ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexprlemopl GIF version

Theorem recexprlemopl 7433
Description: The lower cut of 𝐵 is open. Lemma for recexpr 7446. (Contributed by Jim Kingdon, 28-Dec-2019.)
Hypothesis
Ref Expression
recexpr.1 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
Assertion
Ref Expression
recexprlemopl ((𝐴P𝑞Q𝑞 ∈ (1st𝐵)) → ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st𝐵)))
Distinct variable groups:   𝑟,𝑞,𝑥,𝑦,𝐴   𝐵,𝑞,𝑟,𝑥,𝑦

Proof of Theorem recexprlemopl
StepHypRef Expression
1 recexpr.1 . . . 4 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
21recexprlemell 7430 . . 3 (𝑞 ∈ (1st𝐵) ↔ ∃𝑦(𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)))
3 ltbtwnnqq 7223 . . . . . 6 (𝑞 <Q 𝑦 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 <Q 𝑦))
43biimpi 119 . . . . 5 (𝑞 <Q 𝑦 → ∃𝑟Q (𝑞 <Q 𝑟𝑟 <Q 𝑦))
5 simpll 518 . . . . . . . 8 (((𝑞 <Q 𝑟𝑟 <Q 𝑦) ∧ (*Q𝑦) ∈ (2nd𝐴)) → 𝑞 <Q 𝑟)
6 19.8a 1569 . . . . . . . . . 10 ((𝑟 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) → ∃𝑦(𝑟 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)))
71recexprlemell 7430 . . . . . . . . . 10 (𝑟 ∈ (1st𝐵) ↔ ∃𝑦(𝑟 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)))
86, 7sylibr 133 . . . . . . . . 9 ((𝑟 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) → 𝑟 ∈ (1st𝐵))
98adantll 467 . . . . . . . 8 (((𝑞 <Q 𝑟𝑟 <Q 𝑦) ∧ (*Q𝑦) ∈ (2nd𝐴)) → 𝑟 ∈ (1st𝐵))
105, 9jca 304 . . . . . . 7 (((𝑞 <Q 𝑟𝑟 <Q 𝑦) ∧ (*Q𝑦) ∈ (2nd𝐴)) → (𝑞 <Q 𝑟𝑟 ∈ (1st𝐵)))
1110expcom 115 . . . . . 6 ((*Q𝑦) ∈ (2nd𝐴) → ((𝑞 <Q 𝑟𝑟 <Q 𝑦) → (𝑞 <Q 𝑟𝑟 ∈ (1st𝐵))))
1211reximdv 2533 . . . . 5 ((*Q𝑦) ∈ (2nd𝐴) → (∃𝑟Q (𝑞 <Q 𝑟𝑟 <Q 𝑦) → ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st𝐵))))
134, 12mpan9 279 . . . 4 ((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) → ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st𝐵)))
1413exlimiv 1577 . . 3 (∃𝑦(𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) → ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st𝐵)))
152, 14sylbi 120 . 2 (𝑞 ∈ (1st𝐵) → ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st𝐵)))
16153ad2ant3 1004 1 ((𝐴P𝑞Q𝑞 ∈ (1st𝐵)) → ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 962   = wceq 1331  wex 1468  wcel 1480  {cab 2125  wrex 2417  cop 3530   class class class wbr 3929  cfv 5123  1st c1st 6036  2nd c2nd 6037  Qcnq 7088  *Qcrq 7092   <Q cltq 7093  Pcnp 7099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-eprel 4211  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-1o 6313  df-oadd 6317  df-omul 6318  df-er 6429  df-ec 6431  df-qs 6435  df-ni 7112  df-pli 7113  df-mi 7114  df-lti 7115  df-plpq 7152  df-mpq 7153  df-enq 7155  df-nqqs 7156  df-plqqs 7157  df-mqqs 7158  df-1nqqs 7159  df-rq 7160  df-ltnqqs 7161
This theorem is referenced by:  recexprlemrnd  7437
  Copyright terms: Public domain W3C validator