Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cauappcvgprlemupu | GIF version |
Description: Lemma for cauappcvgpr 7603. The upper cut of the putative limit is upper. (Contributed by Jim Kingdon, 4-Aug-2020.) |
Ref | Expression |
---|---|
cauappcvgpr.f | ⊢ (𝜑 → 𝐹:Q⟶Q) |
cauappcvgpr.app | ⊢ (𝜑 → ∀𝑝 ∈ Q ∀𝑞 ∈ Q ((𝐹‘𝑝) <Q ((𝐹‘𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹‘𝑞) <Q ((𝐹‘𝑝) +Q (𝑝 +Q 𝑞)))) |
cauappcvgpr.bnd | ⊢ (𝜑 → ∀𝑝 ∈ Q 𝐴 <Q (𝐹‘𝑝)) |
cauappcvgpr.lim | ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q (𝐹‘𝑞)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑢}〉 |
Ref | Expression |
---|---|
cauappcvgprlemupu | ⊢ ((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑠 ∈ (2nd ‘𝐿)) → 𝑟 ∈ (2nd ‘𝐿)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltrelnq 7306 | . . . . 5 ⊢ <Q ⊆ (Q × Q) | |
2 | 1 | brel 4656 | . . . 4 ⊢ (𝑠 <Q 𝑟 → (𝑠 ∈ Q ∧ 𝑟 ∈ Q)) |
3 | 2 | simprd 113 | . . 3 ⊢ (𝑠 <Q 𝑟 → 𝑟 ∈ Q) |
4 | 3 | 3ad2ant2 1009 | . 2 ⊢ ((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑠 ∈ (2nd ‘𝐿)) → 𝑟 ∈ Q) |
5 | breq2 3986 | . . . . . . 7 ⊢ (𝑢 = 𝑠 → (((𝐹‘𝑞) +Q 𝑞) <Q 𝑢 ↔ ((𝐹‘𝑞) +Q 𝑞) <Q 𝑠)) | |
6 | 5 | rexbidv 2467 | . . . . . 6 ⊢ (𝑢 = 𝑠 → (∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑢 ↔ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑠)) |
7 | cauappcvgpr.lim | . . . . . . . 8 ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q (𝐹‘𝑞)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑢}〉 | |
8 | 7 | fveq2i 5489 | . . . . . . 7 ⊢ (2nd ‘𝐿) = (2nd ‘〈{𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q (𝐹‘𝑞)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑢}〉) |
9 | nqex 7304 | . . . . . . . . 9 ⊢ Q ∈ V | |
10 | 9 | rabex 4126 | . . . . . . . 8 ⊢ {𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q (𝐹‘𝑞)} ∈ V |
11 | 9 | rabex 4126 | . . . . . . . 8 ⊢ {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑢} ∈ V |
12 | 10, 11 | op2nd 6115 | . . . . . . 7 ⊢ (2nd ‘〈{𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q (𝐹‘𝑞)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑢}〉) = {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑢} |
13 | 8, 12 | eqtri 2186 | . . . . . 6 ⊢ (2nd ‘𝐿) = {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑢} |
14 | 6, 13 | elrab2 2885 | . . . . 5 ⊢ (𝑠 ∈ (2nd ‘𝐿) ↔ (𝑠 ∈ Q ∧ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑠)) |
15 | 14 | simprbi 273 | . . . 4 ⊢ (𝑠 ∈ (2nd ‘𝐿) → ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑠) |
16 | 15 | 3ad2ant3 1010 | . . 3 ⊢ ((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑠 ∈ (2nd ‘𝐿)) → ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑠) |
17 | ltsonq 7339 | . . . . . . 7 ⊢ <Q Or Q | |
18 | 17, 1 | sotri 4999 | . . . . . 6 ⊢ ((((𝐹‘𝑞) +Q 𝑞) <Q 𝑠 ∧ 𝑠 <Q 𝑟) → ((𝐹‘𝑞) +Q 𝑞) <Q 𝑟) |
19 | 18 | expcom 115 | . . . . 5 ⊢ (𝑠 <Q 𝑟 → (((𝐹‘𝑞) +Q 𝑞) <Q 𝑠 → ((𝐹‘𝑞) +Q 𝑞) <Q 𝑟)) |
20 | 19 | 3ad2ant2 1009 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑠 ∈ (2nd ‘𝐿)) → (((𝐹‘𝑞) +Q 𝑞) <Q 𝑠 → ((𝐹‘𝑞) +Q 𝑞) <Q 𝑟)) |
21 | 20 | reximdv 2567 | . . 3 ⊢ ((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑠 ∈ (2nd ‘𝐿)) → (∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑠 → ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑟)) |
22 | 16, 21 | mpd 13 | . 2 ⊢ ((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑠 ∈ (2nd ‘𝐿)) → ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑟) |
23 | breq2 3986 | . . . 4 ⊢ (𝑢 = 𝑟 → (((𝐹‘𝑞) +Q 𝑞) <Q 𝑢 ↔ ((𝐹‘𝑞) +Q 𝑞) <Q 𝑟)) | |
24 | 23 | rexbidv 2467 | . . 3 ⊢ (𝑢 = 𝑟 → (∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑢 ↔ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑟)) |
25 | 24, 13 | elrab2 2885 | . 2 ⊢ (𝑟 ∈ (2nd ‘𝐿) ↔ (𝑟 ∈ Q ∧ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑟)) |
26 | 4, 22, 25 | sylanbrc 414 | 1 ⊢ ((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑠 ∈ (2nd ‘𝐿)) → 𝑟 ∈ (2nd ‘𝐿)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 968 = wceq 1343 ∈ wcel 2136 ∀wral 2444 ∃wrex 2445 {crab 2448 〈cop 3579 class class class wbr 3982 ⟶wf 5184 ‘cfv 5188 (class class class)co 5842 2nd c2nd 6107 Qcnq 7221 +Q cplq 7223 <Q cltq 7226 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-eprel 4267 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-irdg 6338 df-oadd 6388 df-omul 6389 df-er 6501 df-ec 6503 df-qs 6507 df-ni 7245 df-mi 7247 df-lti 7248 df-enq 7288 df-nqqs 7289 df-ltnqqs 7294 |
This theorem is referenced by: cauappcvgprlemrnd 7591 |
Copyright terms: Public domain | W3C validator |