| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > recexprlemopl | GIF version | ||
| Description: The lower cut of 𝐵 is open. Lemma for recexpr 7705. (Contributed by Jim Kingdon, 28-Dec-2019.) | 
| Ref | Expression | 
|---|---|
| recexpr.1 | ⊢ 𝐵 = 〈{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q‘𝑦) ∈ (2nd ‘𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q‘𝑦) ∈ (1st ‘𝐴))}〉 | 
| Ref | Expression | 
|---|---|
| recexprlemopl | ⊢ ((𝐴 ∈ P ∧ 𝑞 ∈ Q ∧ 𝑞 ∈ (1st ‘𝐵)) → ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐵))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | recexpr.1 | . . . 4 ⊢ 𝐵 = 〈{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q‘𝑦) ∈ (2nd ‘𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q‘𝑦) ∈ (1st ‘𝐴))}〉 | |
| 2 | 1 | recexprlemell 7689 | . . 3 ⊢ (𝑞 ∈ (1st ‘𝐵) ↔ ∃𝑦(𝑞 <Q 𝑦 ∧ (*Q‘𝑦) ∈ (2nd ‘𝐴))) | 
| 3 | ltbtwnnqq 7482 | . . . . . 6 ⊢ (𝑞 <Q 𝑦 ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 <Q 𝑦)) | |
| 4 | 3 | biimpi 120 | . . . . 5 ⊢ (𝑞 <Q 𝑦 → ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 <Q 𝑦)) | 
| 5 | simpll 527 | . . . . . . . 8 ⊢ (((𝑞 <Q 𝑟 ∧ 𝑟 <Q 𝑦) ∧ (*Q‘𝑦) ∈ (2nd ‘𝐴)) → 𝑞 <Q 𝑟) | |
| 6 | 19.8a 1604 | . . . . . . . . . 10 ⊢ ((𝑟 <Q 𝑦 ∧ (*Q‘𝑦) ∈ (2nd ‘𝐴)) → ∃𝑦(𝑟 <Q 𝑦 ∧ (*Q‘𝑦) ∈ (2nd ‘𝐴))) | |
| 7 | 1 | recexprlemell 7689 | . . . . . . . . . 10 ⊢ (𝑟 ∈ (1st ‘𝐵) ↔ ∃𝑦(𝑟 <Q 𝑦 ∧ (*Q‘𝑦) ∈ (2nd ‘𝐴))) | 
| 8 | 6, 7 | sylibr 134 | . . . . . . . . 9 ⊢ ((𝑟 <Q 𝑦 ∧ (*Q‘𝑦) ∈ (2nd ‘𝐴)) → 𝑟 ∈ (1st ‘𝐵)) | 
| 9 | 8 | adantll 476 | . . . . . . . 8 ⊢ (((𝑞 <Q 𝑟 ∧ 𝑟 <Q 𝑦) ∧ (*Q‘𝑦) ∈ (2nd ‘𝐴)) → 𝑟 ∈ (1st ‘𝐵)) | 
| 10 | 5, 9 | jca 306 | . . . . . . 7 ⊢ (((𝑞 <Q 𝑟 ∧ 𝑟 <Q 𝑦) ∧ (*Q‘𝑦) ∈ (2nd ‘𝐴)) → (𝑞 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐵))) | 
| 11 | 10 | expcom 116 | . . . . . 6 ⊢ ((*Q‘𝑦) ∈ (2nd ‘𝐴) → ((𝑞 <Q 𝑟 ∧ 𝑟 <Q 𝑦) → (𝑞 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐵)))) | 
| 12 | 11 | reximdv 2598 | . . . . 5 ⊢ ((*Q‘𝑦) ∈ (2nd ‘𝐴) → (∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 <Q 𝑦) → ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐵)))) | 
| 13 | 4, 12 | mpan9 281 | . . . 4 ⊢ ((𝑞 <Q 𝑦 ∧ (*Q‘𝑦) ∈ (2nd ‘𝐴)) → ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐵))) | 
| 14 | 13 | exlimiv 1612 | . . 3 ⊢ (∃𝑦(𝑞 <Q 𝑦 ∧ (*Q‘𝑦) ∈ (2nd ‘𝐴)) → ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐵))) | 
| 15 | 2, 14 | sylbi 121 | . 2 ⊢ (𝑞 ∈ (1st ‘𝐵) → ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐵))) | 
| 16 | 15 | 3ad2ant3 1022 | 1 ⊢ ((𝐴 ∈ P ∧ 𝑞 ∈ Q ∧ 𝑞 ∈ (1st ‘𝐵)) → ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐵))) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1364 ∃wex 1506 ∈ wcel 2167 {cab 2182 ∃wrex 2476 〈cop 3625 class class class wbr 4033 ‘cfv 5258 1st c1st 6196 2nd c2nd 6197 Qcnq 7347 *Qcrq 7351 <Q cltq 7352 Pcnp 7358 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-eprel 4324 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-1o 6474 df-oadd 6478 df-omul 6479 df-er 6592 df-ec 6594 df-qs 6598 df-ni 7371 df-pli 7372 df-mi 7373 df-lti 7374 df-plpq 7411 df-mpq 7412 df-enq 7414 df-nqqs 7415 df-plqqs 7416 df-mqqs 7417 df-1nqqs 7418 df-rq 7419 df-ltnqqs 7420 | 
| This theorem is referenced by: recexprlemrnd 7696 | 
| Copyright terms: Public domain | W3C validator |