![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > caucvgprprlemupu | GIF version |
Description: Lemma for caucvgprpr 7468. The upper cut of the putative limit is upper. (Contributed by Jim Kingdon, 21-Dec-2020.) |
Ref | Expression |
---|---|
caucvgprpr.f | ⊢ (𝜑 → 𝐹:N⟶P) |
caucvgprpr.cau | ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) |
caucvgprpr.bnd | ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴<P (𝐹‘𝑚)) |
caucvgprpr.lim | ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑟, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑟, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉 |
Ref | Expression |
---|---|
caucvgprprlemupu | ⊢ ((𝜑 ∧ 𝑠 <Q 𝑡 ∧ 𝑠 ∈ (2nd ‘𝐿)) → 𝑡 ∈ (2nd ‘𝐿)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltrelnq 7121 | . . . . 5 ⊢ <Q ⊆ (Q × Q) | |
2 | 1 | brel 4551 | . . . 4 ⊢ (𝑠 <Q 𝑡 → (𝑠 ∈ Q ∧ 𝑡 ∈ Q)) |
3 | 2 | simprd 113 | . . 3 ⊢ (𝑠 <Q 𝑡 → 𝑡 ∈ Q) |
4 | 3 | 3ad2ant2 986 | . 2 ⊢ ((𝜑 ∧ 𝑠 <Q 𝑡 ∧ 𝑠 ∈ (2nd ‘𝐿)) → 𝑡 ∈ Q) |
5 | caucvgprpr.lim | . . . . . 6 ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑟, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑟, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉 | |
6 | 5 | caucvgprprlemelu 7442 | . . . . 5 ⊢ (𝑠 ∈ (2nd ‘𝐿) ↔ (𝑠 ∈ Q ∧ ∃𝑏 ∈ N ((𝐹‘𝑏) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑏, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑏, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑠}, {𝑞 ∣ 𝑠 <Q 𝑞}〉)) |
7 | 6 | simprbi 271 | . . . 4 ⊢ (𝑠 ∈ (2nd ‘𝐿) → ∃𝑏 ∈ N ((𝐹‘𝑏) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑏, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑏, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑠}, {𝑞 ∣ 𝑠 <Q 𝑞}〉) |
8 | 7 | 3ad2ant3 987 | . . 3 ⊢ ((𝜑 ∧ 𝑠 <Q 𝑡 ∧ 𝑠 ∈ (2nd ‘𝐿)) → ∃𝑏 ∈ N ((𝐹‘𝑏) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑏, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑏, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑠}, {𝑞 ∣ 𝑠 <Q 𝑞}〉) |
9 | ltnqpri 7350 | . . . . . 6 ⊢ (𝑠 <Q 𝑡 → 〈{𝑝 ∣ 𝑝 <Q 𝑠}, {𝑞 ∣ 𝑠 <Q 𝑞}〉<P 〈{𝑝 ∣ 𝑝 <Q 𝑡}, {𝑞 ∣ 𝑡 <Q 𝑞}〉) | |
10 | 9 | 3ad2ant2 986 | . . . . 5 ⊢ ((𝜑 ∧ 𝑠 <Q 𝑡 ∧ 𝑠 ∈ (2nd ‘𝐿)) → 〈{𝑝 ∣ 𝑝 <Q 𝑠}, {𝑞 ∣ 𝑠 <Q 𝑞}〉<P 〈{𝑝 ∣ 𝑝 <Q 𝑡}, {𝑞 ∣ 𝑡 <Q 𝑞}〉) |
11 | ltsopr 7352 | . . . . . . 7 ⊢ <P Or P | |
12 | ltrelpr 7261 | . . . . . . 7 ⊢ <P ⊆ (P × P) | |
13 | 11, 12 | sotri 4892 | . . . . . 6 ⊢ ((((𝐹‘𝑏) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑏, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑏, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑠}, {𝑞 ∣ 𝑠 <Q 𝑞}〉 ∧ 〈{𝑝 ∣ 𝑝 <Q 𝑠}, {𝑞 ∣ 𝑠 <Q 𝑞}〉<P 〈{𝑝 ∣ 𝑝 <Q 𝑡}, {𝑞 ∣ 𝑡 <Q 𝑞}〉) → ((𝐹‘𝑏) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑏, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑏, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑡}, {𝑞 ∣ 𝑡 <Q 𝑞}〉) |
14 | 13 | expcom 115 | . . . . 5 ⊢ (〈{𝑝 ∣ 𝑝 <Q 𝑠}, {𝑞 ∣ 𝑠 <Q 𝑞}〉<P 〈{𝑝 ∣ 𝑝 <Q 𝑡}, {𝑞 ∣ 𝑡 <Q 𝑞}〉 → (((𝐹‘𝑏) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑏, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑏, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑠}, {𝑞 ∣ 𝑠 <Q 𝑞}〉 → ((𝐹‘𝑏) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑏, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑏, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑡}, {𝑞 ∣ 𝑡 <Q 𝑞}〉)) |
15 | 10, 14 | syl 14 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 <Q 𝑡 ∧ 𝑠 ∈ (2nd ‘𝐿)) → (((𝐹‘𝑏) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑏, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑏, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑠}, {𝑞 ∣ 𝑠 <Q 𝑞}〉 → ((𝐹‘𝑏) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑏, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑏, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑡}, {𝑞 ∣ 𝑡 <Q 𝑞}〉)) |
16 | 15 | reximdv 2507 | . . 3 ⊢ ((𝜑 ∧ 𝑠 <Q 𝑡 ∧ 𝑠 ∈ (2nd ‘𝐿)) → (∃𝑏 ∈ N ((𝐹‘𝑏) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑏, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑏, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑠}, {𝑞 ∣ 𝑠 <Q 𝑞}〉 → ∃𝑏 ∈ N ((𝐹‘𝑏) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑏, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑏, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑡}, {𝑞 ∣ 𝑡 <Q 𝑞}〉)) |
17 | 8, 16 | mpd 13 | . 2 ⊢ ((𝜑 ∧ 𝑠 <Q 𝑡 ∧ 𝑠 ∈ (2nd ‘𝐿)) → ∃𝑏 ∈ N ((𝐹‘𝑏) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑏, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑏, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑡}, {𝑞 ∣ 𝑡 <Q 𝑞}〉) |
18 | 5 | caucvgprprlemelu 7442 | . 2 ⊢ (𝑡 ∈ (2nd ‘𝐿) ↔ (𝑡 ∈ Q ∧ ∃𝑏 ∈ N ((𝐹‘𝑏) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑏, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑏, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑡}, {𝑞 ∣ 𝑡 <Q 𝑞}〉)) |
19 | 4, 17, 18 | sylanbrc 411 | 1 ⊢ ((𝜑 ∧ 𝑠 <Q 𝑡 ∧ 𝑠 ∈ (2nd ‘𝐿)) → 𝑡 ∈ (2nd ‘𝐿)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 945 = wceq 1314 ∈ wcel 1463 {cab 2101 ∀wral 2390 ∃wrex 2391 {crab 2394 〈cop 3496 class class class wbr 3895 ⟶wf 5077 ‘cfv 5081 (class class class)co 5728 2nd c2nd 5991 1oc1o 6260 [cec 6381 Ncnpi 7028 <N clti 7031 ~Q ceq 7035 Qcnq 7036 +Q cplq 7038 *Qcrq 7040 <Q cltq 7041 Pcnp 7047 +P cpp 7049 <P cltp 7051 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-13 1474 ax-14 1475 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 ax-coll 4003 ax-sep 4006 ax-nul 4014 ax-pow 4058 ax-pr 4091 ax-un 4315 ax-setind 4412 ax-iinf 4462 |
This theorem depends on definitions: df-bi 116 df-dc 803 df-3or 946 df-3an 947 df-tru 1317 df-fal 1320 df-nf 1420 df-sb 1719 df-eu 1978 df-mo 1979 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ne 2283 df-ral 2395 df-rex 2396 df-reu 2397 df-rab 2399 df-v 2659 df-sbc 2879 df-csb 2972 df-dif 3039 df-un 3041 df-in 3043 df-ss 3050 df-nul 3330 df-pw 3478 df-sn 3499 df-pr 3500 df-op 3502 df-uni 3703 df-int 3738 df-iun 3781 df-br 3896 df-opab 3950 df-mpt 3951 df-tr 3987 df-eprel 4171 df-id 4175 df-po 4178 df-iso 4179 df-iord 4248 df-on 4250 df-suc 4253 df-iom 4465 df-xp 4505 df-rel 4506 df-cnv 4507 df-co 4508 df-dm 4509 df-rn 4510 df-res 4511 df-ima 4512 df-iota 5046 df-fun 5083 df-fn 5084 df-f 5085 df-f1 5086 df-fo 5087 df-f1o 5088 df-fv 5089 df-ov 5731 df-oprab 5732 df-mpo 5733 df-1st 5992 df-2nd 5993 df-recs 6156 df-irdg 6221 df-1o 6267 df-oadd 6271 df-omul 6272 df-er 6383 df-ec 6385 df-qs 6389 df-ni 7060 df-pli 7061 df-mi 7062 df-lti 7063 df-plpq 7100 df-mpq 7101 df-enq 7103 df-nqqs 7104 df-plqqs 7105 df-mqqs 7106 df-1nqqs 7107 df-rq 7108 df-ltnqqs 7109 df-inp 7222 df-iltp 7226 |
This theorem is referenced by: caucvgprprlemrnd 7457 |
Copyright terms: Public domain | W3C validator |