| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cauappcvgprlemupu | GIF version | ||
| Description: Lemma for cauappcvgpr 7837. The upper cut of the putative limit is upper. (Contributed by Jim Kingdon, 4-Aug-2020.) |
| Ref | Expression |
|---|---|
| cauappcvgpr.f | ⊢ (𝜑 → 𝐹:Q⟶Q) |
| cauappcvgpr.app | ⊢ (𝜑 → ∀𝑝 ∈ Q ∀𝑞 ∈ Q ((𝐹‘𝑝) <Q ((𝐹‘𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹‘𝑞) <Q ((𝐹‘𝑝) +Q (𝑝 +Q 𝑞)))) |
| cauappcvgpr.bnd | ⊢ (𝜑 → ∀𝑝 ∈ Q 𝐴 <Q (𝐹‘𝑝)) |
| cauappcvgpr.lim | ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q (𝐹‘𝑞)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑢}〉 |
| Ref | Expression |
|---|---|
| cauappcvgprlemupu | ⊢ ((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑠 ∈ (2nd ‘𝐿)) → 𝑟 ∈ (2nd ‘𝐿)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltrelnq 7540 | . . . . 5 ⊢ <Q ⊆ (Q × Q) | |
| 2 | 1 | brel 4768 | . . . 4 ⊢ (𝑠 <Q 𝑟 → (𝑠 ∈ Q ∧ 𝑟 ∈ Q)) |
| 3 | 2 | simprd 114 | . . 3 ⊢ (𝑠 <Q 𝑟 → 𝑟 ∈ Q) |
| 4 | 3 | 3ad2ant2 1043 | . 2 ⊢ ((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑠 ∈ (2nd ‘𝐿)) → 𝑟 ∈ Q) |
| 5 | breq2 4086 | . . . . . . 7 ⊢ (𝑢 = 𝑠 → (((𝐹‘𝑞) +Q 𝑞) <Q 𝑢 ↔ ((𝐹‘𝑞) +Q 𝑞) <Q 𝑠)) | |
| 6 | 5 | rexbidv 2531 | . . . . . 6 ⊢ (𝑢 = 𝑠 → (∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑢 ↔ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑠)) |
| 7 | cauappcvgpr.lim | . . . . . . . 8 ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q (𝐹‘𝑞)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑢}〉 | |
| 8 | 7 | fveq2i 5626 | . . . . . . 7 ⊢ (2nd ‘𝐿) = (2nd ‘〈{𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q (𝐹‘𝑞)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑢}〉) |
| 9 | nqex 7538 | . . . . . . . . 9 ⊢ Q ∈ V | |
| 10 | 9 | rabex 4227 | . . . . . . . 8 ⊢ {𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q (𝐹‘𝑞)} ∈ V |
| 11 | 9 | rabex 4227 | . . . . . . . 8 ⊢ {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑢} ∈ V |
| 12 | 10, 11 | op2nd 6283 | . . . . . . 7 ⊢ (2nd ‘〈{𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q (𝐹‘𝑞)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑢}〉) = {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑢} |
| 13 | 8, 12 | eqtri 2250 | . . . . . 6 ⊢ (2nd ‘𝐿) = {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑢} |
| 14 | 6, 13 | elrab2 2962 | . . . . 5 ⊢ (𝑠 ∈ (2nd ‘𝐿) ↔ (𝑠 ∈ Q ∧ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑠)) |
| 15 | 14 | simprbi 275 | . . . 4 ⊢ (𝑠 ∈ (2nd ‘𝐿) → ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑠) |
| 16 | 15 | 3ad2ant3 1044 | . . 3 ⊢ ((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑠 ∈ (2nd ‘𝐿)) → ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑠) |
| 17 | ltsonq 7573 | . . . . . . 7 ⊢ <Q Or Q | |
| 18 | 17, 1 | sotri 5120 | . . . . . 6 ⊢ ((((𝐹‘𝑞) +Q 𝑞) <Q 𝑠 ∧ 𝑠 <Q 𝑟) → ((𝐹‘𝑞) +Q 𝑞) <Q 𝑟) |
| 19 | 18 | expcom 116 | . . . . 5 ⊢ (𝑠 <Q 𝑟 → (((𝐹‘𝑞) +Q 𝑞) <Q 𝑠 → ((𝐹‘𝑞) +Q 𝑞) <Q 𝑟)) |
| 20 | 19 | 3ad2ant2 1043 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑠 ∈ (2nd ‘𝐿)) → (((𝐹‘𝑞) +Q 𝑞) <Q 𝑠 → ((𝐹‘𝑞) +Q 𝑞) <Q 𝑟)) |
| 21 | 20 | reximdv 2631 | . . 3 ⊢ ((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑠 ∈ (2nd ‘𝐿)) → (∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑠 → ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑟)) |
| 22 | 16, 21 | mpd 13 | . 2 ⊢ ((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑠 ∈ (2nd ‘𝐿)) → ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑟) |
| 23 | breq2 4086 | . . . 4 ⊢ (𝑢 = 𝑟 → (((𝐹‘𝑞) +Q 𝑞) <Q 𝑢 ↔ ((𝐹‘𝑞) +Q 𝑞) <Q 𝑟)) | |
| 24 | 23 | rexbidv 2531 | . . 3 ⊢ (𝑢 = 𝑟 → (∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑢 ↔ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑟)) |
| 25 | 24, 13 | elrab2 2962 | . 2 ⊢ (𝑟 ∈ (2nd ‘𝐿) ↔ (𝑟 ∈ Q ∧ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑟)) |
| 26 | 4, 22, 25 | sylanbrc 417 | 1 ⊢ ((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑠 ∈ (2nd ‘𝐿)) → 𝑟 ∈ (2nd ‘𝐿)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 ∀wral 2508 ∃wrex 2509 {crab 2512 〈cop 3669 class class class wbr 4082 ⟶wf 5310 ‘cfv 5314 (class class class)co 5994 2nd c2nd 6275 Qcnq 7455 +Q cplq 7457 <Q cltq 7460 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-iinf 4677 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-eprel 4377 df-id 4381 df-po 4384 df-iso 4385 df-iord 4454 df-on 4456 df-suc 4459 df-iom 4680 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-recs 6441 df-irdg 6506 df-oadd 6556 df-omul 6557 df-er 6670 df-ec 6672 df-qs 6676 df-ni 7479 df-mi 7481 df-lti 7482 df-enq 7522 df-nqqs 7523 df-ltnqqs 7528 |
| This theorem is referenced by: cauappcvgprlemrnd 7825 |
| Copyright terms: Public domain | W3C validator |