ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0p1nn GIF version

Theorem nn0p1nn 9416
Description: A nonnegative integer plus 1 is a positive integer. (Contributed by Raph Levien, 30-Jun-2006.) (Revised by Mario Carneiro, 16-May-2014.)
Assertion
Ref Expression
nn0p1nn (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)

Proof of Theorem nn0p1nn
StepHypRef Expression
1 1nn 9129 . 2 1 ∈ ℕ
2 nn0nnaddcl 9408 . 2 ((𝑁 ∈ ℕ0 ∧ 1 ∈ ℕ) → (𝑁 + 1) ∈ ℕ)
31, 2mpan2 425 1 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2200  (class class class)co 6007  1c1 8008   + caddc 8010  cn 9118  0cn0 9377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-sep 4202  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-addass 8109  ax-i2m1 8112  ax-0id 8115  ax-rnegex 8116
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-iota 5278  df-fv 5326  df-ov 6010  df-inn 9119  df-n0 9378
This theorem is referenced by:  elnn0nn  9419  elz2  9526  peano5uzti  9563  fseq1p1m1  10298  fzonn0p1  10425  nn0ennn  10663  faccl  10965  facdiv  10968  facwordi  10970  faclbnd  10971  facubnd  10975  bcm1k  10990  bcp1n  10991  bcp1nk  10992  bcpasc  10996  ccats1pfxeqrex  11255  wrdind  11262  wrd2ind  11263  ccats1pfxeqbi  11282  bcxmas  12008  efcllemp  12177  uzwodc  12566  prmfac1  12682  pcfac  12881  4sqlem12  12933  gsumfzconst  13886  plycolemc  15440  gausslemma2dlem3  15750  2lgslem1a  15775
  Copyright terms: Public domain W3C validator