ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexprlemopl GIF version

Theorem recexprlemopl 7687
Description: The lower cut of 𝐵 is open. Lemma for recexpr 7700. (Contributed by Jim Kingdon, 28-Dec-2019.)
Hypothesis
Ref Expression
recexpr.1 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
Assertion
Ref Expression
recexprlemopl ((𝐴P𝑞Q𝑞 ∈ (1st𝐵)) → ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st𝐵)))
Distinct variable groups:   𝑟,𝑞,𝑥,𝑦,𝐴   𝐵,𝑞,𝑟,𝑥,𝑦

Proof of Theorem recexprlemopl
StepHypRef Expression
1 recexpr.1 . . . 4 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
21recexprlemell 7684 . . 3 (𝑞 ∈ (1st𝐵) ↔ ∃𝑦(𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)))
3 ltbtwnnqq 7477 . . . . . 6 (𝑞 <Q 𝑦 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 <Q 𝑦))
43biimpi 120 . . . . 5 (𝑞 <Q 𝑦 → ∃𝑟Q (𝑞 <Q 𝑟𝑟 <Q 𝑦))
5 simpll 527 . . . . . . . 8 (((𝑞 <Q 𝑟𝑟 <Q 𝑦) ∧ (*Q𝑦) ∈ (2nd𝐴)) → 𝑞 <Q 𝑟)
6 19.8a 1601 . . . . . . . . . 10 ((𝑟 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) → ∃𝑦(𝑟 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)))
71recexprlemell 7684 . . . . . . . . . 10 (𝑟 ∈ (1st𝐵) ↔ ∃𝑦(𝑟 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)))
86, 7sylibr 134 . . . . . . . . 9 ((𝑟 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) → 𝑟 ∈ (1st𝐵))
98adantll 476 . . . . . . . 8 (((𝑞 <Q 𝑟𝑟 <Q 𝑦) ∧ (*Q𝑦) ∈ (2nd𝐴)) → 𝑟 ∈ (1st𝐵))
105, 9jca 306 . . . . . . 7 (((𝑞 <Q 𝑟𝑟 <Q 𝑦) ∧ (*Q𝑦) ∈ (2nd𝐴)) → (𝑞 <Q 𝑟𝑟 ∈ (1st𝐵)))
1110expcom 116 . . . . . 6 ((*Q𝑦) ∈ (2nd𝐴) → ((𝑞 <Q 𝑟𝑟 <Q 𝑦) → (𝑞 <Q 𝑟𝑟 ∈ (1st𝐵))))
1211reximdv 2595 . . . . 5 ((*Q𝑦) ∈ (2nd𝐴) → (∃𝑟Q (𝑞 <Q 𝑟𝑟 <Q 𝑦) → ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st𝐵))))
134, 12mpan9 281 . . . 4 ((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) → ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st𝐵)))
1413exlimiv 1609 . . 3 (∃𝑦(𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) → ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st𝐵)))
152, 14sylbi 121 . 2 (𝑞 ∈ (1st𝐵) → ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st𝐵)))
16153ad2ant3 1022 1 ((𝐴P𝑞Q𝑞 ∈ (1st𝐵)) → ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wex 1503  wcel 2164  {cab 2179  wrex 2473  cop 3622   class class class wbr 4030  cfv 5255  1st c1st 6193  2nd c2nd 6194  Qcnq 7342  *Qcrq 7346   <Q cltq 7347  Pcnp 7353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-eprel 4321  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-1o 6471  df-oadd 6475  df-omul 6476  df-er 6589  df-ec 6591  df-qs 6595  df-ni 7366  df-pli 7367  df-mi 7368  df-lti 7369  df-plpq 7406  df-mpq 7407  df-enq 7409  df-nqqs 7410  df-plqqs 7411  df-mqqs 7412  df-1nqqs 7413  df-rq 7414  df-ltnqqs 7415
This theorem is referenced by:  recexprlemrnd  7691
  Copyright terms: Public domain W3C validator