ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexprlemopl GIF version

Theorem recexprlemopl 7720
Description: The lower cut of 𝐵 is open. Lemma for recexpr 7733. (Contributed by Jim Kingdon, 28-Dec-2019.)
Hypothesis
Ref Expression
recexpr.1 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
Assertion
Ref Expression
recexprlemopl ((𝐴P𝑞Q𝑞 ∈ (1st𝐵)) → ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st𝐵)))
Distinct variable groups:   𝑟,𝑞,𝑥,𝑦,𝐴   𝐵,𝑞,𝑟,𝑥,𝑦

Proof of Theorem recexprlemopl
StepHypRef Expression
1 recexpr.1 . . . 4 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
21recexprlemell 7717 . . 3 (𝑞 ∈ (1st𝐵) ↔ ∃𝑦(𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)))
3 ltbtwnnqq 7510 . . . . . 6 (𝑞 <Q 𝑦 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 <Q 𝑦))
43biimpi 120 . . . . 5 (𝑞 <Q 𝑦 → ∃𝑟Q (𝑞 <Q 𝑟𝑟 <Q 𝑦))
5 simpll 527 . . . . . . . 8 (((𝑞 <Q 𝑟𝑟 <Q 𝑦) ∧ (*Q𝑦) ∈ (2nd𝐴)) → 𝑞 <Q 𝑟)
6 19.8a 1612 . . . . . . . . . 10 ((𝑟 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) → ∃𝑦(𝑟 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)))
71recexprlemell 7717 . . . . . . . . . 10 (𝑟 ∈ (1st𝐵) ↔ ∃𝑦(𝑟 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)))
86, 7sylibr 134 . . . . . . . . 9 ((𝑟 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) → 𝑟 ∈ (1st𝐵))
98adantll 476 . . . . . . . 8 (((𝑞 <Q 𝑟𝑟 <Q 𝑦) ∧ (*Q𝑦) ∈ (2nd𝐴)) → 𝑟 ∈ (1st𝐵))
105, 9jca 306 . . . . . . 7 (((𝑞 <Q 𝑟𝑟 <Q 𝑦) ∧ (*Q𝑦) ∈ (2nd𝐴)) → (𝑞 <Q 𝑟𝑟 ∈ (1st𝐵)))
1110expcom 116 . . . . . 6 ((*Q𝑦) ∈ (2nd𝐴) → ((𝑞 <Q 𝑟𝑟 <Q 𝑦) → (𝑞 <Q 𝑟𝑟 ∈ (1st𝐵))))
1211reximdv 2606 . . . . 5 ((*Q𝑦) ∈ (2nd𝐴) → (∃𝑟Q (𝑞 <Q 𝑟𝑟 <Q 𝑦) → ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st𝐵))))
134, 12mpan9 281 . . . 4 ((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) → ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st𝐵)))
1413exlimiv 1620 . . 3 (∃𝑦(𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) → ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st𝐵)))
152, 14sylbi 121 . 2 (𝑞 ∈ (1st𝐵) → ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st𝐵)))
16153ad2ant3 1022 1 ((𝐴P𝑞Q𝑞 ∈ (1st𝐵)) → ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1372  wex 1514  wcel 2175  {cab 2190  wrex 2484  cop 3635   class class class wbr 4043  cfv 5268  1st c1st 6214  2nd c2nd 6215  Qcnq 7375  *Qcrq 7379   <Q cltq 7380  Pcnp 7386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-eprel 4334  df-id 4338  df-po 4341  df-iso 4342  df-iord 4411  df-on 4413  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-recs 6381  df-irdg 6446  df-1o 6492  df-oadd 6496  df-omul 6497  df-er 6610  df-ec 6612  df-qs 6616  df-ni 7399  df-pli 7400  df-mi 7401  df-lti 7402  df-plpq 7439  df-mpq 7440  df-enq 7442  df-nqqs 7443  df-plqqs 7444  df-mqqs 7445  df-1nqqs 7446  df-rq 7447  df-ltnqqs 7448
This theorem is referenced by:  recexprlemrnd  7724
  Copyright terms: Public domain W3C validator