Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > climi2 | GIF version |
Description: Convergence of a sequence of complex numbers. (Contributed by NM, 11-Jan-2007.) (Revised by Mario Carneiro, 31-Jan-2014.) |
Ref | Expression |
---|---|
climi.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climi.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climi.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ+) |
climi.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) |
climi.5 | ⊢ (𝜑 → 𝐹 ⇝ 𝐴) |
Ref | Expression |
---|---|
climi2 | ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐵 − 𝐴)) < 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climi.1 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | climi.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | climi.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ+) | |
4 | climi.4 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) | |
5 | climi.5 | . . 3 ⊢ (𝜑 → 𝐹 ⇝ 𝐴) | |
6 | 1, 2, 3, 4, 5 | climi 11250 | . 2 ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝐶)) |
7 | simpr 109 | . . . 4 ⊢ ((𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝐶) → (abs‘(𝐵 − 𝐴)) < 𝐶) | |
8 | 7 | ralimi 2533 | . . 3 ⊢ (∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝐶) → ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐵 − 𝐴)) < 𝐶) |
9 | 8 | reximi 2567 | . 2 ⊢ (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝐶) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐵 − 𝐴)) < 𝐶) |
10 | 6, 9 | syl 14 | 1 ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐵 − 𝐴)) < 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 ∈ wcel 2141 ∀wral 2448 ∃wrex 2449 class class class wbr 3989 ‘cfv 5198 (class class class)co 5853 ℂcc 7772 < clt 7954 − cmin 8090 ℤcz 9212 ℤ≥cuz 9487 ℝ+crp 9610 abscabs 10961 ⇝ cli 11241 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-inn 8879 df-n0 9136 df-z 9213 df-uz 9488 df-clim 11242 |
This theorem is referenced by: climcn1 11271 climcn2 11272 climge0 11288 climsqz 11298 climsqz2 11299 mertenslem2 11499 |
Copyright terms: Public domain | W3C validator |