Theorem List for Intuitionistic Logic Explorer - 8801-8900   *Has distinct variable
 group(s)
| Type | Label | Description | 
| Statement | 
|   | 
| Theorem | divadddivapi 8801 | 
Addition of two ratios.  (Contributed by Jim Kingdon, 9-Mar-2020.)
 | 
| ⊢ 𝐴 ∈ ℂ    &   ⊢ 𝐵 ∈ ℂ    &   ⊢ 𝐶 ∈ ℂ    &   ⊢ 𝐷 ∈ ℂ    &   ⊢ 𝐵 # 0    &   ⊢ 𝐷 # 0   
 ⇒   ⊢ ((𝐴 / 𝐵) + (𝐶 / 𝐷)) = (((𝐴 · 𝐷) + (𝐶 · 𝐵)) / (𝐵 · 𝐷)) | 
|   | 
| Theorem | divdivdivapi 8802 | 
Division of two ratios.  (Contributed by Jim Kingdon, 9-Mar-2020.)
 | 
| ⊢ 𝐴 ∈ ℂ    &   ⊢ 𝐵 ∈ ℂ    &   ⊢ 𝐶 ∈ ℂ    &   ⊢ 𝐷 ∈ ℂ    &   ⊢ 𝐵 # 0    &   ⊢ 𝐷 # 0    &   ⊢ 𝐶 # 0   
 ⇒   ⊢ ((𝐴 / 𝐵) / (𝐶 / 𝐷)) = ((𝐴 · 𝐷) / (𝐵 · 𝐶)) | 
|   | 
| Theorem | rerecclapzi 8803 | 
Closure law for reciprocal.  (Contributed by Jim Kingdon,
       9-Mar-2020.)
 | 
| ⊢ 𝐴 ∈ ℝ   
 ⇒   ⊢ (𝐴 # 0 → (1 / 𝐴) ∈ ℝ) | 
|   | 
| Theorem | rerecclapi 8804 | 
Closure law for reciprocal.  (Contributed by Jim Kingdon,
         9-Mar-2020.)
 | 
| ⊢ 𝐴 ∈ ℝ    &   ⊢ 𝐴 # 0   
 ⇒   ⊢ (1 / 𝐴) ∈ ℝ | 
|   | 
| Theorem | redivclapzi 8805 | 
Closure law for division of reals.  (Contributed by Jim Kingdon,
       9-Mar-2020.)
 | 
| ⊢ 𝐴 ∈ ℝ    &   ⊢ 𝐵 ∈
 ℝ    ⇒   ⊢ (𝐵 # 0 → (𝐴 / 𝐵) ∈ ℝ) | 
|   | 
| Theorem | redivclapi 8806 | 
Closure law for division of reals.  (Contributed by Jim Kingdon,
       9-Mar-2020.)
 | 
| ⊢ 𝐴 ∈ ℝ    &   ⊢ 𝐵 ∈ ℝ    &   ⊢ 𝐵 # 0   
 ⇒   ⊢ (𝐴 / 𝐵) ∈ ℝ | 
|   | 
| Theorem | div1d 8807 | 
A number divided by 1 is itself.  (Contributed by Mario Carneiro,
       27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)   
 ⇒   ⊢ (𝜑 → (𝐴 / 1) = 𝐴) | 
|   | 
| Theorem | recclapd 8808 | 
Closure law for reciprocal.  (Contributed by Jim Kingdon,
         3-Mar-2020.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐴 # 0)    ⇒   ⊢ (𝜑 → (1 / 𝐴) ∈ ℂ) | 
|   | 
| Theorem | recap0d 8809 | 
The reciprocal of a number apart from zero is apart from zero.
         (Contributed by Jim Kingdon, 3-Mar-2020.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐴 # 0)    ⇒   ⊢ (𝜑 → (1 / 𝐴) # 0) | 
|   | 
| Theorem | recidapd 8810 | 
Multiplication of a number and its reciprocal.  (Contributed by Jim
         Kingdon, 3-Mar-2020.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐴 # 0)    ⇒   ⊢ (𝜑 → (𝐴 · (1 / 𝐴)) = 1) | 
|   | 
| Theorem | recidap2d 8811 | 
Multiplication of a number and its reciprocal.  (Contributed by Jim
         Kingdon, 3-Mar-2020.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐴 # 0)    ⇒   ⊢ (𝜑 → ((1 / 𝐴) · 𝐴) = 1) | 
|   | 
| Theorem | recrecapd 8812 | 
A number is equal to the reciprocal of its reciprocal.  (Contributed
         by Jim Kingdon, 3-Mar-2020.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐴 # 0)    ⇒   ⊢ (𝜑 → (1 / (1 / 𝐴)) = 𝐴) | 
|   | 
| Theorem | dividapd 8813 | 
A number divided by itself is one.  (Contributed by Jim Kingdon,
         3-Mar-2020.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐴 # 0)    ⇒   ⊢ (𝜑 → (𝐴 / 𝐴) = 1) | 
|   | 
| Theorem | div0apd 8814 | 
Division into zero is zero.  (Contributed by Jim Kingdon,
         3-Mar-2020.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐴 # 0)    ⇒   ⊢ (𝜑 → (0 / 𝐴) = 0) | 
|   | 
| Theorem | apmul1 8815 | 
Multiplication of both sides of complex apartness by a complex number
     apart from zero.  (Contributed by Jim Kingdon, 20-Mar-2020.)
 | 
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → (𝐴 # 𝐵 ↔ (𝐴 · 𝐶) # (𝐵 · 𝐶))) | 
|   | 
| Theorem | apmul2 8816 | 
Multiplication of both sides of complex apartness by a complex number
     apart from zero.  (Contributed by Jim Kingdon, 6-Jan-2023.)
 | 
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → (𝐴 # 𝐵 ↔ (𝐶 · 𝐴) # (𝐶 · 𝐵))) | 
|   | 
| Theorem | divclapd 8817 | 
Closure law for division.  (Contributed by Jim Kingdon,
         29-Feb-2020.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 # 0)    ⇒   ⊢ (𝜑 → (𝐴 / 𝐵) ∈ ℂ) | 
|   | 
| Theorem | divcanap1d 8818 | 
A cancellation law for division.  (Contributed by Jim Kingdon,
         29-Feb-2020.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 # 0)    ⇒   ⊢ (𝜑 → ((𝐴 / 𝐵) · 𝐵) = 𝐴) | 
|   | 
| Theorem | divcanap2d 8819 | 
A cancellation law for division.  (Contributed by Jim Kingdon,
         29-Feb-2020.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 # 0)    ⇒   ⊢ (𝜑 → (𝐵 · (𝐴 / 𝐵)) = 𝐴) | 
|   | 
| Theorem | divrecapd 8820 | 
Relationship between division and reciprocal.  Theorem I.9 of
         [Apostol] p. 18.  (Contributed by Jim
Kingdon, 29-Feb-2020.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 # 0)    ⇒   ⊢ (𝜑 → (𝐴 / 𝐵) = (𝐴 · (1 / 𝐵))) | 
|   | 
| Theorem | divrecap2d 8821 | 
Relationship between division and reciprocal.  (Contributed by Jim
         Kingdon, 29-Feb-2020.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 # 0)    ⇒   ⊢ (𝜑 → (𝐴 / 𝐵) = ((1 / 𝐵) · 𝐴)) | 
|   | 
| Theorem | divcanap3d 8822 | 
A cancellation law for division.  (Contributed by Jim Kingdon,
         29-Feb-2020.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 # 0)    ⇒   ⊢ (𝜑 → ((𝐵 · 𝐴) / 𝐵) = 𝐴) | 
|   | 
| Theorem | divcanap4d 8823 | 
A cancellation law for division.  (Contributed by Jim Kingdon,
         29-Feb-2020.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 # 0)    ⇒   ⊢ (𝜑 → ((𝐴 · 𝐵) / 𝐵) = 𝐴) | 
|   | 
| Theorem | diveqap0d 8824 | 
If a ratio is zero, the numerator is zero.  (Contributed by Jim
           Kingdon, 19-Mar-2020.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 # 0)    &   ⊢ (𝜑 → (𝐴 / 𝐵) = 0)    ⇒   ⊢ (𝜑 → 𝐴 = 0) | 
|   | 
| Theorem | diveqap1d 8825 | 
Equality in terms of unit ratio.  (Contributed by Jim Kingdon,
           19-Mar-2020.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 # 0)    &   ⊢ (𝜑 → (𝐴 / 𝐵) = 1)    ⇒   ⊢ (𝜑 → 𝐴 = 𝐵) | 
|   | 
| Theorem | diveqap1ad 8826 | 
The quotient of two complex numbers is one iff they are equal.
         Deduction form of diveqap1 8732.  Generalization of diveqap1d 8825.
         (Contributed by Jim Kingdon, 19-Mar-2020.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 # 0)    ⇒   ⊢ (𝜑 → ((𝐴 / 𝐵) = 1 ↔ 𝐴 = 𝐵)) | 
|   | 
| Theorem | diveqap0ad 8827 | 
A fraction of complex numbers is zero iff its numerator is.  Deduction
         form of diveqap0 8709.  (Contributed by Jim Kingdon, 19-Mar-2020.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 # 0)    ⇒   ⊢ (𝜑 → ((𝐴 / 𝐵) = 0 ↔ 𝐴 = 0)) | 
|   | 
| Theorem | divap1d 8828 | 
If two complex numbers are apart, their quotient is apart from one.
           (Contributed by Jim Kingdon, 20-Mar-2020.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 # 0)    &   ⊢ (𝜑 → 𝐴 # 𝐵)    ⇒   ⊢ (𝜑 → (𝐴 / 𝐵) # 1) | 
|   | 
| Theorem | divap0bd 8829 | 
A ratio is zero iff the numerator is zero.  (Contributed by Jim
         Kingdon, 19-Mar-2020.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 # 0)    ⇒   ⊢ (𝜑 → (𝐴 # 0 ↔ (𝐴 / 𝐵) # 0)) | 
|   | 
| Theorem | divnegapd 8830 | 
Move negative sign inside of a division.  (Contributed by Jim Kingdon,
         19-Mar-2020.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 # 0)    ⇒   ⊢ (𝜑 → -(𝐴 / 𝐵) = (-𝐴 / 𝐵)) | 
|   | 
| Theorem | divneg2apd 8831 | 
Move negative sign inside of a division.  (Contributed by Jim Kingdon,
         19-Mar-2020.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 # 0)    ⇒   ⊢ (𝜑 → -(𝐴 / 𝐵) = (𝐴 / -𝐵)) | 
|   | 
| Theorem | div2negapd 8832 | 
Quotient of two negatives.  (Contributed by Jim Kingdon,
         19-Mar-2020.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 # 0)    ⇒   ⊢ (𝜑 → (-𝐴 / -𝐵) = (𝐴 / 𝐵)) | 
|   | 
| Theorem | divap0d 8833 | 
The ratio of numbers apart from zero is apart from zero.  (Contributed
         by Jim Kingdon, 3-Mar-2020.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐴 # 0)    &   ⊢ (𝜑 → 𝐵 # 0)    ⇒   ⊢ (𝜑 → (𝐴 / 𝐵) # 0) | 
|   | 
| Theorem | recdivapd 8834 | 
The reciprocal of a ratio.  (Contributed by Jim Kingdon,
         3-Mar-2020.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐴 # 0)    &   ⊢ (𝜑 → 𝐵 # 0)    ⇒   ⊢ (𝜑 → (1 / (𝐴 / 𝐵)) = (𝐵 / 𝐴)) | 
|   | 
| Theorem | recdivap2d 8835 | 
Division into a reciprocal.  (Contributed by Jim Kingdon,
         3-Mar-2020.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐴 # 0)    &   ⊢ (𝜑 → 𝐵 # 0)    ⇒   ⊢ (𝜑 → ((1 / 𝐴) / 𝐵) = (1 / (𝐴 · 𝐵))) | 
|   | 
| Theorem | divcanap6d 8836 | 
Cancellation of inverted fractions.  (Contributed by Jim Kingdon,
         3-Mar-2020.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐴 # 0)    &   ⊢ (𝜑 → 𝐵 # 0)    ⇒   ⊢ (𝜑 → ((𝐴 / 𝐵) · (𝐵 / 𝐴)) = 1) | 
|   | 
| Theorem | ddcanapd 8837 | 
Cancellation in a double division.  (Contributed by Jim Kingdon,
         3-Mar-2020.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐴 # 0)    &   ⊢ (𝜑 → 𝐵 # 0)    ⇒   ⊢ (𝜑 → (𝐴 / (𝐴 / 𝐵)) = 𝐵) | 
|   | 
| Theorem | rec11apd 8838 | 
Reciprocal is one-to-one.  (Contributed by Jim Kingdon,
         3-Mar-2020.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐴 # 0)    &   ⊢ (𝜑 → 𝐵 # 0)    &   ⊢ (𝜑 → (1 / 𝐴) = (1 / 𝐵))    ⇒   ⊢ (𝜑 → 𝐴 = 𝐵) | 
|   | 
| Theorem | divmulapd 8839 | 
Relationship between division and multiplication.  (Contributed by Jim
         Kingdon, 8-Mar-2020.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐶 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 # 0)    ⇒   ⊢ (𝜑 → ((𝐴 / 𝐵) = 𝐶 ↔ (𝐵 · 𝐶) = 𝐴)) | 
|   | 
| Theorem | apdivmuld 8840 | 
Relationship between division and multiplication.  (Contributed by Jim
         Kingdon, 26-Dec-2022.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐶 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 # 0)    ⇒   ⊢ (𝜑 → ((𝐴 / 𝐵) # 𝐶 ↔ (𝐵 · 𝐶) # 𝐴)) | 
|   | 
| Theorem | div32apd 8841 | 
A commutative/associative law for division.  (Contributed by Jim
         Kingdon, 8-Mar-2020.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐶 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 # 0)    ⇒   ⊢ (𝜑 → ((𝐴 / 𝐵) · 𝐶) = (𝐴 · (𝐶 / 𝐵))) | 
|   | 
| Theorem | div13apd 8842 | 
A commutative/associative law for division.  (Contributed by Jim
         Kingdon, 8-Mar-2020.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐶 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 # 0)    ⇒   ⊢ (𝜑 → ((𝐴 / 𝐵) · 𝐶) = ((𝐶 / 𝐵) · 𝐴)) | 
|   | 
| Theorem | divdiv32apd 8843 | 
Swap denominators in a division.  (Contributed by Jim Kingdon,
         8-Mar-2020.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐶 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 # 0)    &   ⊢ (𝜑 → 𝐶 # 0)    ⇒   ⊢ (𝜑 → ((𝐴 / 𝐵) / 𝐶) = ((𝐴 / 𝐶) / 𝐵)) | 
|   | 
| Theorem | divcanap5d 8844 | 
Cancellation of common factor in a ratio.  (Contributed by Jim
         Kingdon, 8-Mar-2020.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐶 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 # 0)    &   ⊢ (𝜑 → 𝐶 # 0)    ⇒   ⊢ (𝜑 → ((𝐶 · 𝐴) / (𝐶 · 𝐵)) = (𝐴 / 𝐵)) | 
|   | 
| Theorem | divcanap5rd 8845 | 
Cancellation of common factor in a ratio.  (Contributed by Jim
         Kingdon, 8-Mar-2020.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐶 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 # 0)    &   ⊢ (𝜑 → 𝐶 # 0)    ⇒   ⊢ (𝜑 → ((𝐴 · 𝐶) / (𝐵 · 𝐶)) = (𝐴 / 𝐵)) | 
|   | 
| Theorem | divcanap7d 8846 | 
Cancel equal divisors in a division.  (Contributed by Jim Kingdon,
         8-Mar-2020.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐶 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 # 0)    &   ⊢ (𝜑 → 𝐶 # 0)    ⇒   ⊢ (𝜑 → ((𝐴 / 𝐶) / (𝐵 / 𝐶)) = (𝐴 / 𝐵)) | 
|   | 
| Theorem | dmdcanapd 8847 | 
Cancellation law for division and multiplication.  (Contributed by Jim
         Kingdon, 8-Mar-2020.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐶 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 # 0)    &   ⊢ (𝜑 → 𝐶 # 0)    ⇒   ⊢ (𝜑 → ((𝐵 / 𝐶) · (𝐴 / 𝐵)) = (𝐴 / 𝐶)) | 
|   | 
| Theorem | dmdcanap2d 8848 | 
Cancellation law for division and multiplication.  (Contributed by Jim
         Kingdon, 8-Mar-2020.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐶 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 # 0)    &   ⊢ (𝜑 → 𝐶 # 0)    ⇒   ⊢ (𝜑 → ((𝐴 / 𝐵) · (𝐵 / 𝐶)) = (𝐴 / 𝐶)) | 
|   | 
| Theorem | divdivap1d 8849 | 
Division into a fraction.  (Contributed by Jim Kingdon,
         8-Mar-2020.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐶 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 # 0)    &   ⊢ (𝜑 → 𝐶 # 0)    ⇒   ⊢ (𝜑 → ((𝐴 / 𝐵) / 𝐶) = (𝐴 / (𝐵 · 𝐶))) | 
|   | 
| Theorem | divdivap2d 8850 | 
Division by a fraction.  (Contributed by Jim Kingdon, 8-Mar-2020.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐶 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 # 0)    &   ⊢ (𝜑 → 𝐶 # 0)    ⇒   ⊢ (𝜑 → (𝐴 / (𝐵 / 𝐶)) = ((𝐴 · 𝐶) / 𝐵)) | 
|   | 
| Theorem | divmulap2d 8851 | 
Relationship between division and multiplication.  (Contributed by Jim
         Kingdon, 2-Mar-2020.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐶 ∈ ℂ)    &   ⊢ (𝜑 → 𝐶 # 0)    ⇒   ⊢ (𝜑 → ((𝐴 / 𝐶) = 𝐵 ↔ 𝐴 = (𝐶 · 𝐵))) | 
|   | 
| Theorem | divmulap3d 8852 | 
Relationship between division and multiplication.  (Contributed by Jim
         Kingdon, 2-Mar-2020.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐶 ∈ ℂ)    &   ⊢ (𝜑 → 𝐶 # 0)    ⇒   ⊢ (𝜑 → ((𝐴 / 𝐶) = 𝐵 ↔ 𝐴 = (𝐵 · 𝐶))) | 
|   | 
| Theorem | divassapd 8853 | 
An associative law for division.  (Contributed by Jim Kingdon,
         2-Mar-2020.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐶 ∈ ℂ)    &   ⊢ (𝜑 → 𝐶 # 0)    ⇒   ⊢ (𝜑 → ((𝐴 · 𝐵) / 𝐶) = (𝐴 · (𝐵 / 𝐶))) | 
|   | 
| Theorem | div12apd 8854 | 
A commutative/associative law for division.  (Contributed by Jim
         Kingdon, 2-Mar-2020.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐶 ∈ ℂ)    &   ⊢ (𝜑 → 𝐶 # 0)    ⇒   ⊢ (𝜑 → (𝐴 · (𝐵 / 𝐶)) = (𝐵 · (𝐴 / 𝐶))) | 
|   | 
| Theorem | div23apd 8855 | 
A commutative/associative law for division.  (Contributed by Jim
         Kingdon, 2-Mar-2020.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐶 ∈ ℂ)    &   ⊢ (𝜑 → 𝐶 # 0)    ⇒   ⊢ (𝜑 → ((𝐴 · 𝐵) / 𝐶) = ((𝐴 / 𝐶) · 𝐵)) | 
|   | 
| Theorem | divdirapd 8856 | 
Distribution of division over addition.  (Contributed by Jim Kingdon,
         2-Mar-2020.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐶 ∈ ℂ)    &   ⊢ (𝜑 → 𝐶 # 0)    ⇒   ⊢ (𝜑 → ((𝐴 + 𝐵) / 𝐶) = ((𝐴 / 𝐶) + (𝐵 / 𝐶))) | 
|   | 
| Theorem | divsubdirapd 8857 | 
Distribution of division over subtraction.  (Contributed by Jim
         Kingdon, 2-Mar-2020.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐶 ∈ ℂ)    &   ⊢ (𝜑 → 𝐶 # 0)    ⇒   ⊢ (𝜑 → ((𝐴 − 𝐵) / 𝐶) = ((𝐴 / 𝐶) − (𝐵 / 𝐶))) | 
|   | 
| Theorem | div11apd 8858 | 
One-to-one relationship for division.  (Contributed by Jim Kingdon,
         2-Mar-2020.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐶 ∈ ℂ)    &   ⊢ (𝜑 → 𝐶 # 0)    &   ⊢ (𝜑 → (𝐴 / 𝐶) = (𝐵 / 𝐶))    ⇒   ⊢ (𝜑 → 𝐴 = 𝐵) | 
|   | 
| Theorem | divmuldivapd 8859 | 
Multiplication of two ratios.  (Contributed by Jim Kingdon,
       30-Jul-2021.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐶 ∈ ℂ)    &   ⊢ (𝜑 → 𝐷 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 # 0)    &   ⊢ (𝜑 → 𝐷 # 0)    ⇒   ⊢ (𝜑 → ((𝐴 / 𝐵) · (𝐶 / 𝐷)) = ((𝐴 · 𝐶) / (𝐵 · 𝐷))) | 
|   | 
| Theorem | divmuleqapd 8860 | 
Cross-multiply in an equality of ratios.  (Contributed by Mario
       Carneiro, 27-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐶 ∈ ℂ)    &   ⊢ (𝜑 → 𝐷 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 # 0)    &   ⊢ (𝜑 → 𝐷 # 0)    ⇒   ⊢ (𝜑 → ((𝐴 / 𝐵) = (𝐶 / 𝐷) ↔ (𝐴 · 𝐷) = (𝐶 · 𝐵))) | 
|   | 
| Theorem | rerecclapd 8861 | 
Closure law for reciprocal.  (Contributed by Jim Kingdon,
         29-Feb-2020.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐴 # 0)    ⇒   ⊢ (𝜑 → (1 / 𝐴) ∈ ℝ) | 
|   | 
| Theorem | redivclapd 8862 | 
Closure law for division of reals.  (Contributed by Jim Kingdon,
       29-Feb-2020.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 # 0)    ⇒   ⊢ (𝜑 → (𝐴 / 𝐵) ∈ ℝ) | 
|   | 
| Theorem | diveqap1bd 8863 | 
If two complex numbers are equal, their quotient is one.  One-way
       deduction form of diveqap1 8732.  Converse of diveqap1d 8825.  (Contributed
       by David Moews, 28-Feb-2017.)  (Revised by Jim Kingdon, 2-Aug-2023.)
 | 
| ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 # 0)    &   ⊢ (𝜑 → 𝐴 = 𝐵)    ⇒   ⊢ (𝜑 → (𝐴 / 𝐵) = 1) | 
|   | 
| Theorem | div2subap 8864 | 
Swap the order of subtraction in a division.  (Contributed by Scott
     Fenton, 24-Jun-2013.)
 | 
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 # 𝐷)) → ((𝐴 − 𝐵) / (𝐶 − 𝐷)) = ((𝐵 − 𝐴) / (𝐷 − 𝐶))) | 
|   | 
| Theorem | div2subapd 8865 | 
Swap subtrahend and minuend inside the numerator and denominator of a
       fraction.  Deduction form of div2subap 8864.  (Contributed by David Moews,
       28-Feb-2017.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐶 ∈ ℂ)    &   ⊢ (𝜑 → 𝐷 ∈ ℂ)    &   ⊢ (𝜑 → 𝐶 # 𝐷)    ⇒   ⊢ (𝜑 → ((𝐴 − 𝐵) / (𝐶 − 𝐷)) = ((𝐵 − 𝐴) / (𝐷 − 𝐶))) | 
|   | 
| Theorem | subrecap 8866 | 
Subtraction of reciprocals.  (Contributed by Scott Fenton, 9-Jul-2015.)
 | 
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → ((1 / 𝐴) − (1 / 𝐵)) = ((𝐵 − 𝐴) / (𝐴 · 𝐵))) | 
|   | 
| Theorem | subrecapi 8867 | 
Subtraction of reciprocals.  (Contributed by Scott Fenton,
       9-Jan-2017.)
 | 
| ⊢ 𝐴 ∈ ℂ    &   ⊢ 𝐵 ∈ ℂ    &   ⊢ 𝐴 # 0    &   ⊢ 𝐵 # 0   
 ⇒   ⊢ ((1 / 𝐴) − (1 / 𝐵)) = ((𝐵 − 𝐴) / (𝐴 · 𝐵)) | 
|   | 
| Theorem | subrecapd 8868 | 
Subtraction of reciprocals.  (Contributed by Scott Fenton,
       9-Jan-2017.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐴 # 0)    &   ⊢ (𝜑 → 𝐵 # 0)    ⇒   ⊢ (𝜑 → ((1 / 𝐴) − (1 / 𝐵)) = ((𝐵 − 𝐴) / (𝐴 · 𝐵))) | 
|   | 
| Theorem | mvllmulapd 8869 | 
Move LHS left multiplication to RHS. (Contributed by Jim Kingdon,
       10-Jun-2020.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐴 # 0)    &   ⊢ (𝜑 → (𝐴 · 𝐵) = 𝐶)    ⇒   ⊢ (𝜑 → 𝐵 = (𝐶 / 𝐴)) | 
|   | 
| Theorem | rerecapb 8870* | 
A real number has a multiplicative inverse if and only if it is apart
       from zero.  Theorem 11.2.4 of [HoTT], p. 
(varies).  (Contributed by Jim
       Kingdon, 18-Jan-2025.)
 | 
| ⊢ (𝐴 ∈ ℝ → (𝐴 # 0 ↔ ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)) | 
|   | 
| 4.3.9  Ordering on reals (cont.)
 | 
|   | 
| Theorem | ltp1 8871 | 
A number is less than itself plus 1.  (Contributed by NM, 20-Aug-2001.)
 | 
| ⊢ (𝐴 ∈ ℝ → 𝐴 < (𝐴 + 1)) | 
|   | 
| Theorem | lep1 8872 | 
A number is less than or equal to itself plus 1.  (Contributed by NM,
     5-Jan-2006.)
 | 
| ⊢ (𝐴 ∈ ℝ → 𝐴 ≤ (𝐴 + 1)) | 
|   | 
| Theorem | ltm1 8873 | 
A number minus 1 is less than itself.  (Contributed by NM, 9-Apr-2006.)
 | 
| ⊢ (𝐴 ∈ ℝ → (𝐴 − 1) < 𝐴) | 
|   | 
| Theorem | lem1 8874 | 
A number minus 1 is less than or equal to itself.  (Contributed by Mario
     Carneiro, 2-Oct-2015.)
 | 
| ⊢ (𝐴 ∈ ℝ → (𝐴 − 1) ≤ 𝐴) | 
|   | 
| Theorem | letrp1 8875 | 
A transitive property of 'less than or equal' and plus 1.  (Contributed by
     NM, 5-Aug-2005.)
 | 
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → 𝐴 ≤ (𝐵 + 1)) | 
|   | 
| Theorem | p1le 8876 | 
A transitive property of plus 1 and 'less than or equal'.  (Contributed by
     NM, 16-Aug-2005.)
 | 
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 + 1) ≤ 𝐵) → 𝐴 ≤ 𝐵) | 
|   | 
| Theorem | recgt0 8877 | 
The reciprocal of a positive number is positive.  Exercise 4 of [Apostol]
     p. 21.  (Contributed by NM, 25-Aug-1999.)  (Revised by Mario Carneiro,
     27-May-2016.)
 | 
| ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 < (1 / 𝐴)) | 
|   | 
| Theorem | prodgt0gt0 8878 | 
Infer that a multiplicand is positive from a positive multiplier and
     positive product.  See prodgt0 8879 for the same theorem with 0 < 𝐴
     replaced by the weaker condition 0 ≤ 𝐴.  (Contributed by Jim
     Kingdon, 29-Feb-2020.)
 | 
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 < (𝐴 · 𝐵))) → 0 < 𝐵) | 
|   | 
| Theorem | prodgt0 8879 | 
Infer that a multiplicand is positive from a nonnegative multiplier and
     positive product.  (Contributed by NM, 24-Apr-2005.)  (Revised by Mario
     Carneiro, 27-May-2016.)
 | 
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 < (𝐴 · 𝐵))) → 0 < 𝐵) | 
|   | 
| Theorem | prodgt02 8880 | 
Infer that a multiplier is positive from a nonnegative multiplicand and
     positive product.  (Contributed by NM, 24-Apr-2005.)
 | 
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐵 ∧ 0 < (𝐴 · 𝐵))) → 0 < 𝐴) | 
|   | 
| Theorem | prodge0 8881 | 
Infer that a multiplicand is nonnegative from a positive multiplier and
     nonnegative product.  (Contributed by NM, 2-Jul-2005.)  (Revised by Mario
     Carneiro, 27-May-2016.)
 | 
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 ≤ (𝐴 · 𝐵))) → 0 ≤ 𝐵) | 
|   | 
| Theorem | prodge02 8882 | 
Infer that a multiplier is nonnegative from a positive multiplicand and
     nonnegative product.  (Contributed by NM, 2-Jul-2005.)
 | 
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐵 ∧ 0 ≤ (𝐴 · 𝐵))) → 0 ≤ 𝐴) | 
|   | 
| Theorem | ltmul2 8883 | 
Multiplication of both sides of 'less than' by a positive number.  Theorem
     I.19 of [Apostol] p. 20.  (Contributed by
NM, 13-Feb-2005.)
 | 
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 < 𝐵 ↔ (𝐶 · 𝐴) < (𝐶 · 𝐵))) | 
|   | 
| Theorem | lemul2 8884 | 
Multiplication of both sides of 'less than or equal to' by a positive
     number.  (Contributed by NM, 16-Mar-2005.)
 | 
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 ≤ 𝐵 ↔ (𝐶 · 𝐴) ≤ (𝐶 · 𝐵))) | 
|   | 
| Theorem | lemul1a 8885 | 
Multiplication of both sides of 'less than or equal to' by a nonnegative
     number.  Part of Definition 11.2.7(vi) of [HoTT], p.  (varies).
     (Contributed by NM, 21-Feb-2005.)
 | 
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) ∧ 𝐴 ≤ 𝐵) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶)) | 
|   | 
| Theorem | lemul2a 8886 | 
Multiplication of both sides of 'less than or equal to' by a nonnegative
     number.  (Contributed by Paul Chapman, 7-Sep-2007.)
 | 
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) ∧ 𝐴 ≤ 𝐵) → (𝐶 · 𝐴) ≤ (𝐶 · 𝐵)) | 
|   | 
| Theorem | ltmul12a 8887 | 
Comparison of product of two positive numbers.  (Contributed by NM,
     30-Dec-2005.)
 | 
| ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 𝐴 < 𝐵)) ∧ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 ≤ 𝐶 ∧ 𝐶 < 𝐷))) → (𝐴 · 𝐶) < (𝐵 · 𝐷)) | 
|   | 
| Theorem | lemul12b 8888 | 
Comparison of product of two nonnegative numbers.  (Contributed by NM,
     22-Feb-2008.)
 | 
| ⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 ≤ 𝐷))) → ((𝐴 ≤ 𝐵 ∧ 𝐶 ≤ 𝐷) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐷))) | 
|   | 
| Theorem | lemul12a 8889 | 
Comparison of product of two nonnegative numbers.  (Contributed by NM,
     22-Feb-2008.)
 | 
| ⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ 𝐷 ∈ ℝ)) → ((𝐴 ≤ 𝐵 ∧ 𝐶 ≤ 𝐷) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐷))) | 
|   | 
| Theorem | mulgt1 8890 | 
The product of two numbers greater than 1 is greater than 1.  (Contributed
     by NM, 13-Feb-2005.)
 | 
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) → 1 < (𝐴 · 𝐵)) | 
|   | 
| Theorem | ltmulgt11 8891 | 
Multiplication by a number greater than 1.  (Contributed by NM,
     24-Dec-2005.)
 | 
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐴) → (1 < 𝐵 ↔ 𝐴 < (𝐴 · 𝐵))) | 
|   | 
| Theorem | ltmulgt12 8892 | 
Multiplication by a number greater than 1.  (Contributed by NM,
     24-Dec-2005.)
 | 
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐴) → (1 < 𝐵 ↔ 𝐴 < (𝐵 · 𝐴))) | 
|   | 
| Theorem | lemulge11 8893 | 
Multiplication by a number greater than or equal to 1.  (Contributed by
     NM, 17-Dec-2005.)
 | 
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 1 ≤ 𝐵)) → 𝐴 ≤ (𝐴 · 𝐵)) | 
|   | 
| Theorem | lemulge12 8894 | 
Multiplication by a number greater than or equal to 1.  (Contributed by
     Paul Chapman, 21-Mar-2011.)
 | 
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 1 ≤ 𝐵)) → 𝐴 ≤ (𝐵 · 𝐴)) | 
|   | 
| Theorem | ltdiv1 8895 | 
Division of both sides of 'less than' by a positive number.  (Contributed
     by NM, 10-Oct-2004.)  (Revised by Mario Carneiro, 27-May-2016.)
 | 
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 < 𝐵 ↔ (𝐴 / 𝐶) < (𝐵 / 𝐶))) | 
|   | 
| Theorem | lediv1 8896 | 
Division of both sides of a less than or equal to relation by a positive
     number.  (Contributed by NM, 18-Nov-2004.)
 | 
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 ≤ 𝐵 ↔ (𝐴 / 𝐶) ≤ (𝐵 / 𝐶))) | 
|   | 
| Theorem | gt0div 8897 | 
Division of a positive number by a positive number.  (Contributed by NM,
     28-Sep-2005.)
 | 
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐵) → (0 < 𝐴 ↔ 0 < (𝐴 / 𝐵))) | 
|   | 
| Theorem | ge0div 8898 | 
Division of a nonnegative number by a positive number.  (Contributed by
     NM, 28-Sep-2005.)
 | 
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐵) → (0 ≤ 𝐴 ↔ 0 ≤ (𝐴 / 𝐵))) | 
|   | 
| Theorem | divgt0 8899 | 
The ratio of two positive numbers is positive.  (Contributed by NM,
     12-Oct-1999.)
 | 
| ⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 < (𝐴 / 𝐵)) | 
|   | 
| Theorem | divge0 8900 | 
The ratio of nonnegative and positive numbers is nonnegative.
     (Contributed by NM, 27-Sep-1999.)
 | 
| ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 ≤ (𝐴 / 𝐵)) |