| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mnd32g | GIF version | ||
| Description: Commutative/associative law for monoids, with an explicit commutativity hypothesis. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| Ref | Expression |
|---|---|
| mndcl.b | ⊢ 𝐵 = (Base‘𝐺) |
| mndcl.p | ⊢ + = (+g‘𝐺) |
| mnd4g.1 | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| mnd4g.2 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| mnd4g.3 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| mnd4g.4 | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| mnd32g.5 | ⊢ (𝜑 → (𝑌 + 𝑍) = (𝑍 + 𝑌)) |
| Ref | Expression |
|---|---|
| mnd32g | ⊢ (𝜑 → ((𝑋 + 𝑌) + 𝑍) = ((𝑋 + 𝑍) + 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnd32g.5 | . . 3 ⊢ (𝜑 → (𝑌 + 𝑍) = (𝑍 + 𝑌)) | |
| 2 | 1 | oveq2d 5959 | . 2 ⊢ (𝜑 → (𝑋 + (𝑌 + 𝑍)) = (𝑋 + (𝑍 + 𝑌))) |
| 3 | mnd4g.1 | . . 3 ⊢ (𝜑 → 𝐺 ∈ Mnd) | |
| 4 | mnd4g.2 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 5 | mnd4g.3 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 6 | mnd4g.4 | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 7 | mndcl.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 8 | mndcl.p | . . . 4 ⊢ + = (+g‘𝐺) | |
| 9 | 7, 8 | mndass 13227 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) |
| 10 | 3, 4, 5, 6, 9 | syl13anc 1251 | . 2 ⊢ (𝜑 → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) |
| 11 | 7, 8 | mndass 13227 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑋 + 𝑍) + 𝑌) = (𝑋 + (𝑍 + 𝑌))) |
| 12 | 3, 4, 6, 5, 11 | syl13anc 1251 | . 2 ⊢ (𝜑 → ((𝑋 + 𝑍) + 𝑌) = (𝑋 + (𝑍 + 𝑌))) |
| 13 | 2, 10, 12 | 3eqtr4d 2247 | 1 ⊢ (𝜑 → ((𝑋 + 𝑌) + 𝑍) = ((𝑋 + 𝑍) + 𝑌)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ∈ wcel 2175 ‘cfv 5270 (class class class)co 5943 Basecbs 12803 +gcplusg 12880 Mndcmnd 13219 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-cnex 8015 ax-resscn 8016 ax-1re 8018 ax-addrcl 8021 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-sbc 2998 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-iota 5231 df-fun 5272 df-fn 5273 df-fv 5278 df-ov 5946 df-inn 9036 df-2 9094 df-ndx 12806 df-slot 12807 df-base 12809 df-plusg 12893 df-sgrp 13205 df-mnd 13220 |
| This theorem is referenced by: cmn32 13611 |
| Copyright terms: Public domain | W3C validator |