| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mnd12g | GIF version | ||
| Description: Commutative/associative law for monoids, with an explicit commutativity hypothesis. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| Ref | Expression |
|---|---|
| mndcl.b | ⊢ 𝐵 = (Base‘𝐺) |
| mndcl.p | ⊢ + = (+g‘𝐺) |
| mnd4g.1 | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| mnd4g.2 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| mnd4g.3 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| mnd4g.4 | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| mnd12g.5 | ⊢ (𝜑 → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
| Ref | Expression |
|---|---|
| mnd12g | ⊢ (𝜑 → (𝑋 + (𝑌 + 𝑍)) = (𝑌 + (𝑋 + 𝑍))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnd12g.5 | . . 3 ⊢ (𝜑 → (𝑋 + 𝑌) = (𝑌 + 𝑋)) | |
| 2 | 1 | oveq1d 5982 | . 2 ⊢ (𝜑 → ((𝑋 + 𝑌) + 𝑍) = ((𝑌 + 𝑋) + 𝑍)) |
| 3 | mnd4g.1 | . . 3 ⊢ (𝜑 → 𝐺 ∈ Mnd) | |
| 4 | mnd4g.2 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 5 | mnd4g.3 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 6 | mnd4g.4 | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 7 | mndcl.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 8 | mndcl.p | . . . 4 ⊢ + = (+g‘𝐺) | |
| 9 | 7, 8 | mndass 13371 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) |
| 10 | 3, 4, 5, 6, 9 | syl13anc 1252 | . 2 ⊢ (𝜑 → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) |
| 11 | 7, 8 | mndass 13371 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ (𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑌 + 𝑋) + 𝑍) = (𝑌 + (𝑋 + 𝑍))) |
| 12 | 3, 5, 4, 6, 11 | syl13anc 1252 | . 2 ⊢ (𝜑 → ((𝑌 + 𝑋) + 𝑍) = (𝑌 + (𝑋 + 𝑍))) |
| 13 | 2, 10, 12 | 3eqtr3d 2248 | 1 ⊢ (𝜑 → (𝑋 + (𝑌 + 𝑍)) = (𝑌 + (𝑋 + 𝑍))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2178 ‘cfv 5290 (class class class)co 5967 Basecbs 12947 +gcplusg 13024 Mndcmnd 13363 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-iota 5251 df-fun 5292 df-fn 5293 df-fv 5298 df-ov 5970 df-inn 9072 df-2 9130 df-ndx 12950 df-slot 12951 df-base 12953 df-plusg 13037 df-sgrp 13349 df-mnd 13364 |
| This theorem is referenced by: mnd4g 13376 cmn12 13757 |
| Copyright terms: Public domain | W3C validator |