Proof of Theorem caucvgprlemupu
| Step | Hyp | Ref
 | Expression | 
| 1 |   | ltrelnq 7432 | 
. . . . 5
⊢ 
<Q ⊆ (Q ×
Q) | 
| 2 | 1 | brel 4715 | 
. . . 4
⊢ (𝑠 <Q
𝑟 → (𝑠 ∈ Q ∧
𝑟 ∈
Q)) | 
| 3 | 2 | simprd 114 | 
. . 3
⊢ (𝑠 <Q
𝑟 → 𝑟 ∈ Q) | 
| 4 | 3 | 3ad2ant2 1021 | 
. 2
⊢ ((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑠 ∈ (2nd ‘𝐿)) → 𝑟 ∈ Q) | 
| 5 |   | breq2 4037 | 
. . . . . . 7
⊢ (𝑢 = 𝑠 → (((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢 ↔ ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑠)) | 
| 6 | 5 | rexbidv 2498 | 
. . . . . 6
⊢ (𝑢 = 𝑠 → (∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢 ↔ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑠)) | 
| 7 |   | caucvgpr.lim | 
. . . . . . . 8
⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢}〉 | 
| 8 | 7 | fveq2i 5561 | 
. . . . . . 7
⊢
(2nd ‘𝐿) = (2nd ‘〈{𝑙 ∈ Q ∣
∃𝑗 ∈
N (𝑙
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢}〉) | 
| 9 |   | nqex 7430 | 
. . . . . . . . 9
⊢
Q ∈ V | 
| 10 | 9 | rabex 4177 | 
. . . . . . . 8
⊢ {𝑙 ∈ Q ∣
∃𝑗 ∈
N (𝑙
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)} ∈ V | 
| 11 | 9 | rabex 4177 | 
. . . . . . . 8
⊢ {𝑢 ∈ Q ∣
∃𝑗 ∈
N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢} ∈ V | 
| 12 | 10, 11 | op2nd 6205 | 
. . . . . . 7
⊢
(2nd ‘〈{𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢}〉) = {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢} | 
| 13 | 8, 12 | eqtri 2217 | 
. . . . . 6
⊢
(2nd ‘𝐿) = {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢} | 
| 14 | 6, 13 | elrab2 2923 | 
. . . . 5
⊢ (𝑠 ∈ (2nd
‘𝐿) ↔ (𝑠 ∈ Q ∧
∃𝑗 ∈
N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑠)) | 
| 15 | 14 | simprbi 275 | 
. . . 4
⊢ (𝑠 ∈ (2nd
‘𝐿) →
∃𝑗 ∈
N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑠) | 
| 16 | 15 | 3ad2ant3 1022 | 
. . 3
⊢ ((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑠 ∈ (2nd ‘𝐿)) → ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑠) | 
| 17 |   | ltsonq 7465 | 
. . . . . . 7
⊢ 
<Q Or Q | 
| 18 | 17, 1 | sotri 5065 | 
. . . . . 6
⊢ ((((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑠 ∧ 𝑠 <Q 𝑟) → ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑟) | 
| 19 | 18 | expcom 116 | 
. . . . 5
⊢ (𝑠 <Q
𝑟 → (((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑠 → ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑟)) | 
| 20 | 19 | 3ad2ant2 1021 | 
. . . 4
⊢ ((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑠 ∈ (2nd ‘𝐿)) → (((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑠 → ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑟)) | 
| 21 | 20 | reximdv 2598 | 
. . 3
⊢ ((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑠 ∈ (2nd ‘𝐿)) → (∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑠 → ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑟)) | 
| 22 | 16, 21 | mpd 13 | 
. 2
⊢ ((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑠 ∈ (2nd ‘𝐿)) → ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑟) | 
| 23 |   | breq2 4037 | 
. . . 4
⊢ (𝑢 = 𝑟 → (((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢 ↔ ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑟)) | 
| 24 | 23 | rexbidv 2498 | 
. . 3
⊢ (𝑢 = 𝑟 → (∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢 ↔ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑟)) | 
| 25 | 24, 13 | elrab2 2923 | 
. 2
⊢ (𝑟 ∈ (2nd
‘𝐿) ↔ (𝑟 ∈ Q ∧
∃𝑗 ∈
N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑟)) | 
| 26 | 4, 22, 25 | sylanbrc 417 | 
1
⊢ ((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑠 ∈ (2nd ‘𝐿)) → 𝑟 ∈ (2nd ‘𝐿)) |