![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > recexprlemopl | GIF version |
Description: The lower cut of 𝐵 is open. Lemma for recexpr 7700. (Contributed by Jim Kingdon, 28-Dec-2019.) |
Ref | Expression |
---|---|
recexpr.1 | ⊢ 𝐵 = 〈{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q‘𝑦) ∈ (2nd ‘𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q‘𝑦) ∈ (1st ‘𝐴))}〉 |
Ref | Expression |
---|---|
recexprlemopl | ⊢ ((𝐴 ∈ P ∧ 𝑞 ∈ Q ∧ 𝑞 ∈ (1st ‘𝐵)) → ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recexpr.1 | . . . 4 ⊢ 𝐵 = 〈{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q‘𝑦) ∈ (2nd ‘𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q‘𝑦) ∈ (1st ‘𝐴))}〉 | |
2 | 1 | recexprlemell 7684 | . . 3 ⊢ (𝑞 ∈ (1st ‘𝐵) ↔ ∃𝑦(𝑞 <Q 𝑦 ∧ (*Q‘𝑦) ∈ (2nd ‘𝐴))) |
3 | ltbtwnnqq 7477 | . . . . . 6 ⊢ (𝑞 <Q 𝑦 ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 <Q 𝑦)) | |
4 | 3 | biimpi 120 | . . . . 5 ⊢ (𝑞 <Q 𝑦 → ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 <Q 𝑦)) |
5 | simpll 527 | . . . . . . . 8 ⊢ (((𝑞 <Q 𝑟 ∧ 𝑟 <Q 𝑦) ∧ (*Q‘𝑦) ∈ (2nd ‘𝐴)) → 𝑞 <Q 𝑟) | |
6 | 19.8a 1601 | . . . . . . . . . 10 ⊢ ((𝑟 <Q 𝑦 ∧ (*Q‘𝑦) ∈ (2nd ‘𝐴)) → ∃𝑦(𝑟 <Q 𝑦 ∧ (*Q‘𝑦) ∈ (2nd ‘𝐴))) | |
7 | 1 | recexprlemell 7684 | . . . . . . . . . 10 ⊢ (𝑟 ∈ (1st ‘𝐵) ↔ ∃𝑦(𝑟 <Q 𝑦 ∧ (*Q‘𝑦) ∈ (2nd ‘𝐴))) |
8 | 6, 7 | sylibr 134 | . . . . . . . . 9 ⊢ ((𝑟 <Q 𝑦 ∧ (*Q‘𝑦) ∈ (2nd ‘𝐴)) → 𝑟 ∈ (1st ‘𝐵)) |
9 | 8 | adantll 476 | . . . . . . . 8 ⊢ (((𝑞 <Q 𝑟 ∧ 𝑟 <Q 𝑦) ∧ (*Q‘𝑦) ∈ (2nd ‘𝐴)) → 𝑟 ∈ (1st ‘𝐵)) |
10 | 5, 9 | jca 306 | . . . . . . 7 ⊢ (((𝑞 <Q 𝑟 ∧ 𝑟 <Q 𝑦) ∧ (*Q‘𝑦) ∈ (2nd ‘𝐴)) → (𝑞 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐵))) |
11 | 10 | expcom 116 | . . . . . 6 ⊢ ((*Q‘𝑦) ∈ (2nd ‘𝐴) → ((𝑞 <Q 𝑟 ∧ 𝑟 <Q 𝑦) → (𝑞 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐵)))) |
12 | 11 | reximdv 2595 | . . . . 5 ⊢ ((*Q‘𝑦) ∈ (2nd ‘𝐴) → (∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 <Q 𝑦) → ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐵)))) |
13 | 4, 12 | mpan9 281 | . . . 4 ⊢ ((𝑞 <Q 𝑦 ∧ (*Q‘𝑦) ∈ (2nd ‘𝐴)) → ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐵))) |
14 | 13 | exlimiv 1609 | . . 3 ⊢ (∃𝑦(𝑞 <Q 𝑦 ∧ (*Q‘𝑦) ∈ (2nd ‘𝐴)) → ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐵))) |
15 | 2, 14 | sylbi 121 | . 2 ⊢ (𝑞 ∈ (1st ‘𝐵) → ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐵))) |
16 | 15 | 3ad2ant3 1022 | 1 ⊢ ((𝐴 ∈ P ∧ 𝑞 ∈ Q ∧ 𝑞 ∈ (1st ‘𝐵)) → ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐵))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1364 ∃wex 1503 ∈ wcel 2164 {cab 2179 ∃wrex 2473 〈cop 3622 class class class wbr 4030 ‘cfv 5255 1st c1st 6193 2nd c2nd 6194 Qcnq 7342 *Qcrq 7346 <Q cltq 7347 Pcnp 7353 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-eprel 4321 df-id 4325 df-po 4328 df-iso 4329 df-iord 4398 df-on 4400 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-recs 6360 df-irdg 6425 df-1o 6471 df-oadd 6475 df-omul 6476 df-er 6589 df-ec 6591 df-qs 6595 df-ni 7366 df-pli 7367 df-mi 7368 df-lti 7369 df-plpq 7406 df-mpq 7407 df-enq 7409 df-nqqs 7410 df-plqqs 7411 df-mqqs 7412 df-1nqqs 7413 df-rq 7414 df-ltnqqs 7415 |
This theorem is referenced by: recexprlemrnd 7691 |
Copyright terms: Public domain | W3C validator |