| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0p1nn | GIF version | ||
| Description: A nonnegative integer plus 1 is a positive integer. (Contributed by Raph Levien, 30-Jun-2006.) (Revised by Mario Carneiro, 16-May-2014.) |
| Ref | Expression |
|---|---|
| nn0p1nn | ⊢ (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn 9089 | . 2 ⊢ 1 ∈ ℕ | |
| 2 | nn0nnaddcl 9368 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 1 ∈ ℕ) → (𝑁 + 1) ∈ ℕ) | |
| 3 | 1, 2 | mpan2 425 | 1 ⊢ (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2180 (class class class)co 5974 1c1 7968 + caddc 7970 ℕcn 9078 ℕ0cn0 9337 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 ax-sep 4181 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-addcom 8067 ax-addass 8069 ax-i2m1 8072 ax-0id 8075 ax-rnegex 8076 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-rab 2497 df-v 2781 df-un 3181 df-in 3183 df-ss 3190 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-br 4063 df-iota 5254 df-fv 5302 df-ov 5977 df-inn 9079 df-n0 9338 |
| This theorem is referenced by: elnn0nn 9379 elz2 9486 peano5uzti 9523 fseq1p1m1 10258 fzonn0p1 10384 nn0ennn 10622 faccl 10924 facdiv 10927 facwordi 10929 faclbnd 10930 facubnd 10934 bcm1k 10949 bcp1n 10950 bcp1nk 10951 bcpasc 10955 ccats1pfxeqrex 11213 wrdind 11220 wrd2ind 11221 ccats1pfxeqbi 11240 bcxmas 11966 efcllemp 12135 uzwodc 12524 prmfac1 12640 pcfac 12839 4sqlem12 12891 gsumfzconst 13844 plycolemc 15397 gausslemma2dlem3 15707 2lgslem1a 15732 |
| Copyright terms: Public domain | W3C validator |