Theorem List for Intuitionistic Logic Explorer - 8801-8900 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | divcanap7 8801 |
Cancel equal divisors in a division. (Contributed by Jim Kingdon,
26-Feb-2020.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐴 / 𝐶) / (𝐵 / 𝐶)) = (𝐴 / 𝐵)) |
| |
| Theorem | dmdcanap 8802 |
Cancellation law for division and multiplication. (Contributed by Jim
Kingdon, 26-Feb-2020.)
|
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ 𝐶 ∈ ℂ) → ((𝐴 / 𝐵) · (𝐶 / 𝐴)) = (𝐶 / 𝐵)) |
| |
| Theorem | divdivap1 8803 |
Division into a fraction. (Contributed by Jim Kingdon, 26-Feb-2020.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐴 / 𝐵) / 𝐶) = (𝐴 / (𝐵 · 𝐶))) |
| |
| Theorem | divdivap2 8804 |
Division by a fraction. (Contributed by Jim Kingdon, 26-Feb-2020.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → (𝐴 / (𝐵 / 𝐶)) = ((𝐴 · 𝐶) / 𝐵)) |
| |
| Theorem | recdivap2 8805 |
Division into a reciprocal. (Contributed by Jim Kingdon, 26-Feb-2020.)
|
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → ((1 / 𝐴) / 𝐵) = (1 / (𝐴 · 𝐵))) |
| |
| Theorem | ddcanap 8806 |
Cancellation in a double division. (Contributed by Jim Kingdon,
26-Feb-2020.)
|
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → (𝐴 / (𝐴 / 𝐵)) = 𝐵) |
| |
| Theorem | divadddivap 8807 |
Addition of two ratios. (Contributed by Jim Kingdon, 26-Feb-2020.)
|
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → ((𝐴 / 𝐶) + (𝐵 / 𝐷)) = (((𝐴 · 𝐷) + (𝐵 · 𝐶)) / (𝐶 · 𝐷))) |
| |
| Theorem | divsubdivap 8808 |
Subtraction of two ratios. (Contributed by Jim Kingdon, 26-Feb-2020.)
|
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → ((𝐴 / 𝐶) − (𝐵 / 𝐷)) = (((𝐴 · 𝐷) − (𝐵 · 𝐶)) / (𝐶 · 𝐷))) |
| |
| Theorem | conjmulap 8809 |
Two numbers whose reciprocals sum to 1 are called "conjugates" and
satisfy
this relationship. (Contributed by Jim Kingdon, 26-Feb-2020.)
|
| ⊢ (((𝑃 ∈ ℂ ∧ 𝑃 # 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 # 0)) → (((1 / 𝑃) + (1 / 𝑄)) = 1 ↔ ((𝑃 − 1) · (𝑄 − 1)) = 1)) |
| |
| Theorem | rerecclap 8810 |
Closure law for reciprocal. (Contributed by Jim Kingdon,
26-Feb-2020.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → (1 / 𝐴) ∈ ℝ) |
| |
| Theorem | redivclap 8811 |
Closure law for division of reals. (Contributed by Jim Kingdon,
26-Feb-2020.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 # 0) → (𝐴 / 𝐵) ∈ ℝ) |
| |
| Theorem | eqneg 8812 |
A number equal to its negative is zero. (Contributed by NM, 12-Jul-2005.)
(Revised by Mario Carneiro, 27-May-2016.)
|
| ⊢ (𝐴 ∈ ℂ → (𝐴 = -𝐴 ↔ 𝐴 = 0)) |
| |
| Theorem | eqnegd 8813 |
A complex number equals its negative iff it is zero. Deduction form of
eqneg 8812. (Contributed by David Moews, 28-Feb-2017.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → (𝐴 = -𝐴 ↔ 𝐴 = 0)) |
| |
| Theorem | eqnegad 8814 |
If a complex number equals its own negative, it is zero. One-way
deduction form of eqneg 8812. (Contributed by David Moews,
28-Feb-2017.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 = -𝐴) ⇒ ⊢ (𝜑 → 𝐴 = 0) |
| |
| Theorem | div2negap 8815 |
Quotient of two negatives. (Contributed by Jim Kingdon, 27-Feb-2020.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (-𝐴 / -𝐵) = (𝐴 / 𝐵)) |
| |
| Theorem | divneg2ap 8816 |
Move negative sign inside of a division. (Contributed by Jim Kingdon,
27-Feb-2020.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → -(𝐴 / 𝐵) = (𝐴 / -𝐵)) |
| |
| Theorem | recclapzi 8817 |
Closure law for reciprocal. (Contributed by Jim Kingdon,
27-Feb-2020.)
|
| ⊢ 𝐴 ∈ ℂ
⇒ ⊢ (𝐴 # 0 → (1 / 𝐴) ∈ ℂ) |
| |
| Theorem | recap0apzi 8818 |
The reciprocal of a number apart from zero is apart from zero.
(Contributed by Jim Kingdon, 27-Feb-2020.)
|
| ⊢ 𝐴 ∈ ℂ
⇒ ⊢ (𝐴 # 0 → (1 / 𝐴) # 0) |
| |
| Theorem | recidapzi 8819 |
Multiplication of a number and its reciprocal. (Contributed by Jim
Kingdon, 27-Feb-2020.)
|
| ⊢ 𝐴 ∈ ℂ
⇒ ⊢ (𝐴 # 0 → (𝐴 · (1 / 𝐴)) = 1) |
| |
| Theorem | div1i 8820 |
A number divided by 1 is itself. (Contributed by NM, 9-Jan-2002.)
|
| ⊢ 𝐴 ∈ ℂ
⇒ ⊢ (𝐴 / 1) = 𝐴 |
| |
| Theorem | eqnegi 8821 |
A number equal to its negative is zero. (Contributed by NM,
29-May-1999.)
|
| ⊢ 𝐴 ∈ ℂ
⇒ ⊢ (𝐴 = -𝐴 ↔ 𝐴 = 0) |
| |
| Theorem | recclapi 8822 |
Closure law for reciprocal. (Contributed by NM, 30-Apr-2005.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐴 # 0
⇒ ⊢ (1 / 𝐴) ∈ ℂ |
| |
| Theorem | recidapi 8823 |
Multiplication of a number and its reciprocal. (Contributed by NM,
9-Feb-1995.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐴 # 0
⇒ ⊢ (𝐴 · (1 / 𝐴)) = 1 |
| |
| Theorem | recrecapi 8824 |
A number is equal to the reciprocal of its reciprocal. Theorem I.10
of [Apostol] p. 18. (Contributed by
NM, 9-Feb-1995.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐴 # 0
⇒ ⊢ (1 / (1 / 𝐴)) = 𝐴 |
| |
| Theorem | dividapi 8825 |
A number divided by itself is one. (Contributed by NM,
9-Feb-1995.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐴 # 0
⇒ ⊢ (𝐴 / 𝐴) = 1 |
| |
| Theorem | div0api 8826 |
Division into zero is zero. (Contributed by NM, 12-Aug-1999.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐴 # 0
⇒ ⊢ (0 / 𝐴) = 0 |
| |
| Theorem | divclapzi 8827 |
Closure law for division. (Contributed by Jim Kingdon, 27-Feb-2020.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈
ℂ ⇒ ⊢ (𝐵 # 0 → (𝐴 / 𝐵) ∈ ℂ) |
| |
| Theorem | divcanap1zi 8828 |
A cancellation law for division. (Contributed by Jim Kingdon,
27-Feb-2020.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈
ℂ ⇒ ⊢ (𝐵 # 0 → ((𝐴 / 𝐵) · 𝐵) = 𝐴) |
| |
| Theorem | divcanap2zi 8829 |
A cancellation law for division. (Contributed by Jim Kingdon,
27-Feb-2020.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈
ℂ ⇒ ⊢ (𝐵 # 0 → (𝐵 · (𝐴 / 𝐵)) = 𝐴) |
| |
| Theorem | divrecapzi 8830 |
Relationship between division and reciprocal. (Contributed by Jim
Kingdon, 27-Feb-2020.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈
ℂ ⇒ ⊢ (𝐵 # 0 → (𝐴 / 𝐵) = (𝐴 · (1 / 𝐵))) |
| |
| Theorem | divcanap3zi 8831 |
A cancellation law for division. (Contributed by Jim Kingdon,
27-Feb-2020.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈
ℂ ⇒ ⊢ (𝐵 # 0 → ((𝐵 · 𝐴) / 𝐵) = 𝐴) |
| |
| Theorem | divcanap4zi 8832 |
A cancellation law for division. (Contributed by Jim Kingdon,
27-Feb-2020.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈
ℂ ⇒ ⊢ (𝐵 # 0 → ((𝐴 · 𝐵) / 𝐵) = 𝐴) |
| |
| Theorem | rec11api 8833 |
Reciprocal is one-to-one. (Contributed by Jim Kingdon, 28-Feb-2020.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈
ℂ ⇒ ⊢ ((𝐴 # 0 ∧ 𝐵 # 0) → ((1 / 𝐴) = (1 / 𝐵) ↔ 𝐴 = 𝐵)) |
| |
| Theorem | divclapi 8834 |
Closure law for division. (Contributed by Jim Kingdon,
28-Feb-2020.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐵 # 0
⇒ ⊢ (𝐴 / 𝐵) ∈ ℂ |
| |
| Theorem | divcanap2i 8835 |
A cancellation law for division. (Contributed by Jim Kingdon,
28-Feb-2020.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐵 # 0
⇒ ⊢ (𝐵 · (𝐴 / 𝐵)) = 𝐴 |
| |
| Theorem | divcanap1i 8836 |
A cancellation law for division. (Contributed by Jim Kingdon,
28-Feb-2020.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐵 # 0
⇒ ⊢ ((𝐴 / 𝐵) · 𝐵) = 𝐴 |
| |
| Theorem | divrecapi 8837 |
Relationship between division and reciprocal. (Contributed by Jim
Kingdon, 28-Feb-2020.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐵 # 0
⇒ ⊢ (𝐴 / 𝐵) = (𝐴 · (1 / 𝐵)) |
| |
| Theorem | divcanap3i 8838 |
A cancellation law for division. (Contributed by Jim Kingdon,
28-Feb-2020.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐵 # 0
⇒ ⊢ ((𝐵 · 𝐴) / 𝐵) = 𝐴 |
| |
| Theorem | divcanap4i 8839 |
A cancellation law for division. (Contributed by Jim Kingdon,
28-Feb-2020.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐵 # 0
⇒ ⊢ ((𝐴 · 𝐵) / 𝐵) = 𝐴 |
| |
| Theorem | divap0i 8840 |
The ratio of numbers apart from zero is apart from zero. (Contributed
by Jim Kingdon, 28-Feb-2020.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐴 # 0 & ⊢ 𝐵 # 0
⇒ ⊢ (𝐴 / 𝐵) # 0 |
| |
| Theorem | rec11apii 8841 |
Reciprocal is one-to-one. (Contributed by Jim Kingdon,
28-Feb-2020.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐴 # 0 & ⊢ 𝐵 # 0
⇒ ⊢ ((1 / 𝐴) = (1 / 𝐵) ↔ 𝐴 = 𝐵) |
| |
| Theorem | divassapzi 8842 |
An associative law for division. (Contributed by Jim Kingdon,
28-Feb-2020.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈
ℂ ⇒ ⊢ (𝐶 # 0 → ((𝐴 · 𝐵) / 𝐶) = (𝐴 · (𝐵 / 𝐶))) |
| |
| Theorem | divmulapzi 8843 |
Relationship between division and multiplication. (Contributed by Jim
Kingdon, 28-Feb-2020.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈
ℂ ⇒ ⊢ (𝐵 # 0 → ((𝐴 / 𝐵) = 𝐶 ↔ (𝐵 · 𝐶) = 𝐴)) |
| |
| Theorem | divdirapzi 8844 |
Distribution of division over addition. (Contributed by Jim Kingdon,
28-Feb-2020.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈
ℂ ⇒ ⊢ (𝐶 # 0 → ((𝐴 + 𝐵) / 𝐶) = ((𝐴 / 𝐶) + (𝐵 / 𝐶))) |
| |
| Theorem | divdiv23apzi 8845 |
Swap denominators in a division. (Contributed by Jim Kingdon,
28-Feb-2020.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈
ℂ ⇒ ⊢ ((𝐵 # 0 ∧ 𝐶 # 0) → ((𝐴 / 𝐵) / 𝐶) = ((𝐴 / 𝐶) / 𝐵)) |
| |
| Theorem | divmulapi 8846 |
Relationship between division and multiplication. (Contributed by Jim
Kingdon, 29-Feb-2020.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐵 # 0
⇒ ⊢ ((𝐴 / 𝐵) = 𝐶 ↔ (𝐵 · 𝐶) = 𝐴) |
| |
| Theorem | divdiv32api 8847 |
Swap denominators in a division. (Contributed by Jim Kingdon,
29-Feb-2020.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐵 # 0 & ⊢ 𝐶 # 0
⇒ ⊢ ((𝐴 / 𝐵) / 𝐶) = ((𝐴 / 𝐶) / 𝐵) |
| |
| Theorem | divassapi 8848 |
An associative law for division. (Contributed by Jim Kingdon,
9-Mar-2020.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐶 # 0
⇒ ⊢ ((𝐴 · 𝐵) / 𝐶) = (𝐴 · (𝐵 / 𝐶)) |
| |
| Theorem | divdirapi 8849 |
Distribution of division over addition. (Contributed by Jim Kingdon,
9-Mar-2020.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐶 # 0
⇒ ⊢ ((𝐴 + 𝐵) / 𝐶) = ((𝐴 / 𝐶) + (𝐵 / 𝐶)) |
| |
| Theorem | div23api 8850 |
A commutative/associative law for division. (Contributed by Jim
Kingdon, 9-Mar-2020.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐶 # 0
⇒ ⊢ ((𝐴 · 𝐵) / 𝐶) = ((𝐴 / 𝐶) · 𝐵) |
| |
| Theorem | div11api 8851 |
One-to-one relationship for division. (Contributed by Jim Kingdon,
9-Mar-2020.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐶 # 0
⇒ ⊢ ((𝐴 / 𝐶) = (𝐵 / 𝐶) ↔ 𝐴 = 𝐵) |
| |
| Theorem | divmuldivapi 8852 |
Multiplication of two ratios. (Contributed by Jim Kingdon,
9-Mar-2020.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐷 ∈ ℂ & ⊢ 𝐵 # 0 & ⊢ 𝐷 # 0
⇒ ⊢ ((𝐴 / 𝐵) · (𝐶 / 𝐷)) = ((𝐴 · 𝐶) / (𝐵 · 𝐷)) |
| |
| Theorem | divmul13api 8853 |
Swap denominators of two ratios. (Contributed by Jim Kingdon,
9-Mar-2020.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐷 ∈ ℂ & ⊢ 𝐵 # 0 & ⊢ 𝐷 # 0
⇒ ⊢ ((𝐴 / 𝐵) · (𝐶 / 𝐷)) = ((𝐶 / 𝐵) · (𝐴 / 𝐷)) |
| |
| Theorem | divadddivapi 8854 |
Addition of two ratios. (Contributed by Jim Kingdon, 9-Mar-2020.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐷 ∈ ℂ & ⊢ 𝐵 # 0 & ⊢ 𝐷 # 0
⇒ ⊢ ((𝐴 / 𝐵) + (𝐶 / 𝐷)) = (((𝐴 · 𝐷) + (𝐶 · 𝐵)) / (𝐵 · 𝐷)) |
| |
| Theorem | divdivdivapi 8855 |
Division of two ratios. (Contributed by Jim Kingdon, 9-Mar-2020.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐷 ∈ ℂ & ⊢ 𝐵 # 0 & ⊢ 𝐷 # 0 & ⊢ 𝐶 # 0
⇒ ⊢ ((𝐴 / 𝐵) / (𝐶 / 𝐷)) = ((𝐴 · 𝐷) / (𝐵 · 𝐶)) |
| |
| Theorem | rerecclapzi 8856 |
Closure law for reciprocal. (Contributed by Jim Kingdon,
9-Mar-2020.)
|
| ⊢ 𝐴 ∈ ℝ
⇒ ⊢ (𝐴 # 0 → (1 / 𝐴) ∈ ℝ) |
| |
| Theorem | rerecclapi 8857 |
Closure law for reciprocal. (Contributed by Jim Kingdon,
9-Mar-2020.)
|
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐴 # 0
⇒ ⊢ (1 / 𝐴) ∈ ℝ |
| |
| Theorem | redivclapzi 8858 |
Closure law for division of reals. (Contributed by Jim Kingdon,
9-Mar-2020.)
|
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈
ℝ ⇒ ⊢ (𝐵 # 0 → (𝐴 / 𝐵) ∈ ℝ) |
| |
| Theorem | redivclapi 8859 |
Closure law for division of reals. (Contributed by Jim Kingdon,
9-Mar-2020.)
|
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐵 # 0
⇒ ⊢ (𝐴 / 𝐵) ∈ ℝ |
| |
| Theorem | div1d 8860 |
A number divided by 1 is itself. (Contributed by Mario Carneiro,
27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → (𝐴 / 1) = 𝐴) |
| |
| Theorem | recclapd 8861 |
Closure law for reciprocal. (Contributed by Jim Kingdon,
3-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 0) ⇒ ⊢ (𝜑 → (1 / 𝐴) ∈ ℂ) |
| |
| Theorem | recap0d 8862 |
The reciprocal of a number apart from zero is apart from zero.
(Contributed by Jim Kingdon, 3-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 0) ⇒ ⊢ (𝜑 → (1 / 𝐴) # 0) |
| |
| Theorem | recidapd 8863 |
Multiplication of a number and its reciprocal. (Contributed by Jim
Kingdon, 3-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 0) ⇒ ⊢ (𝜑 → (𝐴 · (1 / 𝐴)) = 1) |
| |
| Theorem | recidap2d 8864 |
Multiplication of a number and its reciprocal. (Contributed by Jim
Kingdon, 3-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 0) ⇒ ⊢ (𝜑 → ((1 / 𝐴) · 𝐴) = 1) |
| |
| Theorem | recrecapd 8865 |
A number is equal to the reciprocal of its reciprocal. (Contributed
by Jim Kingdon, 3-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 0) ⇒ ⊢ (𝜑 → (1 / (1 / 𝐴)) = 𝐴) |
| |
| Theorem | dividapd 8866 |
A number divided by itself is one. (Contributed by Jim Kingdon,
3-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 0) ⇒ ⊢ (𝜑 → (𝐴 / 𝐴) = 1) |
| |
| Theorem | div0apd 8867 |
Division into zero is zero. (Contributed by Jim Kingdon,
3-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 0) ⇒ ⊢ (𝜑 → (0 / 𝐴) = 0) |
| |
| Theorem | apmul1 8868 |
Multiplication of both sides of complex apartness by a complex number
apart from zero. (Contributed by Jim Kingdon, 20-Mar-2020.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → (𝐴 # 𝐵 ↔ (𝐴 · 𝐶) # (𝐵 · 𝐶))) |
| |
| Theorem | apmul2 8869 |
Multiplication of both sides of complex apartness by a complex number
apart from zero. (Contributed by Jim Kingdon, 6-Jan-2023.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → (𝐴 # 𝐵 ↔ (𝐶 · 𝐴) # (𝐶 · 𝐵))) |
| |
| Theorem | divclapd 8870 |
Closure law for division. (Contributed by Jim Kingdon,
29-Feb-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → (𝐴 / 𝐵) ∈ ℂ) |
| |
| Theorem | divcanap1d 8871 |
A cancellation law for division. (Contributed by Jim Kingdon,
29-Feb-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐵) · 𝐵) = 𝐴) |
| |
| Theorem | divcanap2d 8872 |
A cancellation law for division. (Contributed by Jim Kingdon,
29-Feb-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → (𝐵 · (𝐴 / 𝐵)) = 𝐴) |
| |
| Theorem | divrecapd 8873 |
Relationship between division and reciprocal. Theorem I.9 of
[Apostol] p. 18. (Contributed by Jim
Kingdon, 29-Feb-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → (𝐴 / 𝐵) = (𝐴 · (1 / 𝐵))) |
| |
| Theorem | divrecap2d 8874 |
Relationship between division and reciprocal. (Contributed by Jim
Kingdon, 29-Feb-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → (𝐴 / 𝐵) = ((1 / 𝐵) · 𝐴)) |
| |
| Theorem | divcanap3d 8875 |
A cancellation law for division. (Contributed by Jim Kingdon,
29-Feb-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → ((𝐵 · 𝐴) / 𝐵) = 𝐴) |
| |
| Theorem | divcanap4d 8876 |
A cancellation law for division. (Contributed by Jim Kingdon,
29-Feb-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → ((𝐴 · 𝐵) / 𝐵) = 𝐴) |
| |
| Theorem | diveqap0d 8877 |
If a ratio is zero, the numerator is zero. (Contributed by Jim
Kingdon, 19-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) & ⊢ (𝜑 → (𝐴 / 𝐵) = 0) ⇒ ⊢ (𝜑 → 𝐴 = 0) |
| |
| Theorem | diveqap1d 8878 |
Equality in terms of unit ratio. (Contributed by Jim Kingdon,
19-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) & ⊢ (𝜑 → (𝐴 / 𝐵) = 1) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) |
| |
| Theorem | diveqap1ad 8879 |
The quotient of two complex numbers is one iff they are equal.
Deduction form of diveqap1 8785. Generalization of diveqap1d 8878.
(Contributed by Jim Kingdon, 19-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐵) = 1 ↔ 𝐴 = 𝐵)) |
| |
| Theorem | diveqap0ad 8880 |
A fraction of complex numbers is zero iff its numerator is. Deduction
form of diveqap0 8762. (Contributed by Jim Kingdon, 19-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐵) = 0 ↔ 𝐴 = 0)) |
| |
| Theorem | divap1d 8881 |
If two complex numbers are apart, their quotient is apart from one.
(Contributed by Jim Kingdon, 20-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) & ⊢ (𝜑 → 𝐴 # 𝐵) ⇒ ⊢ (𝜑 → (𝐴 / 𝐵) # 1) |
| |
| Theorem | divap0bd 8882 |
A ratio is zero iff the numerator is zero. (Contributed by Jim
Kingdon, 19-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → (𝐴 # 0 ↔ (𝐴 / 𝐵) # 0)) |
| |
| Theorem | divnegapd 8883 |
Move negative sign inside of a division. (Contributed by Jim Kingdon,
19-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → -(𝐴 / 𝐵) = (-𝐴 / 𝐵)) |
| |
| Theorem | divneg2apd 8884 |
Move negative sign inside of a division. (Contributed by Jim Kingdon,
19-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → -(𝐴 / 𝐵) = (𝐴 / -𝐵)) |
| |
| Theorem | div2negapd 8885 |
Quotient of two negatives. (Contributed by Jim Kingdon,
19-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → (-𝐴 / -𝐵) = (𝐴 / 𝐵)) |
| |
| Theorem | divap0d 8886 |
The ratio of numbers apart from zero is apart from zero. (Contributed
by Jim Kingdon, 3-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 0) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → (𝐴 / 𝐵) # 0) |
| |
| Theorem | recdivapd 8887 |
The reciprocal of a ratio. (Contributed by Jim Kingdon,
3-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 0) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → (1 / (𝐴 / 𝐵)) = (𝐵 / 𝐴)) |
| |
| Theorem | recdivap2d 8888 |
Division into a reciprocal. (Contributed by Jim Kingdon,
3-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 0) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → ((1 / 𝐴) / 𝐵) = (1 / (𝐴 · 𝐵))) |
| |
| Theorem | divcanap6d 8889 |
Cancellation of inverted fractions. (Contributed by Jim Kingdon,
3-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 0) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐵) · (𝐵 / 𝐴)) = 1) |
| |
| Theorem | ddcanapd 8890 |
Cancellation in a double division. (Contributed by Jim Kingdon,
3-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 0) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → (𝐴 / (𝐴 / 𝐵)) = 𝐵) |
| |
| Theorem | rec11apd 8891 |
Reciprocal is one-to-one. (Contributed by Jim Kingdon,
3-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 0) & ⊢ (𝜑 → 𝐵 # 0) & ⊢ (𝜑 → (1 / 𝐴) = (1 / 𝐵)) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) |
| |
| Theorem | divmulapd 8892 |
Relationship between division and multiplication. (Contributed by Jim
Kingdon, 8-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐵) = 𝐶 ↔ (𝐵 · 𝐶) = 𝐴)) |
| |
| Theorem | apdivmuld 8893 |
Relationship between division and multiplication. (Contributed by Jim
Kingdon, 26-Dec-2022.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐵) # 𝐶 ↔ (𝐵 · 𝐶) # 𝐴)) |
| |
| Theorem | div32apd 8894 |
A commutative/associative law for division. (Contributed by Jim
Kingdon, 8-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐵) · 𝐶) = (𝐴 · (𝐶 / 𝐵))) |
| |
| Theorem | div13apd 8895 |
A commutative/associative law for division. (Contributed by Jim
Kingdon, 8-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐵) · 𝐶) = ((𝐶 / 𝐵) · 𝐴)) |
| |
| Theorem | divdiv32apd 8896 |
Swap denominators in a division. (Contributed by Jim Kingdon,
8-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) & ⊢ (𝜑 → 𝐶 # 0) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐵) / 𝐶) = ((𝐴 / 𝐶) / 𝐵)) |
| |
| Theorem | divcanap5d 8897 |
Cancellation of common factor in a ratio. (Contributed by Jim
Kingdon, 8-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) & ⊢ (𝜑 → 𝐶 # 0) ⇒ ⊢ (𝜑 → ((𝐶 · 𝐴) / (𝐶 · 𝐵)) = (𝐴 / 𝐵)) |
| |
| Theorem | divcanap5rd 8898 |
Cancellation of common factor in a ratio. (Contributed by Jim
Kingdon, 8-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) & ⊢ (𝜑 → 𝐶 # 0) ⇒ ⊢ (𝜑 → ((𝐴 · 𝐶) / (𝐵 · 𝐶)) = (𝐴 / 𝐵)) |
| |
| Theorem | divcanap7d 8899 |
Cancel equal divisors in a division. (Contributed by Jim Kingdon,
8-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) & ⊢ (𝜑 → 𝐶 # 0) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐶) / (𝐵 / 𝐶)) = (𝐴 / 𝐵)) |
| |
| Theorem | dmdcanapd 8900 |
Cancellation law for division and multiplication. (Contributed by Jim
Kingdon, 8-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) & ⊢ (𝜑 → 𝐶 # 0) ⇒ ⊢ (𝜑 → ((𝐵 / 𝐶) · (𝐴 / 𝐵)) = (𝐴 / 𝐶)) |