| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0p1nn | GIF version | ||
| Description: A nonnegative integer plus 1 is a positive integer. (Contributed by Raph Levien, 30-Jun-2006.) (Revised by Mario Carneiro, 16-May-2014.) |
| Ref | Expression |
|---|---|
| nn0p1nn | ⊢ (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn 9129 | . 2 ⊢ 1 ∈ ℕ | |
| 2 | nn0nnaddcl 9408 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 1 ∈ ℕ) → (𝑁 + 1) ∈ ℕ) | |
| 3 | 1, 2 | mpan2 425 | 1 ⊢ (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 (class class class)co 6007 1c1 8008 + caddc 8010 ℕcn 9118 ℕ0cn0 9377 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-sep 4202 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-addcom 8107 ax-addass 8109 ax-i2m1 8112 ax-0id 8115 ax-rnegex 8116 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-iota 5278 df-fv 5326 df-ov 6010 df-inn 9119 df-n0 9378 |
| This theorem is referenced by: elnn0nn 9419 elz2 9526 peano5uzti 9563 fseq1p1m1 10298 fzonn0p1 10425 nn0ennn 10663 faccl 10965 facdiv 10968 facwordi 10970 faclbnd 10971 facubnd 10975 bcm1k 10990 bcp1n 10991 bcp1nk 10992 bcpasc 10996 ccats1pfxeqrex 11255 wrdind 11262 wrd2ind 11263 ccats1pfxeqbi 11282 bcxmas 12008 efcllemp 12177 uzwodc 12566 prmfac1 12682 pcfac 12881 4sqlem12 12933 gsumfzconst 13886 plycolemc 15440 gausslemma2dlem3 15750 2lgslem1a 15775 |
| Copyright terms: Public domain | W3C validator |