ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mnd32g GIF version

Theorem mnd32g 12663
Description: Commutative/associative law for monoids, with an explicit commutativity hypothesis. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
mndcl.b 𝐵 = (Base‘𝐺)
mndcl.p + = (+g𝐺)
mnd4g.1 (𝜑𝐺 ∈ Mnd)
mnd4g.2 (𝜑𝑋𝐵)
mnd4g.3 (𝜑𝑌𝐵)
mnd4g.4 (𝜑𝑍𝐵)
mnd32g.5 (𝜑 → (𝑌 + 𝑍) = (𝑍 + 𝑌))
Assertion
Ref Expression
mnd32g (𝜑 → ((𝑋 + 𝑌) + 𝑍) = ((𝑋 + 𝑍) + 𝑌))

Proof of Theorem mnd32g
StepHypRef Expression
1 mnd32g.5 . . 3 (𝜑 → (𝑌 + 𝑍) = (𝑍 + 𝑌))
21oveq2d 5869 . 2 (𝜑 → (𝑋 + (𝑌 + 𝑍)) = (𝑋 + (𝑍 + 𝑌)))
3 mnd4g.1 . . 3 (𝜑𝐺 ∈ Mnd)
4 mnd4g.2 . . 3 (𝜑𝑋𝐵)
5 mnd4g.3 . . 3 (𝜑𝑌𝐵)
6 mnd4g.4 . . 3 (𝜑𝑍𝐵)
7 mndcl.b . . . 4 𝐵 = (Base‘𝐺)
8 mndcl.p . . . 4 + = (+g𝐺)
97, 8mndass 12660 . . 3 ((𝐺 ∈ Mnd ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍)))
103, 4, 5, 6, 9syl13anc 1235 . 2 (𝜑 → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍)))
117, 8mndass 12660 . . 3 ((𝐺 ∈ Mnd ∧ (𝑋𝐵𝑍𝐵𝑌𝐵)) → ((𝑋 + 𝑍) + 𝑌) = (𝑋 + (𝑍 + 𝑌)))
123, 4, 6, 5, 11syl13anc 1235 . 2 (𝜑 → ((𝑋 + 𝑍) + 𝑌) = (𝑋 + (𝑍 + 𝑌)))
132, 10, 123eqtr4d 2213 1 (𝜑 → ((𝑋 + 𝑌) + 𝑍) = ((𝑋 + 𝑍) + 𝑌))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1348  wcel 2141  cfv 5198  (class class class)co 5853  Basecbs 12416  +gcplusg 12480  Mndcmnd 12652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-cnex 7865  ax-resscn 7866  ax-1re 7868  ax-addrcl 7871
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-iota 5160  df-fun 5200  df-fn 5201  df-fv 5206  df-ov 5856  df-inn 8879  df-2 8937  df-ndx 12419  df-slot 12420  df-base 12422  df-plusg 12493  df-sgrp 12643  df-mnd 12653
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator