![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nn0p1nn | GIF version |
Description: A nonnegative integer plus 1 is a positive integer. (Contributed by Raph Levien, 30-Jun-2006.) (Revised by Mario Carneiro, 16-May-2014.) |
Ref | Expression |
---|---|
nn0p1nn | ⊢ (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn 8995 | . 2 ⊢ 1 ∈ ℕ | |
2 | nn0nnaddcl 9274 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 1 ∈ ℕ) → (𝑁 + 1) ∈ ℕ) | |
3 | 1, 2 | mpan2 425 | 1 ⊢ (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 (class class class)co 5919 1c1 7875 + caddc 7877 ℕcn 8984 ℕ0cn0 9243 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-sep 4148 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-i2m1 7979 ax-0id 7982 ax-rnegex 7983 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-iota 5216 df-fv 5263 df-ov 5922 df-inn 8985 df-n0 9244 |
This theorem is referenced by: elnn0nn 9285 elz2 9391 peano5uzti 9428 fseq1p1m1 10163 fzonn0p1 10281 nn0ennn 10507 faccl 10809 facdiv 10812 facwordi 10814 faclbnd 10815 facubnd 10819 bcm1k 10834 bcp1n 10835 bcp1nk 10836 bcpasc 10840 bcxmas 11635 efcllemp 11804 uzwodc 12177 prmfac1 12293 pcfac 12491 4sqlem12 12543 gsumfzconst 13414 plycolemc 14936 gausslemma2dlem3 15220 2lgslem1a 15245 |
Copyright terms: Public domain | W3C validator |