ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0p1nn GIF version

Theorem nn0p1nn 9282
Description: A nonnegative integer plus 1 is a positive integer. (Contributed by Raph Levien, 30-Jun-2006.) (Revised by Mario Carneiro, 16-May-2014.)
Assertion
Ref Expression
nn0p1nn (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)

Proof of Theorem nn0p1nn
StepHypRef Expression
1 1nn 8995 . 2 1 ∈ ℕ
2 nn0nnaddcl 9274 . 2 ((𝑁 ∈ ℕ0 ∧ 1 ∈ ℕ) → (𝑁 + 1) ∈ ℕ)
31, 2mpan2 425 1 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2164  (class class class)co 5919  1c1 7875   + caddc 7877  cn 8984  0cn0 9243
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-sep 4148  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0id 7982  ax-rnegex 7983
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-iota 5216  df-fv 5263  df-ov 5922  df-inn 8985  df-n0 9244
This theorem is referenced by:  elnn0nn  9285  elz2  9391  peano5uzti  9428  fseq1p1m1  10163  fzonn0p1  10281  nn0ennn  10507  faccl  10809  facdiv  10812  facwordi  10814  faclbnd  10815  facubnd  10819  bcm1k  10834  bcp1n  10835  bcp1nk  10836  bcpasc  10840  bcxmas  11635  efcllemp  11804  uzwodc  12177  prmfac1  12293  pcfac  12491  4sqlem12  12543  gsumfzconst  13414  plycolemc  14936  gausslemma2dlem3  15220  2lgslem1a  15245
  Copyright terms: Public domain W3C validator