ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0p1nn GIF version

Theorem nn0p1nn 9174
Description: A nonnegative integer plus 1 is a positive integer. (Contributed by Raph Levien, 30-Jun-2006.) (Revised by Mario Carneiro, 16-May-2014.)
Assertion
Ref Expression
nn0p1nn (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)

Proof of Theorem nn0p1nn
StepHypRef Expression
1 1nn 8889 . 2 1 ∈ ℕ
2 nn0nnaddcl 9166 . 2 ((𝑁 ∈ ℕ0 ∧ 1 ∈ ℕ) → (𝑁 + 1) ∈ ℕ)
31, 2mpan2 423 1 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2141  (class class class)co 5853  1c1 7775   + caddc 7777  cn 8878  0cn0 9135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152  ax-sep 4107  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-i2m1 7879  ax-0id 7882  ax-rnegex 7883
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-iota 5160  df-fv 5206  df-ov 5856  df-inn 8879  df-n0 9136
This theorem is referenced by:  elnn0nn  9177  elz2  9283  peano5uzti  9320  fseq1p1m1  10050  fzonn0p1  10167  nn0ennn  10389  faccl  10669  facdiv  10672  facwordi  10674  faclbnd  10675  facubnd  10679  bcm1k  10694  bcp1n  10695  bcp1nk  10696  bcpasc  10700  bcxmas  11452  efcllemp  11621  uzwodc  11992  prmfac1  12106  pcfac  12302
  Copyright terms: Public domain W3C validator