𝑠 β€˜π‘Š)𝑋) + (((1rβ€˜(Scalarβ€˜π‘Š))(+gβ€˜(Scalarβ€˜π‘Š))(1rβ€˜(Scalarβ€˜π‘Š)))( ·𝑠 β€˜π‘Š)π‘Œ)) = ((𝑋 + 𝑋) + (π‘Œ + π‘Œ)))
3412, 2, 14, 4lmodvs1 13406 . . . . . . . 8 ((π‘Š ∈ LMod ∧ (𝑋 + π‘Œ) ∈ 𝑉) β†’ ((1rβ€˜(Scalarβ€˜π‘Š))( ·𝑠 β€˜π‘Š)(𝑋 + π‘Œ)) = (𝑋 + π‘Œ))
351, 17, 34syl2anc 411 . . . . . . 7 ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ ((1rβ€˜(Scalarβ€˜π‘Š))( ·𝑠 β€˜π‘Š)(𝑋 + π‘Œ)) = (𝑋 + π‘Œ))
3635, 35oveq12d 5893 . . . . . 6 ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ (((1rβ€˜(Scalarβ€˜π‘Š))( ·𝑠 β€˜π‘Š)(𝑋 + π‘Œ)) + ((1rβ€˜(Scalarβ€˜π‘Š))( ·𝑠 β€˜π‘Š)(𝑋 + π‘Œ))) = ((𝑋 + π‘Œ) + (𝑋 + π‘Œ)))
3720, 33, 363eqtr3d 2218 . . . . 5 ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ ((𝑋 + 𝑋) + (π‘Œ + π‘Œ)) = ((𝑋 + π‘Œ) + (𝑋 + π‘Œ)))
3812, 13lmodvacl 13392 . . . . . . 7 ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) β†’ (𝑋 + 𝑋) ∈ 𝑉)
391, 10, 10, 38syl3anc 1238 . . . . . 6 ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ (𝑋 + 𝑋) ∈ 𝑉)
4012, 13lmodass 13393 . . . . . 6 ((π‘Š ∈ LMod ∧ ((𝑋 + 𝑋) ∈ 𝑉 ∧ π‘Œ ∈ 𝑉 ∧ π‘Œ ∈ 𝑉)) β†’ (((𝑋 + 𝑋) + π‘Œ) + π‘Œ) = ((𝑋 + 𝑋) + (π‘Œ + π‘Œ)))
411, 39, 11, 11, 40syl13anc 1240 . . . . 5 ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ (((𝑋 + 𝑋) + π‘Œ) + π‘Œ) = ((𝑋 + 𝑋) + (π‘Œ + π‘Œ)))
4212, 13lmodass 13393 . . . . . 6 ((π‘Š ∈ LMod ∧ ((𝑋 + π‘Œ) ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉)) β†’ (((𝑋 + π‘Œ) + 𝑋) + π‘Œ) = ((𝑋 + π‘Œ) + (𝑋 + π‘Œ)))
431, 17, 10, 11, 42syl13anc 1240 . . . . 5 ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ (((𝑋 + π‘Œ) + 𝑋) + π‘Œ) = ((𝑋 + π‘Œ) + (𝑋 + π‘Œ)))
4437, 41, 433eqtr4d 2220 . . . 4 ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ (((𝑋 + 𝑋) + π‘Œ) + π‘Œ) = (((𝑋 + π‘Œ) + 𝑋) + π‘Œ))
45 lmodgrp 13384 . . . . . 6 (π‘Š ∈ LMod β†’ π‘Š ∈ Grp)
461, 45syl 14 . . . . 5 ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ π‘Š ∈ Grp)
4712, 13lmodvacl 13392 . . . . . 6 ((π‘Š ∈ LMod ∧ (𝑋 + 𝑋) ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ ((𝑋 + 𝑋) + π‘Œ) ∈ 𝑉)
481, 39, 11, 47syl3anc 1238 . . . . 5 ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ ((𝑋 + 𝑋) + π‘Œ) ∈ 𝑉)
4912, 13lmodvacl 13392 . . . . . 6 ((π‘Š ∈ LMod ∧ (𝑋 + π‘Œ) ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) β†’ ((𝑋 + π‘Œ) + 𝑋) ∈ 𝑉)
501, 17, 10, 49syl3anc 1238 . . . . 5 ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ ((𝑋 + π‘Œ) + 𝑋) ∈ 𝑉)
5112, 13grprcan 12910 . . . . 5 ((π‘Š ∈ Grp ∧ (((𝑋 + 𝑋) + π‘Œ) ∈ 𝑉 ∧ ((𝑋 + π‘Œ) + 𝑋) ∈ 𝑉 ∧ π‘Œ ∈ 𝑉)) β†’ ((((𝑋 + 𝑋) + π‘Œ) + π‘Œ) = (((𝑋 + π‘Œ) + 𝑋) + π‘Œ) ↔ ((𝑋 + 𝑋) + π‘Œ) = ((𝑋 + π‘Œ) + 𝑋)))
5246, 48, 50, 11, 51syl13anc 1240 . . . 4 ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ ((((𝑋 + 𝑋) + π‘Œ) + π‘Œ) = (((𝑋 + π‘Œ) + 𝑋) + π‘Œ) ↔ ((𝑋 + 𝑋) + π‘Œ) = ((𝑋 + π‘Œ) + 𝑋)))
5344, 52mpbid 147 . . 3 ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ ((𝑋 + 𝑋) + π‘Œ) = ((𝑋 + π‘Œ) + 𝑋))
5412, 13lmodass 13393 . . . 4 ((π‘Š ∈ LMod ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉)) β†’ ((𝑋 + 𝑋) + π‘Œ) = (𝑋 + (𝑋 + π‘Œ)))
551, 10, 10, 11, 54syl13anc 1240 . . 3 ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ ((𝑋 + 𝑋) + π‘Œ) = (𝑋 + (𝑋 + π‘Œ)))
5612, 13lmodass 13393 . . . 4 ((π‘Š ∈ LMod ∧ (𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) β†’ ((𝑋 + π‘Œ) + 𝑋) = (𝑋 + (π‘Œ + 𝑋)))
571, 10, 11, 10, 56syl13anc 1240 . . 3 ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ ((𝑋 + π‘Œ) + 𝑋) = (𝑋 + (π‘Œ + 𝑋)))
5853, 55, 573eqtr3d 2218 . 2 ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ (𝑋 + (𝑋 + π‘Œ)) = (𝑋 + (π‘Œ + 𝑋)))
5912, 13lmodvacl 13392 . . . 4 ((π‘Š ∈ LMod ∧ π‘Œ ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) β†’ (π‘Œ + 𝑋) ∈ 𝑉)
60593com23 1209 . . 3 ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ (π‘Œ + 𝑋) ∈ 𝑉)
6112, 13lmodlcan 13394 . . 3 ((π‘Š ∈ LMod ∧ ((𝑋 + π‘Œ) ∈ 𝑉 ∧ (π‘Œ + 𝑋) ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) β†’ ((𝑋 + (𝑋 + π‘Œ)) = (𝑋 + (π‘Œ + 𝑋)) ↔ (𝑋 + π‘Œ) = (π‘Œ + 𝑋)))
621, 17, 60, 10, 61syl13anc 1240 . 2 ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ ((𝑋 + (𝑋 + π‘Œ)) = (𝑋 + (π‘Œ + 𝑋)) ↔ (𝑋 + π‘Œ) = (π‘Œ + 𝑋)))
6358, 62mpbid 147 1 ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ (𝑋 + π‘Œ) = (π‘Œ + 𝑋))
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ↔ wb 105   ∧ w3a 978   = wceq 1353   ∈ wcel 2148  β€˜cfv 5217  (class class class)co 5875  Basecbs 12462  +gcplusg 12536  Scalarcsca 12539   ·𝑠 cvsca 12540  Grpcgrp 12877  1rcur 13142  LModclmod 13377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-addcom 7911  ax-addass 7913  ax-i2m1 7916  ax-0lt1 7917  ax-0id 7919  ax-rnegex 7920  ax-pre-ltirr 7923  ax-pre-ltadd 7927
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-pnf 7994  df-mnf 7995  df-ltxr 7997  df-inn 8920  df-2 8978  df-3 8979  df-4 8980  df-5 8981  df-6 8982  df-ndx 12465  df-slot 12466  df-base 12468  df-sets 12469  df-plusg 12549  df-mulr 12550  df-sca 12552  df-vsca 12553  df-0g 12707  df-mgm 12775  df-sgrp 12808  df-mnd 12818  df-grp 12880  df-minusg 12881  df-mgp 13131  df-ur 13143  df-ring 13181  df-lmod 13379
This theorem is referenced by:  lmodabl  13424
  Copyright terms: Public domain W3C validator