| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > recexprlemopl | GIF version | ||
| Description: The lower cut of 𝐵 is open. Lemma for recexpr 7821. (Contributed by Jim Kingdon, 28-Dec-2019.) |
| Ref | Expression |
|---|---|
| recexpr.1 | ⊢ 𝐵 = 〈{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q‘𝑦) ∈ (2nd ‘𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q‘𝑦) ∈ (1st ‘𝐴))}〉 |
| Ref | Expression |
|---|---|
| recexprlemopl | ⊢ ((𝐴 ∈ P ∧ 𝑞 ∈ Q ∧ 𝑞 ∈ (1st ‘𝐵)) → ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recexpr.1 | . . . 4 ⊢ 𝐵 = 〈{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q‘𝑦) ∈ (2nd ‘𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q‘𝑦) ∈ (1st ‘𝐴))}〉 | |
| 2 | 1 | recexprlemell 7805 | . . 3 ⊢ (𝑞 ∈ (1st ‘𝐵) ↔ ∃𝑦(𝑞 <Q 𝑦 ∧ (*Q‘𝑦) ∈ (2nd ‘𝐴))) |
| 3 | ltbtwnnqq 7598 | . . . . . 6 ⊢ (𝑞 <Q 𝑦 ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 <Q 𝑦)) | |
| 4 | 3 | biimpi 120 | . . . . 5 ⊢ (𝑞 <Q 𝑦 → ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 <Q 𝑦)) |
| 5 | simpll 527 | . . . . . . . 8 ⊢ (((𝑞 <Q 𝑟 ∧ 𝑟 <Q 𝑦) ∧ (*Q‘𝑦) ∈ (2nd ‘𝐴)) → 𝑞 <Q 𝑟) | |
| 6 | 19.8a 1636 | . . . . . . . . . 10 ⊢ ((𝑟 <Q 𝑦 ∧ (*Q‘𝑦) ∈ (2nd ‘𝐴)) → ∃𝑦(𝑟 <Q 𝑦 ∧ (*Q‘𝑦) ∈ (2nd ‘𝐴))) | |
| 7 | 1 | recexprlemell 7805 | . . . . . . . . . 10 ⊢ (𝑟 ∈ (1st ‘𝐵) ↔ ∃𝑦(𝑟 <Q 𝑦 ∧ (*Q‘𝑦) ∈ (2nd ‘𝐴))) |
| 8 | 6, 7 | sylibr 134 | . . . . . . . . 9 ⊢ ((𝑟 <Q 𝑦 ∧ (*Q‘𝑦) ∈ (2nd ‘𝐴)) → 𝑟 ∈ (1st ‘𝐵)) |
| 9 | 8 | adantll 476 | . . . . . . . 8 ⊢ (((𝑞 <Q 𝑟 ∧ 𝑟 <Q 𝑦) ∧ (*Q‘𝑦) ∈ (2nd ‘𝐴)) → 𝑟 ∈ (1st ‘𝐵)) |
| 10 | 5, 9 | jca 306 | . . . . . . 7 ⊢ (((𝑞 <Q 𝑟 ∧ 𝑟 <Q 𝑦) ∧ (*Q‘𝑦) ∈ (2nd ‘𝐴)) → (𝑞 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐵))) |
| 11 | 10 | expcom 116 | . . . . . 6 ⊢ ((*Q‘𝑦) ∈ (2nd ‘𝐴) → ((𝑞 <Q 𝑟 ∧ 𝑟 <Q 𝑦) → (𝑞 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐵)))) |
| 12 | 11 | reximdv 2631 | . . . . 5 ⊢ ((*Q‘𝑦) ∈ (2nd ‘𝐴) → (∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 <Q 𝑦) → ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐵)))) |
| 13 | 4, 12 | mpan9 281 | . . . 4 ⊢ ((𝑞 <Q 𝑦 ∧ (*Q‘𝑦) ∈ (2nd ‘𝐴)) → ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐵))) |
| 14 | 13 | exlimiv 1644 | . . 3 ⊢ (∃𝑦(𝑞 <Q 𝑦 ∧ (*Q‘𝑦) ∈ (2nd ‘𝐴)) → ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐵))) |
| 15 | 2, 14 | sylbi 121 | . 2 ⊢ (𝑞 ∈ (1st ‘𝐵) → ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐵))) |
| 16 | 15 | 3ad2ant3 1044 | 1 ⊢ ((𝐴 ∈ P ∧ 𝑞 ∈ Q ∧ 𝑞 ∈ (1st ‘𝐵)) → ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐵))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 1002 = wceq 1395 ∃wex 1538 ∈ wcel 2200 {cab 2215 ∃wrex 2509 〈cop 3669 class class class wbr 4082 ‘cfv 5317 1st c1st 6282 2nd c2nd 6283 Qcnq 7463 *Qcrq 7467 <Q cltq 7468 Pcnp 7474 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-eprel 4379 df-id 4383 df-po 4386 df-iso 4387 df-iord 4456 df-on 4458 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-irdg 6514 df-1o 6560 df-oadd 6564 df-omul 6565 df-er 6678 df-ec 6680 df-qs 6684 df-ni 7487 df-pli 7488 df-mi 7489 df-lti 7490 df-plpq 7527 df-mpq 7528 df-enq 7530 df-nqqs 7531 df-plqqs 7532 df-mqqs 7533 df-1nqqs 7534 df-rq 7535 df-ltnqqs 7536 |
| This theorem is referenced by: recexprlemrnd 7812 |
| Copyright terms: Public domain | W3C validator |