ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cauappcvgprlemupu GIF version

Theorem cauappcvgprlemupu 7824
Description: Lemma for cauappcvgpr 7837. The upper cut of the putative limit is upper. (Contributed by Jim Kingdon, 4-Aug-2020.)
Hypotheses
Ref Expression
cauappcvgpr.f (𝜑𝐹:QQ)
cauappcvgpr.app (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))
cauappcvgpr.bnd (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))
cauappcvgpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩
Assertion
Ref Expression
cauappcvgprlemupu ((𝜑𝑠 <Q 𝑟𝑠 ∈ (2nd𝐿)) → 𝑟 ∈ (2nd𝐿))
Distinct variable groups:   𝐴,𝑝   𝐿,𝑝,𝑞   𝜑,𝑝,𝑞   𝐿,𝑟,𝑠   𝐴,𝑠,𝑝   𝐹,𝑙,𝑢,𝑝,𝑞,𝑟,𝑠   𝜑,𝑟,𝑠
Allowed substitution hints:   𝜑(𝑢,𝑙)   𝐴(𝑢,𝑟,𝑞,𝑙)   𝐿(𝑢,𝑙)

Proof of Theorem cauappcvgprlemupu
StepHypRef Expression
1 ltrelnq 7540 . . . . 5 <Q ⊆ (Q × Q)
21brel 4768 . . . 4 (𝑠 <Q 𝑟 → (𝑠Q𝑟Q))
32simprd 114 . . 3 (𝑠 <Q 𝑟𝑟Q)
433ad2ant2 1043 . 2 ((𝜑𝑠 <Q 𝑟𝑠 ∈ (2nd𝐿)) → 𝑟Q)
5 breq2 4086 . . . . . . 7 (𝑢 = 𝑠 → (((𝐹𝑞) +Q 𝑞) <Q 𝑢 ↔ ((𝐹𝑞) +Q 𝑞) <Q 𝑠))
65rexbidv 2531 . . . . . 6 (𝑢 = 𝑠 → (∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢 ↔ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑠))
7 cauappcvgpr.lim . . . . . . . 8 𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩
87fveq2i 5626 . . . . . . 7 (2nd𝐿) = (2nd ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩)
9 nqex 7538 . . . . . . . . 9 Q ∈ V
109rabex 4227 . . . . . . . 8 {𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)} ∈ V
119rabex 4227 . . . . . . . 8 {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢} ∈ V
1210, 11op2nd 6283 . . . . . . 7 (2nd ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩) = {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}
138, 12eqtri 2250 . . . . . 6 (2nd𝐿) = {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}
146, 13elrab2 2962 . . . . 5 (𝑠 ∈ (2nd𝐿) ↔ (𝑠Q ∧ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑠))
1514simprbi 275 . . . 4 (𝑠 ∈ (2nd𝐿) → ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑠)
16153ad2ant3 1044 . . 3 ((𝜑𝑠 <Q 𝑟𝑠 ∈ (2nd𝐿)) → ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑠)
17 ltsonq 7573 . . . . . . 7 <Q Or Q
1817, 1sotri 5120 . . . . . 6 ((((𝐹𝑞) +Q 𝑞) <Q 𝑠𝑠 <Q 𝑟) → ((𝐹𝑞) +Q 𝑞) <Q 𝑟)
1918expcom 116 . . . . 5 (𝑠 <Q 𝑟 → (((𝐹𝑞) +Q 𝑞) <Q 𝑠 → ((𝐹𝑞) +Q 𝑞) <Q 𝑟))
20193ad2ant2 1043 . . . 4 ((𝜑𝑠 <Q 𝑟𝑠 ∈ (2nd𝐿)) → (((𝐹𝑞) +Q 𝑞) <Q 𝑠 → ((𝐹𝑞) +Q 𝑞) <Q 𝑟))
2120reximdv 2631 . . 3 ((𝜑𝑠 <Q 𝑟𝑠 ∈ (2nd𝐿)) → (∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑠 → ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑟))
2216, 21mpd 13 . 2 ((𝜑𝑠 <Q 𝑟𝑠 ∈ (2nd𝐿)) → ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑟)
23 breq2 4086 . . . 4 (𝑢 = 𝑟 → (((𝐹𝑞) +Q 𝑞) <Q 𝑢 ↔ ((𝐹𝑞) +Q 𝑞) <Q 𝑟))
2423rexbidv 2531 . . 3 (𝑢 = 𝑟 → (∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢 ↔ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑟))
2524, 13elrab2 2962 . 2 (𝑟 ∈ (2nd𝐿) ↔ (𝑟Q ∧ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑟))
264, 22, 25sylanbrc 417 1 ((𝜑𝑠 <Q 𝑟𝑠 ∈ (2nd𝐿)) → 𝑟 ∈ (2nd𝐿))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002   = wceq 1395  wcel 2200  wral 2508  wrex 2509  {crab 2512  cop 3669   class class class wbr 4082  wf 5310  cfv 5314  (class class class)co 5994  2nd c2nd 6275  Qcnq 7455   +Q cplq 7457   <Q cltq 7460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-eprel 4377  df-id 4381  df-po 4384  df-iso 4385  df-iord 4454  df-on 4456  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-irdg 6506  df-oadd 6556  df-omul 6557  df-er 6670  df-ec 6672  df-qs 6676  df-ni 7479  df-mi 7481  df-lti 7482  df-enq 7522  df-nqqs 7523  df-ltnqqs 7528
This theorem is referenced by:  cauappcvgprlemrnd  7825
  Copyright terms: Public domain W3C validator