Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nn0p1nn | GIF version |
Description: A nonnegative integer plus 1 is a positive integer. (Contributed by Raph Levien, 30-Jun-2006.) (Revised by Mario Carneiro, 16-May-2014.) |
Ref | Expression |
---|---|
nn0p1nn | ⊢ (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn 8868 | . 2 ⊢ 1 ∈ ℕ | |
2 | nn0nnaddcl 9145 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 1 ∈ ℕ) → (𝑁 + 1) ∈ ℕ) | |
3 | 1, 2 | mpan2 422 | 1 ⊢ (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 (class class class)co 5842 1c1 7754 + caddc 7756 ℕcn 8857 ℕ0cn0 9114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-sep 4100 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-i2m1 7858 ax-0id 7861 ax-rnegex 7862 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-iota 5153 df-fv 5196 df-ov 5845 df-inn 8858 df-n0 9115 |
This theorem is referenced by: elnn0nn 9156 elz2 9262 peano5uzti 9299 fseq1p1m1 10029 fzonn0p1 10146 nn0ennn 10368 faccl 10648 facdiv 10651 facwordi 10653 faclbnd 10654 facubnd 10658 bcm1k 10673 bcp1n 10674 bcp1nk 10675 bcpasc 10679 bcxmas 11430 efcllemp 11599 uzwodc 11970 prmfac1 12084 pcfac 12280 |
Copyright terms: Public domain | W3C validator |