ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexprlemopu GIF version

Theorem recexprlemopu 7740
Description: The upper cut of 𝐵 is open. Lemma for recexpr 7751. (Contributed by Jim Kingdon, 28-Dec-2019.)
Hypothesis
Ref Expression
recexpr.1 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
Assertion
Ref Expression
recexprlemopu ((𝐴P𝑟Q𝑟 ∈ (2nd𝐵)) → ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵)))
Distinct variable groups:   𝑟,𝑞,𝑥,𝑦,𝐴   𝐵,𝑞,𝑟,𝑥,𝑦

Proof of Theorem recexprlemopu
StepHypRef Expression
1 recexpr.1 . . . 4 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
21recexprlemelu 7736 . . 3 (𝑟 ∈ (2nd𝐵) ↔ ∃𝑦(𝑦 <Q 𝑟 ∧ (*Q𝑦) ∈ (1st𝐴)))
3 ltbtwnnqq 7528 . . . . . 6 (𝑦 <Q 𝑟 ↔ ∃𝑞Q (𝑦 <Q 𝑞𝑞 <Q 𝑟))
43biimpi 120 . . . . 5 (𝑦 <Q 𝑟 → ∃𝑞Q (𝑦 <Q 𝑞𝑞 <Q 𝑟))
5 simplr 528 . . . . . . . 8 (((𝑦 <Q 𝑞𝑞 <Q 𝑟) ∧ (*Q𝑦) ∈ (1st𝐴)) → 𝑞 <Q 𝑟)
6 19.8a 1613 . . . . . . . . . 10 ((𝑦 <Q 𝑞 ∧ (*Q𝑦) ∈ (1st𝐴)) → ∃𝑦(𝑦 <Q 𝑞 ∧ (*Q𝑦) ∈ (1st𝐴)))
71recexprlemelu 7736 . . . . . . . . . 10 (𝑞 ∈ (2nd𝐵) ↔ ∃𝑦(𝑦 <Q 𝑞 ∧ (*Q𝑦) ∈ (1st𝐴)))
86, 7sylibr 134 . . . . . . . . 9 ((𝑦 <Q 𝑞 ∧ (*Q𝑦) ∈ (1st𝐴)) → 𝑞 ∈ (2nd𝐵))
98adantlr 477 . . . . . . . 8 (((𝑦 <Q 𝑞𝑞 <Q 𝑟) ∧ (*Q𝑦) ∈ (1st𝐴)) → 𝑞 ∈ (2nd𝐵))
105, 9jca 306 . . . . . . 7 (((𝑦 <Q 𝑞𝑞 <Q 𝑟) ∧ (*Q𝑦) ∈ (1st𝐴)) → (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵)))
1110expcom 116 . . . . . 6 ((*Q𝑦) ∈ (1st𝐴) → ((𝑦 <Q 𝑞𝑞 <Q 𝑟) → (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵))))
1211reximdv 2607 . . . . 5 ((*Q𝑦) ∈ (1st𝐴) → (∃𝑞Q (𝑦 <Q 𝑞𝑞 <Q 𝑟) → ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵))))
134, 12mpan9 281 . . . 4 ((𝑦 <Q 𝑟 ∧ (*Q𝑦) ∈ (1st𝐴)) → ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵)))
1413exlimiv 1621 . . 3 (∃𝑦(𝑦 <Q 𝑟 ∧ (*Q𝑦) ∈ (1st𝐴)) → ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵)))
152, 14sylbi 121 . 2 (𝑟 ∈ (2nd𝐵) → ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵)))
16153ad2ant3 1023 1 ((𝐴P𝑟Q𝑟 ∈ (2nd𝐵)) → ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981   = wceq 1373  wex 1515  wcel 2176  {cab 2191  wrex 2485  cop 3636   class class class wbr 4044  cfv 5271  1st c1st 6224  2nd c2nd 6225  Qcnq 7393  *Qcrq 7397   <Q cltq 7398  Pcnp 7404
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-eprel 4336  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-irdg 6456  df-1o 6502  df-oadd 6506  df-omul 6507  df-er 6620  df-ec 6622  df-qs 6626  df-ni 7417  df-pli 7418  df-mi 7419  df-lti 7420  df-plpq 7457  df-mpq 7458  df-enq 7460  df-nqqs 7461  df-plqqs 7462  df-mqqs 7463  df-1nqqs 7464  df-rq 7465  df-ltnqqs 7466
This theorem is referenced by:  recexprlemrnd  7742
  Copyright terms: Public domain W3C validator