ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemupu GIF version

Theorem caucvgprprlemupu 7530
Description: Lemma for caucvgprpr 7542. The upper cut of the putative limit is upper. (Contributed by Jim Kingdon, 21-Dec-2020.)
Hypotheses
Ref Expression
caucvgprpr.f (𝜑𝐹:NP)
caucvgprpr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩))))
caucvgprpr.bnd (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))
caucvgprpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩
Assertion
Ref Expression
caucvgprprlemupu ((𝜑𝑠 <Q 𝑡𝑠 ∈ (2nd𝐿)) → 𝑡 ∈ (2nd𝐿))
Distinct variable groups:   𝐴,𝑚   𝑚,𝐹   𝐹,𝑙,𝑟,𝑠   𝑢,𝐹,𝑟,𝑠   𝐿,𝑠   𝑝,𝑙,𝑞,𝑡,𝑟,𝑠   𝑢,𝑝,𝑞,𝑡   𝜑,𝑟,𝑠
Allowed substitution hints:   𝜑(𝑢,𝑡,𝑘,𝑚,𝑛,𝑞,𝑝,𝑙)   𝐴(𝑢,𝑡,𝑘,𝑛,𝑠,𝑟,𝑞,𝑝,𝑙)   𝐹(𝑡,𝑘,𝑛,𝑞,𝑝)   𝐿(𝑢,𝑡,𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)

Proof of Theorem caucvgprprlemupu
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 ltrelnq 7195 . . . . 5 <Q ⊆ (Q × Q)
21brel 4597 . . . 4 (𝑠 <Q 𝑡 → (𝑠Q𝑡Q))
32simprd 113 . . 3 (𝑠 <Q 𝑡𝑡Q)
433ad2ant2 1004 . 2 ((𝜑𝑠 <Q 𝑡𝑠 ∈ (2nd𝐿)) → 𝑡Q)
5 caucvgprpr.lim . . . . . 6 𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩
65caucvgprprlemelu 7516 . . . . 5 (𝑠 ∈ (2nd𝐿) ↔ (𝑠Q ∧ ∃𝑏N ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑠}, {𝑞𝑠 <Q 𝑞}⟩))
76simprbi 273 . . . 4 (𝑠 ∈ (2nd𝐿) → ∃𝑏N ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑠}, {𝑞𝑠 <Q 𝑞}⟩)
873ad2ant3 1005 . . 3 ((𝜑𝑠 <Q 𝑡𝑠 ∈ (2nd𝐿)) → ∃𝑏N ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑠}, {𝑞𝑠 <Q 𝑞}⟩)
9 ltnqpri 7424 . . . . . 6 (𝑠 <Q 𝑡 → ⟨{𝑝𝑝 <Q 𝑠}, {𝑞𝑠 <Q 𝑞}⟩<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩)
1093ad2ant2 1004 . . . . 5 ((𝜑𝑠 <Q 𝑡𝑠 ∈ (2nd𝐿)) → ⟨{𝑝𝑝 <Q 𝑠}, {𝑞𝑠 <Q 𝑞}⟩<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩)
11 ltsopr 7426 . . . . . . 7 <P Or P
12 ltrelpr 7335 . . . . . . 7 <P ⊆ (P × P)
1311, 12sotri 4940 . . . . . 6 ((((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑠}, {𝑞𝑠 <Q 𝑞}⟩ ∧ ⟨{𝑝𝑝 <Q 𝑠}, {𝑞𝑠 <Q 𝑞}⟩<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩) → ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩)
1413expcom 115 . . . . 5 (⟨{𝑝𝑝 <Q 𝑠}, {𝑞𝑠 <Q 𝑞}⟩<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩ → (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑠}, {𝑞𝑠 <Q 𝑞}⟩ → ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩))
1510, 14syl 14 . . . 4 ((𝜑𝑠 <Q 𝑡𝑠 ∈ (2nd𝐿)) → (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑠}, {𝑞𝑠 <Q 𝑞}⟩ → ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩))
1615reximdv 2536 . . 3 ((𝜑𝑠 <Q 𝑡𝑠 ∈ (2nd𝐿)) → (∃𝑏N ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑠}, {𝑞𝑠 <Q 𝑞}⟩ → ∃𝑏N ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩))
178, 16mpd 13 . 2 ((𝜑𝑠 <Q 𝑡𝑠 ∈ (2nd𝐿)) → ∃𝑏N ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩)
185caucvgprprlemelu 7516 . 2 (𝑡 ∈ (2nd𝐿) ↔ (𝑡Q ∧ ∃𝑏N ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩))
194, 17, 18sylanbrc 414 1 ((𝜑𝑠 <Q 𝑡𝑠 ∈ (2nd𝐿)) → 𝑡 ∈ (2nd𝐿))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 963   = wceq 1332  wcel 1481  {cab 2126  wral 2417  wrex 2418  {crab 2421  cop 3533   class class class wbr 3935  wf 5125  cfv 5129  (class class class)co 5780  2nd c2nd 6043  1oc1o 6312  [cec 6433  Ncnpi 7102   <N clti 7105   ~Q ceq 7109  Qcnq 7110   +Q cplq 7112  *Qcrq 7114   <Q cltq 7115  Pcnp 7121   +P cpp 7123  <P cltp 7125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4049  ax-sep 4052  ax-nul 4060  ax-pow 4104  ax-pr 4137  ax-un 4361  ax-setind 4458  ax-iinf 4508
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2913  df-csb 3007  df-dif 3076  df-un 3078  df-in 3080  df-ss 3087  df-nul 3367  df-pw 3515  df-sn 3536  df-pr 3537  df-op 3539  df-uni 3743  df-int 3778  df-iun 3821  df-br 3936  df-opab 3996  df-mpt 3997  df-tr 4033  df-eprel 4217  df-id 4221  df-po 4224  df-iso 4225  df-iord 4294  df-on 4296  df-suc 4299  df-iom 4511  df-xp 4551  df-rel 4552  df-cnv 4553  df-co 4554  df-dm 4555  df-rn 4556  df-res 4557  df-ima 4558  df-iota 5094  df-fun 5131  df-fn 5132  df-f 5133  df-f1 5134  df-fo 5135  df-f1o 5136  df-fv 5137  df-ov 5783  df-oprab 5784  df-mpo 5785  df-1st 6044  df-2nd 6045  df-recs 6208  df-irdg 6273  df-1o 6319  df-oadd 6323  df-omul 6324  df-er 6435  df-ec 6437  df-qs 6441  df-ni 7134  df-pli 7135  df-mi 7136  df-lti 7137  df-plpq 7174  df-mpq 7175  df-enq 7177  df-nqqs 7178  df-plqqs 7179  df-mqqs 7180  df-1nqqs 7181  df-rq 7182  df-ltnqqs 7183  df-inp 7296  df-iltp 7300
This theorem is referenced by:  caucvgprprlemrnd  7531
  Copyright terms: Public domain W3C validator