| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cauappcvgprlemupu | GIF version | ||
| Description: Lemma for cauappcvgpr 7790. The upper cut of the putative limit is upper. (Contributed by Jim Kingdon, 4-Aug-2020.) |
| Ref | Expression |
|---|---|
| cauappcvgpr.f | ⊢ (𝜑 → 𝐹:Q⟶Q) |
| cauappcvgpr.app | ⊢ (𝜑 → ∀𝑝 ∈ Q ∀𝑞 ∈ Q ((𝐹‘𝑝) <Q ((𝐹‘𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹‘𝑞) <Q ((𝐹‘𝑝) +Q (𝑝 +Q 𝑞)))) |
| cauappcvgpr.bnd | ⊢ (𝜑 → ∀𝑝 ∈ Q 𝐴 <Q (𝐹‘𝑝)) |
| cauappcvgpr.lim | ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q (𝐹‘𝑞)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑢}〉 |
| Ref | Expression |
|---|---|
| cauappcvgprlemupu | ⊢ ((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑠 ∈ (2nd ‘𝐿)) → 𝑟 ∈ (2nd ‘𝐿)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltrelnq 7493 | . . . . 5 ⊢ <Q ⊆ (Q × Q) | |
| 2 | 1 | brel 4734 | . . . 4 ⊢ (𝑠 <Q 𝑟 → (𝑠 ∈ Q ∧ 𝑟 ∈ Q)) |
| 3 | 2 | simprd 114 | . . 3 ⊢ (𝑠 <Q 𝑟 → 𝑟 ∈ Q) |
| 4 | 3 | 3ad2ant2 1022 | . 2 ⊢ ((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑠 ∈ (2nd ‘𝐿)) → 𝑟 ∈ Q) |
| 5 | breq2 4054 | . . . . . . 7 ⊢ (𝑢 = 𝑠 → (((𝐹‘𝑞) +Q 𝑞) <Q 𝑢 ↔ ((𝐹‘𝑞) +Q 𝑞) <Q 𝑠)) | |
| 6 | 5 | rexbidv 2508 | . . . . . 6 ⊢ (𝑢 = 𝑠 → (∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑢 ↔ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑠)) |
| 7 | cauappcvgpr.lim | . . . . . . . 8 ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q (𝐹‘𝑞)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑢}〉 | |
| 8 | 7 | fveq2i 5591 | . . . . . . 7 ⊢ (2nd ‘𝐿) = (2nd ‘〈{𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q (𝐹‘𝑞)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑢}〉) |
| 9 | nqex 7491 | . . . . . . . . 9 ⊢ Q ∈ V | |
| 10 | 9 | rabex 4195 | . . . . . . . 8 ⊢ {𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q (𝐹‘𝑞)} ∈ V |
| 11 | 9 | rabex 4195 | . . . . . . . 8 ⊢ {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑢} ∈ V |
| 12 | 10, 11 | op2nd 6245 | . . . . . . 7 ⊢ (2nd ‘〈{𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q (𝐹‘𝑞)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑢}〉) = {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑢} |
| 13 | 8, 12 | eqtri 2227 | . . . . . 6 ⊢ (2nd ‘𝐿) = {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑢} |
| 14 | 6, 13 | elrab2 2936 | . . . . 5 ⊢ (𝑠 ∈ (2nd ‘𝐿) ↔ (𝑠 ∈ Q ∧ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑠)) |
| 15 | 14 | simprbi 275 | . . . 4 ⊢ (𝑠 ∈ (2nd ‘𝐿) → ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑠) |
| 16 | 15 | 3ad2ant3 1023 | . . 3 ⊢ ((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑠 ∈ (2nd ‘𝐿)) → ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑠) |
| 17 | ltsonq 7526 | . . . . . . 7 ⊢ <Q Or Q | |
| 18 | 17, 1 | sotri 5086 | . . . . . 6 ⊢ ((((𝐹‘𝑞) +Q 𝑞) <Q 𝑠 ∧ 𝑠 <Q 𝑟) → ((𝐹‘𝑞) +Q 𝑞) <Q 𝑟) |
| 19 | 18 | expcom 116 | . . . . 5 ⊢ (𝑠 <Q 𝑟 → (((𝐹‘𝑞) +Q 𝑞) <Q 𝑠 → ((𝐹‘𝑞) +Q 𝑞) <Q 𝑟)) |
| 20 | 19 | 3ad2ant2 1022 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑠 ∈ (2nd ‘𝐿)) → (((𝐹‘𝑞) +Q 𝑞) <Q 𝑠 → ((𝐹‘𝑞) +Q 𝑞) <Q 𝑟)) |
| 21 | 20 | reximdv 2608 | . . 3 ⊢ ((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑠 ∈ (2nd ‘𝐿)) → (∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑠 → ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑟)) |
| 22 | 16, 21 | mpd 13 | . 2 ⊢ ((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑠 ∈ (2nd ‘𝐿)) → ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑟) |
| 23 | breq2 4054 | . . . 4 ⊢ (𝑢 = 𝑟 → (((𝐹‘𝑞) +Q 𝑞) <Q 𝑢 ↔ ((𝐹‘𝑞) +Q 𝑞) <Q 𝑟)) | |
| 24 | 23 | rexbidv 2508 | . . 3 ⊢ (𝑢 = 𝑟 → (∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑢 ↔ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑟)) |
| 25 | 24, 13 | elrab2 2936 | . 2 ⊢ (𝑟 ∈ (2nd ‘𝐿) ↔ (𝑟 ∈ Q ∧ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑟)) |
| 26 | 4, 22, 25 | sylanbrc 417 | 1 ⊢ ((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑠 ∈ (2nd ‘𝐿)) → 𝑟 ∈ (2nd ‘𝐿)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 ∀wral 2485 ∃wrex 2486 {crab 2489 〈cop 3640 class class class wbr 4050 ⟶wf 5275 ‘cfv 5279 (class class class)co 5956 2nd c2nd 6237 Qcnq 7408 +Q cplq 7410 <Q cltq 7413 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4166 ax-sep 4169 ax-nul 4177 ax-pow 4225 ax-pr 4260 ax-un 4487 ax-setind 4592 ax-iinf 4643 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-int 3891 df-iun 3934 df-br 4051 df-opab 4113 df-mpt 4114 df-tr 4150 df-eprel 4343 df-id 4347 df-po 4350 df-iso 4351 df-iord 4420 df-on 4422 df-suc 4425 df-iom 4646 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-rn 4693 df-res 4694 df-ima 4695 df-iota 5240 df-fun 5281 df-fn 5282 df-f 5283 df-f1 5284 df-fo 5285 df-f1o 5286 df-fv 5287 df-ov 5959 df-oprab 5960 df-mpo 5961 df-1st 6238 df-2nd 6239 df-recs 6403 df-irdg 6468 df-oadd 6518 df-omul 6519 df-er 6632 df-ec 6634 df-qs 6638 df-ni 7432 df-mi 7434 df-lti 7435 df-enq 7475 df-nqqs 7476 df-ltnqqs 7481 |
| This theorem is referenced by: cauappcvgprlemrnd 7778 |
| Copyright terms: Public domain | W3C validator |