ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexprlemopu GIF version

Theorem recexprlemopu 7568
Description: The upper cut of 𝐵 is open. Lemma for recexpr 7579. (Contributed by Jim Kingdon, 28-Dec-2019.)
Hypothesis
Ref Expression
recexpr.1 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
Assertion
Ref Expression
recexprlemopu ((𝐴P𝑟Q𝑟 ∈ (2nd𝐵)) → ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵)))
Distinct variable groups:   𝑟,𝑞,𝑥,𝑦,𝐴   𝐵,𝑞,𝑟,𝑥,𝑦

Proof of Theorem recexprlemopu
StepHypRef Expression
1 recexpr.1 . . . 4 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
21recexprlemelu 7564 . . 3 (𝑟 ∈ (2nd𝐵) ↔ ∃𝑦(𝑦 <Q 𝑟 ∧ (*Q𝑦) ∈ (1st𝐴)))
3 ltbtwnnqq 7356 . . . . . 6 (𝑦 <Q 𝑟 ↔ ∃𝑞Q (𝑦 <Q 𝑞𝑞 <Q 𝑟))
43biimpi 119 . . . . 5 (𝑦 <Q 𝑟 → ∃𝑞Q (𝑦 <Q 𝑞𝑞 <Q 𝑟))
5 simplr 520 . . . . . . . 8 (((𝑦 <Q 𝑞𝑞 <Q 𝑟) ∧ (*Q𝑦) ∈ (1st𝐴)) → 𝑞 <Q 𝑟)
6 19.8a 1578 . . . . . . . . . 10 ((𝑦 <Q 𝑞 ∧ (*Q𝑦) ∈ (1st𝐴)) → ∃𝑦(𝑦 <Q 𝑞 ∧ (*Q𝑦) ∈ (1st𝐴)))
71recexprlemelu 7564 . . . . . . . . . 10 (𝑞 ∈ (2nd𝐵) ↔ ∃𝑦(𝑦 <Q 𝑞 ∧ (*Q𝑦) ∈ (1st𝐴)))
86, 7sylibr 133 . . . . . . . . 9 ((𝑦 <Q 𝑞 ∧ (*Q𝑦) ∈ (1st𝐴)) → 𝑞 ∈ (2nd𝐵))
98adantlr 469 . . . . . . . 8 (((𝑦 <Q 𝑞𝑞 <Q 𝑟) ∧ (*Q𝑦) ∈ (1st𝐴)) → 𝑞 ∈ (2nd𝐵))
105, 9jca 304 . . . . . . 7 (((𝑦 <Q 𝑞𝑞 <Q 𝑟) ∧ (*Q𝑦) ∈ (1st𝐴)) → (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵)))
1110expcom 115 . . . . . 6 ((*Q𝑦) ∈ (1st𝐴) → ((𝑦 <Q 𝑞𝑞 <Q 𝑟) → (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵))))
1211reximdv 2567 . . . . 5 ((*Q𝑦) ∈ (1st𝐴) → (∃𝑞Q (𝑦 <Q 𝑞𝑞 <Q 𝑟) → ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵))))
134, 12mpan9 279 . . . 4 ((𝑦 <Q 𝑟 ∧ (*Q𝑦) ∈ (1st𝐴)) → ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵)))
1413exlimiv 1586 . . 3 (∃𝑦(𝑦 <Q 𝑟 ∧ (*Q𝑦) ∈ (1st𝐴)) → ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵)))
152, 14sylbi 120 . 2 (𝑟 ∈ (2nd𝐵) → ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵)))
16153ad2ant3 1010 1 ((𝐴P𝑟Q𝑟 ∈ (2nd𝐵)) → ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 968   = wceq 1343  wex 1480  wcel 2136  {cab 2151  wrex 2445  cop 3579   class class class wbr 3982  cfv 5188  1st c1st 6106  2nd c2nd 6107  Qcnq 7221  *Qcrq 7225   <Q cltq 7226  Pcnp 7232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-eprel 4267  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-1o 6384  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-pli 7246  df-mi 7247  df-lti 7248  df-plpq 7285  df-mpq 7286  df-enq 7288  df-nqqs 7289  df-plqqs 7290  df-mqqs 7291  df-1nqqs 7292  df-rq 7293  df-ltnqqs 7294
This theorem is referenced by:  recexprlemrnd  7570
  Copyright terms: Public domain W3C validator