Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cauappcvgprlemupu | GIF version |
Description: Lemma for cauappcvgpr 7624. The upper cut of the putative limit is upper. (Contributed by Jim Kingdon, 4-Aug-2020.) |
Ref | Expression |
---|---|
cauappcvgpr.f | ⊢ (𝜑 → 𝐹:Q⟶Q) |
cauappcvgpr.app | ⊢ (𝜑 → ∀𝑝 ∈ Q ∀𝑞 ∈ Q ((𝐹‘𝑝) <Q ((𝐹‘𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹‘𝑞) <Q ((𝐹‘𝑝) +Q (𝑝 +Q 𝑞)))) |
cauappcvgpr.bnd | ⊢ (𝜑 → ∀𝑝 ∈ Q 𝐴 <Q (𝐹‘𝑝)) |
cauappcvgpr.lim | ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q (𝐹‘𝑞)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑢}〉 |
Ref | Expression |
---|---|
cauappcvgprlemupu | ⊢ ((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑠 ∈ (2nd ‘𝐿)) → 𝑟 ∈ (2nd ‘𝐿)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltrelnq 7327 | . . . . 5 ⊢ <Q ⊆ (Q × Q) | |
2 | 1 | brel 4663 | . . . 4 ⊢ (𝑠 <Q 𝑟 → (𝑠 ∈ Q ∧ 𝑟 ∈ Q)) |
3 | 2 | simprd 113 | . . 3 ⊢ (𝑠 <Q 𝑟 → 𝑟 ∈ Q) |
4 | 3 | 3ad2ant2 1014 | . 2 ⊢ ((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑠 ∈ (2nd ‘𝐿)) → 𝑟 ∈ Q) |
5 | breq2 3993 | . . . . . . 7 ⊢ (𝑢 = 𝑠 → (((𝐹‘𝑞) +Q 𝑞) <Q 𝑢 ↔ ((𝐹‘𝑞) +Q 𝑞) <Q 𝑠)) | |
6 | 5 | rexbidv 2471 | . . . . . 6 ⊢ (𝑢 = 𝑠 → (∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑢 ↔ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑠)) |
7 | cauappcvgpr.lim | . . . . . . . 8 ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q (𝐹‘𝑞)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑢}〉 | |
8 | 7 | fveq2i 5499 | . . . . . . 7 ⊢ (2nd ‘𝐿) = (2nd ‘〈{𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q (𝐹‘𝑞)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑢}〉) |
9 | nqex 7325 | . . . . . . . . 9 ⊢ Q ∈ V | |
10 | 9 | rabex 4133 | . . . . . . . 8 ⊢ {𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q (𝐹‘𝑞)} ∈ V |
11 | 9 | rabex 4133 | . . . . . . . 8 ⊢ {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑢} ∈ V |
12 | 10, 11 | op2nd 6126 | . . . . . . 7 ⊢ (2nd ‘〈{𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q (𝐹‘𝑞)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑢}〉) = {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑢} |
13 | 8, 12 | eqtri 2191 | . . . . . 6 ⊢ (2nd ‘𝐿) = {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑢} |
14 | 6, 13 | elrab2 2889 | . . . . 5 ⊢ (𝑠 ∈ (2nd ‘𝐿) ↔ (𝑠 ∈ Q ∧ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑠)) |
15 | 14 | simprbi 273 | . . . 4 ⊢ (𝑠 ∈ (2nd ‘𝐿) → ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑠) |
16 | 15 | 3ad2ant3 1015 | . . 3 ⊢ ((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑠 ∈ (2nd ‘𝐿)) → ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑠) |
17 | ltsonq 7360 | . . . . . . 7 ⊢ <Q Or Q | |
18 | 17, 1 | sotri 5006 | . . . . . 6 ⊢ ((((𝐹‘𝑞) +Q 𝑞) <Q 𝑠 ∧ 𝑠 <Q 𝑟) → ((𝐹‘𝑞) +Q 𝑞) <Q 𝑟) |
19 | 18 | expcom 115 | . . . . 5 ⊢ (𝑠 <Q 𝑟 → (((𝐹‘𝑞) +Q 𝑞) <Q 𝑠 → ((𝐹‘𝑞) +Q 𝑞) <Q 𝑟)) |
20 | 19 | 3ad2ant2 1014 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑠 ∈ (2nd ‘𝐿)) → (((𝐹‘𝑞) +Q 𝑞) <Q 𝑠 → ((𝐹‘𝑞) +Q 𝑞) <Q 𝑟)) |
21 | 20 | reximdv 2571 | . . 3 ⊢ ((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑠 ∈ (2nd ‘𝐿)) → (∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑠 → ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑟)) |
22 | 16, 21 | mpd 13 | . 2 ⊢ ((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑠 ∈ (2nd ‘𝐿)) → ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑟) |
23 | breq2 3993 | . . . 4 ⊢ (𝑢 = 𝑟 → (((𝐹‘𝑞) +Q 𝑞) <Q 𝑢 ↔ ((𝐹‘𝑞) +Q 𝑞) <Q 𝑟)) | |
24 | 23 | rexbidv 2471 | . . 3 ⊢ (𝑢 = 𝑟 → (∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑢 ↔ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑟)) |
25 | 24, 13 | elrab2 2889 | . 2 ⊢ (𝑟 ∈ (2nd ‘𝐿) ↔ (𝑟 ∈ Q ∧ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑟)) |
26 | 4, 22, 25 | sylanbrc 415 | 1 ⊢ ((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑠 ∈ (2nd ‘𝐿)) → 𝑟 ∈ (2nd ‘𝐿)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 973 = wceq 1348 ∈ wcel 2141 ∀wral 2448 ∃wrex 2449 {crab 2452 〈cop 3586 class class class wbr 3989 ⟶wf 5194 ‘cfv 5198 (class class class)co 5853 2nd c2nd 6118 Qcnq 7242 +Q cplq 7244 <Q cltq 7247 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-eprel 4274 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-irdg 6349 df-oadd 6399 df-omul 6400 df-er 6513 df-ec 6515 df-qs 6519 df-ni 7266 df-mi 7268 df-lti 7269 df-enq 7309 df-nqqs 7310 df-ltnqqs 7315 |
This theorem is referenced by: cauappcvgprlemrnd 7612 |
Copyright terms: Public domain | W3C validator |