![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > caucvgprprlemupu | GIF version |
Description: Lemma for caucvgprpr 7713. The upper cut of the putative limit is upper. (Contributed by Jim Kingdon, 21-Dec-2020.) |
Ref | Expression |
---|---|
caucvgprpr.f | ⊢ (𝜑 → 𝐹:N⟶P) |
caucvgprpr.cau | ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P ⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P ⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩)))) |
caucvgprpr.bnd | ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴<P (𝐹‘𝑚)) |
caucvgprpr.lim | ⊢ 𝐿 = ⟨{𝑙 ∈ Q ∣ ∃𝑟 ∈ N ⟨{𝑝 ∣ 𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P ⟨{𝑝 ∣ 𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝 ∣ 𝑝 <Q 𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}⟩}⟩ |
Ref | Expression |
---|---|
caucvgprprlemupu | ⊢ ((𝜑 ∧ 𝑠 <Q 𝑡 ∧ 𝑠 ∈ (2nd ‘𝐿)) → 𝑡 ∈ (2nd ‘𝐿)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltrelnq 7366 | . . . . 5 ⊢ <Q ⊆ (Q × Q) | |
2 | 1 | brel 4680 | . . . 4 ⊢ (𝑠 <Q 𝑡 → (𝑠 ∈ Q ∧ 𝑡 ∈ Q)) |
3 | 2 | simprd 114 | . . 3 ⊢ (𝑠 <Q 𝑡 → 𝑡 ∈ Q) |
4 | 3 | 3ad2ant2 1019 | . 2 ⊢ ((𝜑 ∧ 𝑠 <Q 𝑡 ∧ 𝑠 ∈ (2nd ‘𝐿)) → 𝑡 ∈ Q) |
5 | caucvgprpr.lim | . . . . . 6 ⊢ 𝐿 = ⟨{𝑙 ∈ Q ∣ ∃𝑟 ∈ N ⟨{𝑝 ∣ 𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P ⟨{𝑝 ∣ 𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝 ∣ 𝑝 <Q 𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}⟩}⟩ | |
6 | 5 | caucvgprprlemelu 7687 | . . . . 5 ⊢ (𝑠 ∈ (2nd ‘𝐿) ↔ (𝑠 ∈ Q ∧ ∃𝑏 ∈ N ((𝐹‘𝑏) +P ⟨{𝑝 ∣ 𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝 ∣ 𝑝 <Q 𝑠}, {𝑞 ∣ 𝑠 <Q 𝑞}⟩)) |
7 | 6 | simprbi 275 | . . . 4 ⊢ (𝑠 ∈ (2nd ‘𝐿) → ∃𝑏 ∈ N ((𝐹‘𝑏) +P ⟨{𝑝 ∣ 𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝 ∣ 𝑝 <Q 𝑠}, {𝑞 ∣ 𝑠 <Q 𝑞}⟩) |
8 | 7 | 3ad2ant3 1020 | . . 3 ⊢ ((𝜑 ∧ 𝑠 <Q 𝑡 ∧ 𝑠 ∈ (2nd ‘𝐿)) → ∃𝑏 ∈ N ((𝐹‘𝑏) +P ⟨{𝑝 ∣ 𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝 ∣ 𝑝 <Q 𝑠}, {𝑞 ∣ 𝑠 <Q 𝑞}⟩) |
9 | ltnqpri 7595 | . . . . . 6 ⊢ (𝑠 <Q 𝑡 → ⟨{𝑝 ∣ 𝑝 <Q 𝑠}, {𝑞 ∣ 𝑠 <Q 𝑞}⟩<P ⟨{𝑝 ∣ 𝑝 <Q 𝑡}, {𝑞 ∣ 𝑡 <Q 𝑞}⟩) | |
10 | 9 | 3ad2ant2 1019 | . . . . 5 ⊢ ((𝜑 ∧ 𝑠 <Q 𝑡 ∧ 𝑠 ∈ (2nd ‘𝐿)) → ⟨{𝑝 ∣ 𝑝 <Q 𝑠}, {𝑞 ∣ 𝑠 <Q 𝑞}⟩<P ⟨{𝑝 ∣ 𝑝 <Q 𝑡}, {𝑞 ∣ 𝑡 <Q 𝑞}⟩) |
11 | ltsopr 7597 | . . . . . . 7 ⊢ <P Or P | |
12 | ltrelpr 7506 | . . . . . . 7 ⊢ <P ⊆ (P × P) | |
13 | 11, 12 | sotri 5026 | . . . . . 6 ⊢ ((((𝐹‘𝑏) +P ⟨{𝑝 ∣ 𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝 ∣ 𝑝 <Q 𝑠}, {𝑞 ∣ 𝑠 <Q 𝑞}⟩ ∧ ⟨{𝑝 ∣ 𝑝 <Q 𝑠}, {𝑞 ∣ 𝑠 <Q 𝑞}⟩<P ⟨{𝑝 ∣ 𝑝 <Q 𝑡}, {𝑞 ∣ 𝑡 <Q 𝑞}⟩) → ((𝐹‘𝑏) +P ⟨{𝑝 ∣ 𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝 ∣ 𝑝 <Q 𝑡}, {𝑞 ∣ 𝑡 <Q 𝑞}⟩) |
14 | 13 | expcom 116 | . . . . 5 ⊢ (⟨{𝑝 ∣ 𝑝 <Q 𝑠}, {𝑞 ∣ 𝑠 <Q 𝑞}⟩<P ⟨{𝑝 ∣ 𝑝 <Q 𝑡}, {𝑞 ∣ 𝑡 <Q 𝑞}⟩ → (((𝐹‘𝑏) +P ⟨{𝑝 ∣ 𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝 ∣ 𝑝 <Q 𝑠}, {𝑞 ∣ 𝑠 <Q 𝑞}⟩ → ((𝐹‘𝑏) +P ⟨{𝑝 ∣ 𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝 ∣ 𝑝 <Q 𝑡}, {𝑞 ∣ 𝑡 <Q 𝑞}⟩)) |
15 | 10, 14 | syl 14 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 <Q 𝑡 ∧ 𝑠 ∈ (2nd ‘𝐿)) → (((𝐹‘𝑏) +P ⟨{𝑝 ∣ 𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝 ∣ 𝑝 <Q 𝑠}, {𝑞 ∣ 𝑠 <Q 𝑞}⟩ → ((𝐹‘𝑏) +P ⟨{𝑝 ∣ 𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝 ∣ 𝑝 <Q 𝑡}, {𝑞 ∣ 𝑡 <Q 𝑞}⟩)) |
16 | 15 | reximdv 2578 | . . 3 ⊢ ((𝜑 ∧ 𝑠 <Q 𝑡 ∧ 𝑠 ∈ (2nd ‘𝐿)) → (∃𝑏 ∈ N ((𝐹‘𝑏) +P ⟨{𝑝 ∣ 𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝 ∣ 𝑝 <Q 𝑠}, {𝑞 ∣ 𝑠 <Q 𝑞}⟩ → ∃𝑏 ∈ N ((𝐹‘𝑏) +P ⟨{𝑝 ∣ 𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝 ∣ 𝑝 <Q 𝑡}, {𝑞 ∣ 𝑡 <Q 𝑞}⟩)) |
17 | 8, 16 | mpd 13 | . 2 ⊢ ((𝜑 ∧ 𝑠 <Q 𝑡 ∧ 𝑠 ∈ (2nd ‘𝐿)) → ∃𝑏 ∈ N ((𝐹‘𝑏) +P ⟨{𝑝 ∣ 𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝 ∣ 𝑝 <Q 𝑡}, {𝑞 ∣ 𝑡 <Q 𝑞}⟩) |
18 | 5 | caucvgprprlemelu 7687 | . 2 ⊢ (𝑡 ∈ (2nd ‘𝐿) ↔ (𝑡 ∈ Q ∧ ∃𝑏 ∈ N ((𝐹‘𝑏) +P ⟨{𝑝 ∣ 𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝 ∣ 𝑝 <Q 𝑡}, {𝑞 ∣ 𝑡 <Q 𝑞}⟩)) |
19 | 4, 17, 18 | sylanbrc 417 | 1 ⊢ ((𝜑 ∧ 𝑠 <Q 𝑡 ∧ 𝑠 ∈ (2nd ‘𝐿)) → 𝑡 ∈ (2nd ‘𝐿)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 978 = wceq 1353 ∈ wcel 2148 {cab 2163 ∀wral 2455 ∃wrex 2456 {crab 2459 ⟨cop 3597 class class class wbr 4005 ⟶wf 5214 ‘cfv 5218 (class class class)co 5877 2nd c2nd 6142 1oc1o 6412 [cec 6535 Ncnpi 7273 <N clti 7276 ~Q ceq 7280 Qcnq 7281 +Q cplq 7283 *Qcrq 7285 <Q cltq 7286 Pcnp 7292 +P cpp 7294 <P cltp 7296 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-eprel 4291 df-id 4295 df-po 4298 df-iso 4299 df-iord 4368 df-on 4370 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-ov 5880 df-oprab 5881 df-mpo 5882 df-1st 6143 df-2nd 6144 df-recs 6308 df-irdg 6373 df-1o 6419 df-oadd 6423 df-omul 6424 df-er 6537 df-ec 6539 df-qs 6543 df-ni 7305 df-pli 7306 df-mi 7307 df-lti 7308 df-plpq 7345 df-mpq 7346 df-enq 7348 df-nqqs 7349 df-plqqs 7350 df-mqqs 7351 df-1nqqs 7352 df-rq 7353 df-ltnqqs 7354 df-inp 7467 df-iltp 7471 |
This theorem is referenced by: caucvgprprlemrnd 7702 |
Copyright terms: Public domain | W3C validator |