![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > caucvgprprlemupu | GIF version |
Description: Lemma for caucvgprpr 7774. The upper cut of the putative limit is upper. (Contributed by Jim Kingdon, 21-Dec-2020.) |
Ref | Expression |
---|---|
caucvgprpr.f | ⊢ (𝜑 → 𝐹:N⟶P) |
caucvgprpr.cau | ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) |
caucvgprpr.bnd | ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴<P (𝐹‘𝑚)) |
caucvgprpr.lim | ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑟, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑟, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉 |
Ref | Expression |
---|---|
caucvgprprlemupu | ⊢ ((𝜑 ∧ 𝑠 <Q 𝑡 ∧ 𝑠 ∈ (2nd ‘𝐿)) → 𝑡 ∈ (2nd ‘𝐿)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltrelnq 7427 | . . . . 5 ⊢ <Q ⊆ (Q × Q) | |
2 | 1 | brel 4712 | . . . 4 ⊢ (𝑠 <Q 𝑡 → (𝑠 ∈ Q ∧ 𝑡 ∈ Q)) |
3 | 2 | simprd 114 | . . 3 ⊢ (𝑠 <Q 𝑡 → 𝑡 ∈ Q) |
4 | 3 | 3ad2ant2 1021 | . 2 ⊢ ((𝜑 ∧ 𝑠 <Q 𝑡 ∧ 𝑠 ∈ (2nd ‘𝐿)) → 𝑡 ∈ Q) |
5 | caucvgprpr.lim | . . . . . 6 ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑟, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑟, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉 | |
6 | 5 | caucvgprprlemelu 7748 | . . . . 5 ⊢ (𝑠 ∈ (2nd ‘𝐿) ↔ (𝑠 ∈ Q ∧ ∃𝑏 ∈ N ((𝐹‘𝑏) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑏, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑏, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑠}, {𝑞 ∣ 𝑠 <Q 𝑞}〉)) |
7 | 6 | simprbi 275 | . . . 4 ⊢ (𝑠 ∈ (2nd ‘𝐿) → ∃𝑏 ∈ N ((𝐹‘𝑏) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑏, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑏, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑠}, {𝑞 ∣ 𝑠 <Q 𝑞}〉) |
8 | 7 | 3ad2ant3 1022 | . . 3 ⊢ ((𝜑 ∧ 𝑠 <Q 𝑡 ∧ 𝑠 ∈ (2nd ‘𝐿)) → ∃𝑏 ∈ N ((𝐹‘𝑏) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑏, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑏, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑠}, {𝑞 ∣ 𝑠 <Q 𝑞}〉) |
9 | ltnqpri 7656 | . . . . . 6 ⊢ (𝑠 <Q 𝑡 → 〈{𝑝 ∣ 𝑝 <Q 𝑠}, {𝑞 ∣ 𝑠 <Q 𝑞}〉<P 〈{𝑝 ∣ 𝑝 <Q 𝑡}, {𝑞 ∣ 𝑡 <Q 𝑞}〉) | |
10 | 9 | 3ad2ant2 1021 | . . . . 5 ⊢ ((𝜑 ∧ 𝑠 <Q 𝑡 ∧ 𝑠 ∈ (2nd ‘𝐿)) → 〈{𝑝 ∣ 𝑝 <Q 𝑠}, {𝑞 ∣ 𝑠 <Q 𝑞}〉<P 〈{𝑝 ∣ 𝑝 <Q 𝑡}, {𝑞 ∣ 𝑡 <Q 𝑞}〉) |
11 | ltsopr 7658 | . . . . . . 7 ⊢ <P Or P | |
12 | ltrelpr 7567 | . . . . . . 7 ⊢ <P ⊆ (P × P) | |
13 | 11, 12 | sotri 5062 | . . . . . 6 ⊢ ((((𝐹‘𝑏) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑏, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑏, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑠}, {𝑞 ∣ 𝑠 <Q 𝑞}〉 ∧ 〈{𝑝 ∣ 𝑝 <Q 𝑠}, {𝑞 ∣ 𝑠 <Q 𝑞}〉<P 〈{𝑝 ∣ 𝑝 <Q 𝑡}, {𝑞 ∣ 𝑡 <Q 𝑞}〉) → ((𝐹‘𝑏) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑏, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑏, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑡}, {𝑞 ∣ 𝑡 <Q 𝑞}〉) |
14 | 13 | expcom 116 | . . . . 5 ⊢ (〈{𝑝 ∣ 𝑝 <Q 𝑠}, {𝑞 ∣ 𝑠 <Q 𝑞}〉<P 〈{𝑝 ∣ 𝑝 <Q 𝑡}, {𝑞 ∣ 𝑡 <Q 𝑞}〉 → (((𝐹‘𝑏) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑏, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑏, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑠}, {𝑞 ∣ 𝑠 <Q 𝑞}〉 → ((𝐹‘𝑏) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑏, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑏, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑡}, {𝑞 ∣ 𝑡 <Q 𝑞}〉)) |
15 | 10, 14 | syl 14 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 <Q 𝑡 ∧ 𝑠 ∈ (2nd ‘𝐿)) → (((𝐹‘𝑏) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑏, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑏, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑠}, {𝑞 ∣ 𝑠 <Q 𝑞}〉 → ((𝐹‘𝑏) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑏, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑏, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑡}, {𝑞 ∣ 𝑡 <Q 𝑞}〉)) |
16 | 15 | reximdv 2595 | . . 3 ⊢ ((𝜑 ∧ 𝑠 <Q 𝑡 ∧ 𝑠 ∈ (2nd ‘𝐿)) → (∃𝑏 ∈ N ((𝐹‘𝑏) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑏, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑏, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑠}, {𝑞 ∣ 𝑠 <Q 𝑞}〉 → ∃𝑏 ∈ N ((𝐹‘𝑏) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑏, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑏, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑡}, {𝑞 ∣ 𝑡 <Q 𝑞}〉)) |
17 | 8, 16 | mpd 13 | . 2 ⊢ ((𝜑 ∧ 𝑠 <Q 𝑡 ∧ 𝑠 ∈ (2nd ‘𝐿)) → ∃𝑏 ∈ N ((𝐹‘𝑏) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑏, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑏, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑡}, {𝑞 ∣ 𝑡 <Q 𝑞}〉) |
18 | 5 | caucvgprprlemelu 7748 | . 2 ⊢ (𝑡 ∈ (2nd ‘𝐿) ↔ (𝑡 ∈ Q ∧ ∃𝑏 ∈ N ((𝐹‘𝑏) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑏, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑏, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑡}, {𝑞 ∣ 𝑡 <Q 𝑞}〉)) |
19 | 4, 17, 18 | sylanbrc 417 | 1 ⊢ ((𝜑 ∧ 𝑠 <Q 𝑡 ∧ 𝑠 ∈ (2nd ‘𝐿)) → 𝑡 ∈ (2nd ‘𝐿)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 {cab 2179 ∀wral 2472 ∃wrex 2473 {crab 2476 〈cop 3622 class class class wbr 4030 ⟶wf 5251 ‘cfv 5255 (class class class)co 5919 2nd c2nd 6194 1oc1o 6464 [cec 6587 Ncnpi 7334 <N clti 7337 ~Q ceq 7341 Qcnq 7342 +Q cplq 7344 *Qcrq 7346 <Q cltq 7347 Pcnp 7353 +P cpp 7355 <P cltp 7357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-eprel 4321 df-id 4325 df-po 4328 df-iso 4329 df-iord 4398 df-on 4400 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-recs 6360 df-irdg 6425 df-1o 6471 df-oadd 6475 df-omul 6476 df-er 6589 df-ec 6591 df-qs 6595 df-ni 7366 df-pli 7367 df-mi 7368 df-lti 7369 df-plpq 7406 df-mpq 7407 df-enq 7409 df-nqqs 7410 df-plqqs 7411 df-mqqs 7412 df-1nqqs 7413 df-rq 7414 df-ltnqqs 7415 df-inp 7528 df-iltp 7532 |
This theorem is referenced by: caucvgprprlemrnd 7763 |
Copyright terms: Public domain | W3C validator |