HomeHome Intuitionistic Logic Explorer
Theorem List (p. 89 of 140)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 8801-8900   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremrecgt0i 8801 The reciprocal of a positive number is positive. Exercise 4 of [Apostol] p. 21. (Contributed by NM, 15-May-1999.)
𝐴 ∈ ℝ       (0 < 𝐴 → 0 < (1 / 𝐴))
 
Theoremrecgt0ii 8802 The reciprocal of a positive number is positive. Exercise 4 of [Apostol] p. 21. (Contributed by NM, 15-May-1999.)
𝐴 ∈ ℝ    &   0 < 𝐴       0 < (1 / 𝐴)
 
Theoremprodgt0i 8803 Infer that a multiplicand is positive from a nonnegative multiplier and positive product. (Contributed by NM, 15-May-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       ((0 ≤ 𝐴 ∧ 0 < (𝐴 · 𝐵)) → 0 < 𝐵)
 
Theoremprodge0i 8804 Infer that a multiplicand is nonnegative from a positive multiplier and nonnegative product. (Contributed by NM, 2-Jul-2005.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       ((0 < 𝐴 ∧ 0 ≤ (𝐴 · 𝐵)) → 0 ≤ 𝐵)
 
Theoremdivgt0i 8805 The ratio of two positive numbers is positive. (Contributed by NM, 16-May-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       ((0 < 𝐴 ∧ 0 < 𝐵) → 0 < (𝐴 / 𝐵))
 
Theoremdivge0i 8806 The ratio of nonnegative and positive numbers is nonnegative. (Contributed by NM, 12-Aug-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       ((0 ≤ 𝐴 ∧ 0 < 𝐵) → 0 ≤ (𝐴 / 𝐵))
 
Theoremltreci 8807 The reciprocal of both sides of 'less than'. (Contributed by NM, 15-Sep-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       ((0 < 𝐴 ∧ 0 < 𝐵) → (𝐴 < 𝐵 ↔ (1 / 𝐵) < (1 / 𝐴)))
 
Theoremlereci 8808 The reciprocal of both sides of 'less than or equal to'. (Contributed by NM, 16-Sep-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       ((0 < 𝐴 ∧ 0 < 𝐵) → (𝐴𝐵 ↔ (1 / 𝐵) ≤ (1 / 𝐴)))
 
Theoremlt2msqi 8809 The square function on nonnegative reals is strictly monotonic. (Contributed by NM, 3-Aug-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → (𝐴 < 𝐵 ↔ (𝐴 · 𝐴) < (𝐵 · 𝐵)))
 
Theoremle2msqi 8810 The square function on nonnegative reals is monotonic. (Contributed by NM, 2-Aug-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → (𝐴𝐵 ↔ (𝐴 · 𝐴) ≤ (𝐵 · 𝐵)))
 
Theoremmsq11i 8811 The square of a nonnegative number is a one-to-one function. (Contributed by NM, 29-Jul-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → ((𝐴 · 𝐴) = (𝐵 · 𝐵) ↔ 𝐴 = 𝐵))
 
Theoremdivgt0i2i 8812 The ratio of two positive numbers is positive. (Contributed by NM, 16-May-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ    &   0 < 𝐵       (0 < 𝐴 → 0 < (𝐴 / 𝐵))
 
Theoremltrecii 8813 The reciprocal of both sides of 'less than'. (Contributed by NM, 15-Sep-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ    &   0 < 𝐴    &   0 < 𝐵       (𝐴 < 𝐵 ↔ (1 / 𝐵) < (1 / 𝐴))
 
Theoremdivgt0ii 8814 The ratio of two positive numbers is positive. (Contributed by NM, 18-May-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ    &   0 < 𝐴    &   0 < 𝐵       0 < (𝐴 / 𝐵)
 
Theoremltmul1i 8815 Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of [Apostol] p. 20. (Contributed by NM, 16-May-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ    &   𝐶 ∈ ℝ       (0 < 𝐶 → (𝐴 < 𝐵 ↔ (𝐴 · 𝐶) < (𝐵 · 𝐶)))
 
Theoremltdiv1i 8816 Division of both sides of 'less than' by a positive number. (Contributed by NM, 16-May-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ    &   𝐶 ∈ ℝ       (0 < 𝐶 → (𝐴 < 𝐵 ↔ (𝐴 / 𝐶) < (𝐵 / 𝐶)))
 
Theoremltmuldivi 8817 'Less than' relationship between division and multiplication. (Contributed by NM, 12-Oct-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ    &   𝐶 ∈ ℝ       (0 < 𝐶 → ((𝐴 · 𝐶) < 𝐵𝐴 < (𝐵 / 𝐶)))
 
Theoremltmul2i 8818 Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of [Apostol] p. 20. (Contributed by NM, 16-May-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ    &   𝐶 ∈ ℝ       (0 < 𝐶 → (𝐴 < 𝐵 ↔ (𝐶 · 𝐴) < (𝐶 · 𝐵)))
 
Theoremlemul1i 8819 Multiplication of both sides of 'less than or equal to' by a positive number. (Contributed by NM, 2-Aug-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ    &   𝐶 ∈ ℝ       (0 < 𝐶 → (𝐴𝐵 ↔ (𝐴 · 𝐶) ≤ (𝐵 · 𝐶)))
 
Theoremlemul2i 8820 Multiplication of both sides of 'less than or equal to' by a positive number. (Contributed by NM, 1-Aug-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ    &   𝐶 ∈ ℝ       (0 < 𝐶 → (𝐴𝐵 ↔ (𝐶 · 𝐴) ≤ (𝐶 · 𝐵)))
 
Theoremltdiv23i 8821 Swap denominator with other side of 'less than'. (Contributed by NM, 26-Sep-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ    &   𝐶 ∈ ℝ       ((0 < 𝐵 ∧ 0 < 𝐶) → ((𝐴 / 𝐵) < 𝐶 ↔ (𝐴 / 𝐶) < 𝐵))
 
Theoremltdiv23ii 8822 Swap denominator with other side of 'less than'. (Contributed by NM, 26-Sep-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ    &   𝐶 ∈ ℝ    &   0 < 𝐵    &   0 < 𝐶       ((𝐴 / 𝐵) < 𝐶 ↔ (𝐴 / 𝐶) < 𝐵)
 
Theoremltmul1ii 8823 Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of [Apostol] p. 20. (Contributed by NM, 16-May-1999.) (Proof shortened by Paul Chapman, 25-Jan-2008.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ    &   𝐶 ∈ ℝ    &   0 < 𝐶       (𝐴 < 𝐵 ↔ (𝐴 · 𝐶) < (𝐵 · 𝐶))
 
Theoremltdiv1ii 8824 Division of both sides of 'less than' by a positive number. (Contributed by NM, 16-May-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ    &   𝐶 ∈ ℝ    &   0 < 𝐶       (𝐴 < 𝐵 ↔ (𝐴 / 𝐶) < (𝐵 / 𝐶))
 
Theoremltp1d 8825 A number is less than itself plus 1. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ)       (𝜑𝐴 < (𝐴 + 1))
 
Theoremlep1d 8826 A number is less than or equal to itself plus 1. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ)       (𝜑𝐴 ≤ (𝐴 + 1))
 
Theoremltm1d 8827 A number minus 1 is less than itself. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ)       (𝜑 → (𝐴 − 1) < 𝐴)
 
Theoremlem1d 8828 A number minus 1 is less than or equal to itself. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ)       (𝜑 → (𝐴 − 1) ≤ 𝐴)
 
Theoremrecgt0d 8829 The reciprocal of a positive number is positive. Exercise 4 of [Apostol] p. 21. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 < 𝐴)       (𝜑 → 0 < (1 / 𝐴))
 
Theoremdivgt0d 8830 The ratio of two positive numbers is positive. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → 0 < 𝐴)    &   (𝜑 → 0 < 𝐵)       (𝜑 → 0 < (𝐴 / 𝐵))
 
Theoremmulgt1d 8831 The product of two numbers greater than 1 is greater than 1. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → 1 < 𝐴)    &   (𝜑 → 1 < 𝐵)       (𝜑 → 1 < (𝐴 · 𝐵))
 
Theoremlemulge11d 8832 Multiplication by a number greater than or equal to 1. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑 → 1 ≤ 𝐵)       (𝜑𝐴 ≤ (𝐴 · 𝐵))
 
Theoremlemulge12d 8833 Multiplication by a number greater than or equal to 1. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑 → 1 ≤ 𝐵)       (𝜑𝐴 ≤ (𝐵 · 𝐴))
 
Theoremlemul1ad 8834 Multiplication of both sides of 'less than or equal to' by a nonnegative number. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐶)    &   (𝜑𝐴𝐵)       (𝜑 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶))
 
Theoremlemul2ad 8835 Multiplication of both sides of 'less than or equal to' by a nonnegative number. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐶)    &   (𝜑𝐴𝐵)       (𝜑 → (𝐶 · 𝐴) ≤ (𝐶 · 𝐵))
 
Theoremltmul12ad 8836 Comparison of product of two positive numbers. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐷 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑𝐴 < 𝐵)    &   (𝜑 → 0 ≤ 𝐶)    &   (𝜑𝐶 < 𝐷)       (𝜑 → (𝐴 · 𝐶) < (𝐵 · 𝐷))
 
Theoremlemul12ad 8837 Comparison of product of two nonnegative numbers. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐷 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑 → 0 ≤ 𝐶)    &   (𝜑𝐴𝐵)    &   (𝜑𝐶𝐷)       (𝜑 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐷))
 
Theoremlemul12bd 8838 Comparison of product of two nonnegative numbers. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐷 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑 → 0 ≤ 𝐷)    &   (𝜑𝐴𝐵)    &   (𝜑𝐶𝐷)       (𝜑 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐷))
 
Theoremmulle0r 8839 Multiplying a nonnegative number by a nonpositive number yields a nonpositive number. (Contributed by Jim Kingdon, 28-Oct-2021.)
(((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≤ 0 ∧ 0 ≤ 𝐵)) → (𝐴 · 𝐵) ≤ 0)
 
4.3.10  Suprema
 
Theoremlbreu 8840* If a set of reals contains a lower bound, it contains a unique lower bound. (Contributed by NM, 9-Oct-2005.)
((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦) → ∃!𝑥𝑆𝑦𝑆 𝑥𝑦)
 
Theoremlbcl 8841* If a set of reals contains a lower bound, it contains a unique lower bound that belongs to the set. (Contributed by NM, 9-Oct-2005.) (Revised by Mario Carneiro, 24-Dec-2016.)
((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦) → (𝑥𝑆𝑦𝑆 𝑥𝑦) ∈ 𝑆)
 
Theoremlble 8842* If a set of reals contains a lower bound, the lower bound is less than or equal to all members of the set. (Contributed by NM, 9-Oct-2005.) (Proof shortened by Mario Carneiro, 24-Dec-2016.)
((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦𝐴𝑆) → (𝑥𝑆𝑦𝑆 𝑥𝑦) ≤ 𝐴)
 
Theoremlbinf 8843* If a set of reals contains a lower bound, the lower bound is its infimum. (Contributed by NM, 9-Oct-2005.) (Revised by AV, 4-Sep-2020.)
((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦) → inf(𝑆, ℝ, < ) = (𝑥𝑆𝑦𝑆 𝑥𝑦))
 
Theoremlbinfcl 8844* If a set of reals contains a lower bound, it contains its infimum. (Contributed by NM, 11-Oct-2005.) (Revised by AV, 4-Sep-2020.)
((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦) → inf(𝑆, ℝ, < ) ∈ 𝑆)
 
Theoremlbinfle 8845* If a set of reals contains a lower bound, its infimum is less than or equal to all members of the set. (Contributed by NM, 11-Oct-2005.) (Revised by AV, 4-Sep-2020.)
((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦𝐴𝑆) → inf(𝑆, ℝ, < ) ≤ 𝐴)
 
Theoremsuprubex 8846* A member of a nonempty bounded set of reals is less than or equal to the set's upper bound. (Contributed by Jim Kingdon, 18-Jan-2022.)
(𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))    &   (𝜑𝐴 ⊆ ℝ)    &   (𝜑𝐵𝐴)       (𝜑𝐵 ≤ sup(𝐴, ℝ, < ))
 
Theoremsuprlubex 8847* The supremum of a nonempty bounded set of reals is the least upper bound. (Contributed by Jim Kingdon, 19-Jan-2022.)
(𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))    &   (𝜑𝐴 ⊆ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (𝐵 < sup(𝐴, ℝ, < ) ↔ ∃𝑧𝐴 𝐵 < 𝑧))
 
Theoremsuprnubex 8848* An upper bound is not less than the supremum of a nonempty bounded set of reals. (Contributed by Jim Kingdon, 19-Jan-2022.)
(𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))    &   (𝜑𝐴 ⊆ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (¬ 𝐵 < sup(𝐴, ℝ, < ) ↔ ∀𝑧𝐴 ¬ 𝐵 < 𝑧))
 
Theoremsuprleubex 8849* The supremum of a nonempty bounded set of reals is less than or equal to an upper bound. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 6-Sep-2014.)
(𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))    &   (𝜑𝐴 ⊆ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (sup(𝐴, ℝ, < ) ≤ 𝐵 ↔ ∀𝑧𝐴 𝑧𝐵))
 
Theoremnegiso 8850 Negation is an order anti-isomorphism of the real numbers, which is its own inverse. (Contributed by Mario Carneiro, 24-Dec-2016.)
𝐹 = (𝑥 ∈ ℝ ↦ -𝑥)       (𝐹 Isom < , < (ℝ, ℝ) ∧ 𝐹 = 𝐹)
 
Theoremdfinfre 8851* The infimum of a set of reals 𝐴. (Contributed by NM, 9-Oct-2005.) (Revised by AV, 4-Sep-2020.)
(𝐴 ⊆ ℝ → inf(𝐴, ℝ, < ) = {𝑥 ∈ ℝ ∣ (∀𝑦𝐴 𝑥𝑦 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))})
 
Theoremsup3exmid 8852* If any inhabited set of real numbers bounded from above has a supremum, excluded middle follows. (Contributed by Jim Kingdon, 2-Apr-2023.)
((𝑢 ⊆ ℝ ∧ ∃𝑤 𝑤𝑢 ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥) → ∃𝑥 ∈ ℝ (∀𝑦𝑢 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝑢 𝑦 < 𝑧)))       DECID 𝜑
 
4.3.11  Imaginary and complex number properties
 
Theoremcrap0 8853 The real representation of complex numbers is apart from zero iff one of its terms is apart from zero. (Contributed by Jim Kingdon, 5-Mar-2020.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 # 0 ∨ 𝐵 # 0) ↔ (𝐴 + (i · 𝐵)) # 0))
 
Theoremcreur 8854* The real part of a complex number is unique. Proposition 10-1.3 of [Gleason] p. 130. (Contributed by NM, 9-May-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
(𝐴 ∈ ℂ → ∃!𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
 
Theoremcreui 8855* The imaginary part of a complex number is unique. Proposition 10-1.3 of [Gleason] p. 130. (Contributed by NM, 9-May-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
(𝐴 ∈ ℂ → ∃!𝑦 ∈ ℝ ∃𝑥 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
 
Theoremcju 8856* The complex conjugate of a complex number is unique. (Contributed by Mario Carneiro, 6-Nov-2013.)
(𝐴 ∈ ℂ → ∃!𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ))
 
4.4  Integer sets
 
4.4.1  Positive integers (as a subset of complex numbers)
 
Syntaxcn 8857 Extend class notation to include the class of positive integers.
class
 
Definitiondf-inn 8858* Definition of the set of positive integers. For naming consistency with the Metamath Proof Explorer usages should refer to dfnn2 8859 instead. (Contributed by Jeff Hankins, 12-Sep-2013.) (Revised by Mario Carneiro, 3-May-2014.) (New usage is discouraged.)
ℕ = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
 
Theoremdfnn2 8859* Definition of the set of positive integers. Another name for df-inn 8858. (Contributed by Jeff Hankins, 12-Sep-2013.) (Revised by Mario Carneiro, 3-May-2014.)
ℕ = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
 
Theorempeano5nni 8860* Peano's inductive postulate. Theorem I.36 (principle of mathematical induction) of [Apostol] p. 34. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 17-Nov-2014.)
((1 ∈ 𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ℕ ⊆ 𝐴)
 
Theoremnnssre 8861 The positive integers are a subset of the reals. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 16-Jun-2013.)
ℕ ⊆ ℝ
 
Theoremnnsscn 8862 The positive integers are a subset of the complex numbers. (Contributed by NM, 2-Aug-2004.)
ℕ ⊆ ℂ
 
Theoremnnex 8863 The set of positive integers exists. (Contributed by NM, 3-Oct-1999.) (Revised by Mario Carneiro, 17-Nov-2014.)
ℕ ∈ V
 
Theoremnnre 8864 A positive integer is a real number. (Contributed by NM, 18-Aug-1999.)
(𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
 
Theoremnncn 8865 A positive integer is a complex number. (Contributed by NM, 18-Aug-1999.)
(𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
 
Theoremnnrei 8866 A positive integer is a real number. (Contributed by NM, 18-Aug-1999.)
𝐴 ∈ ℕ       𝐴 ∈ ℝ
 
Theoremnncni 8867 A positive integer is a complex number. (Contributed by NM, 18-Aug-1999.)
𝐴 ∈ ℕ       𝐴 ∈ ℂ
 
Theorem1nn 8868 Peano postulate: 1 is a positive integer. (Contributed by NM, 11-Jan-1997.)
1 ∈ ℕ
 
Theorempeano2nn 8869 Peano postulate: a successor of a positive integer is a positive integer. (Contributed by NM, 11-Jan-1997.) (Revised by Mario Carneiro, 17-Nov-2014.)
(𝐴 ∈ ℕ → (𝐴 + 1) ∈ ℕ)
 
Theoremnnred 8870 A positive integer is a real number. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℕ)       (𝜑𝐴 ∈ ℝ)
 
Theoremnncnd 8871 A positive integer is a complex number. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℕ)       (𝜑𝐴 ∈ ℂ)
 
Theorempeano2nnd 8872 Peano postulate: a successor of a positive integer is a positive integer. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℕ)       (𝜑 → (𝐴 + 1) ∈ ℕ)
 
4.4.2  Principle of mathematical induction
 
Theoremnnind 8873* Principle of Mathematical Induction (inference schema). The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. See nnaddcl 8877 for an example of its use. This is an alternative for Metamath 100 proof #74. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 16-Jun-2013.)
(𝑥 = 1 → (𝜑𝜓))    &   (𝑥 = 𝑦 → (𝜑𝜒))    &   (𝑥 = (𝑦 + 1) → (𝜑𝜃))    &   (𝑥 = 𝐴 → (𝜑𝜏))    &   𝜓    &   (𝑦 ∈ ℕ → (𝜒𝜃))       (𝐴 ∈ ℕ → 𝜏)
 
TheoremnnindALT 8874* Principle of Mathematical Induction (inference schema). The last four hypotheses give us the substitution instances we need; the first two are the induction step and the basis.

This ALT version of nnind 8873 has a different hypothesis order. It may be easier to use with the metamath program's Proof Assistant, because "MM-PA> assign last" will be applied to the substitution instances first. We may eventually use this one as the official version. You may use either version. After the proof is complete, the ALT version can be changed to the non-ALT version with "MM-PA> minimize nnind /allow". (Contributed by NM, 7-Dec-2005.) (New usage is discouraged.) (Proof modification is discouraged.)

(𝑦 ∈ ℕ → (𝜒𝜃))    &   𝜓    &   (𝑥 = 1 → (𝜑𝜓))    &   (𝑥 = 𝑦 → (𝜑𝜒))    &   (𝑥 = (𝑦 + 1) → (𝜑𝜃))    &   (𝑥 = 𝐴 → (𝜑𝜏))       (𝐴 ∈ ℕ → 𝜏)
 
Theoremnn1m1nn 8875 Every positive integer is one or a successor. (Contributed by Mario Carneiro, 16-May-2014.)
(𝐴 ∈ ℕ → (𝐴 = 1 ∨ (𝐴 − 1) ∈ ℕ))
 
Theoremnn1suc 8876* If a statement holds for 1 and also holds for a successor, it holds for all positive integers. The first three hypotheses give us the substitution instances we need; the last two show that it holds for 1 and for a successor. (Contributed by NM, 11-Oct-2004.) (Revised by Mario Carneiro, 16-May-2014.)
(𝑥 = 1 → (𝜑𝜓))    &   (𝑥 = (𝑦 + 1) → (𝜑𝜒))    &   (𝑥 = 𝐴 → (𝜑𝜃))    &   𝜓    &   (𝑦 ∈ ℕ → 𝜒)       (𝐴 ∈ ℕ → 𝜃)
 
Theoremnnaddcl 8877 Closure of addition of positive integers, proved by induction on the second addend. (Contributed by NM, 12-Jan-1997.)
((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 + 𝐵) ∈ ℕ)
 
Theoremnnmulcl 8878 Closure of multiplication of positive integers. (Contributed by NM, 12-Jan-1997.)
((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 · 𝐵) ∈ ℕ)
 
Theoremnnmulcli 8879 Closure of multiplication of positive integers. (Contributed by Mario Carneiro, 18-Feb-2014.)
𝐴 ∈ ℕ    &   𝐵 ∈ ℕ       (𝐴 · 𝐵) ∈ ℕ
 
Theoremnnge1 8880 A positive integer is one or greater. (Contributed by NM, 25-Aug-1999.)
(𝐴 ∈ ℕ → 1 ≤ 𝐴)
 
Theoremnnle1eq1 8881 A positive integer is less than or equal to one iff it is equal to one. (Contributed by NM, 3-Apr-2005.)
(𝐴 ∈ ℕ → (𝐴 ≤ 1 ↔ 𝐴 = 1))
 
Theoremnngt0 8882 A positive integer is positive. (Contributed by NM, 26-Sep-1999.)
(𝐴 ∈ ℕ → 0 < 𝐴)
 
Theoremnnnlt1 8883 A positive integer is not less than one. (Contributed by NM, 18-Jan-2004.) (Revised by Mario Carneiro, 27-May-2016.)
(𝐴 ∈ ℕ → ¬ 𝐴 < 1)
 
Theorem0nnn 8884 Zero is not a positive integer. (Contributed by NM, 25-Aug-1999.)
¬ 0 ∈ ℕ
 
Theoremnnne0 8885 A positive integer is nonzero. (Contributed by NM, 27-Sep-1999.)
(𝐴 ∈ ℕ → 𝐴 ≠ 0)
 
Theoremnnap0 8886 A positive integer is apart from zero. (Contributed by Jim Kingdon, 8-Mar-2020.)
(𝐴 ∈ ℕ → 𝐴 # 0)
 
Theoremnngt0i 8887 A positive integer is positive (inference version). (Contributed by NM, 17-Sep-1999.)
𝐴 ∈ ℕ       0 < 𝐴
 
Theoremnnap0i 8888 A positive integer is apart from zero (inference version). (Contributed by Jim Kingdon, 1-Jan-2023.)
𝐴 ∈ ℕ       𝐴 # 0
 
Theoremnnne0i 8889 A positive integer is nonzero (inference version). (Contributed by NM, 25-Aug-1999.)
𝐴 ∈ ℕ       𝐴 ≠ 0
 
Theoremnn2ge 8890* There exists a positive integer greater than or equal to any two others. (Contributed by NM, 18-Aug-1999.)
((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ∃𝑥 ∈ ℕ (𝐴𝑥𝐵𝑥))
 
Theoremnn1gt1 8891 A positive integer is either one or greater than one. This is for ; 0elnn 4596 is a similar theorem for ω (the natural numbers as ordinals). (Contributed by Jim Kingdon, 7-Mar-2020.)
(𝐴 ∈ ℕ → (𝐴 = 1 ∨ 1 < 𝐴))
 
Theoremnngt1ne1 8892 A positive integer is greater than one iff it is not equal to one. (Contributed by NM, 7-Oct-2004.)
(𝐴 ∈ ℕ → (1 < 𝐴𝐴 ≠ 1))
 
Theoremnndivre 8893 The quotient of a real and a positive integer is real. (Contributed by NM, 28-Nov-2008.)
((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (𝐴 / 𝑁) ∈ ℝ)
 
Theoremnnrecre 8894 The reciprocal of a positive integer is real. (Contributed by NM, 8-Feb-2008.)
(𝑁 ∈ ℕ → (1 / 𝑁) ∈ ℝ)
 
Theoremnnrecgt0 8895 The reciprocal of a positive integer is positive. (Contributed by NM, 25-Aug-1999.)
(𝐴 ∈ ℕ → 0 < (1 / 𝐴))
 
Theoremnnsub 8896 Subtraction of positive integers. (Contributed by NM, 20-Aug-2001.) (Revised by Mario Carneiro, 16-May-2014.)
((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 < 𝐵 ↔ (𝐵𝐴) ∈ ℕ))
 
Theoremnnsubi 8897 Subtraction of positive integers. (Contributed by NM, 19-Aug-2001.)
𝐴 ∈ ℕ    &   𝐵 ∈ ℕ       (𝐴 < 𝐵 ↔ (𝐵𝐴) ∈ ℕ)
 
Theoremnndiv 8898* Two ways to express "𝐴 divides 𝐵 " for positive integers. (Contributed by NM, 3-Feb-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.)
((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑥 ∈ ℕ (𝐴 · 𝑥) = 𝐵 ↔ (𝐵 / 𝐴) ∈ ℕ))
 
Theoremnndivtr 8899 Transitive property of divisibility: if 𝐴 divides 𝐵 and 𝐵 divides 𝐶, then 𝐴 divides 𝐶. Typically, 𝐶 would be an integer, although the theorem holds for complex 𝐶. (Contributed by NM, 3-May-2005.)
(((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ) ∧ ((𝐵 / 𝐴) ∈ ℕ ∧ (𝐶 / 𝐵) ∈ ℕ)) → (𝐶 / 𝐴) ∈ ℕ)
 
Theoremnnge1d 8900 A positive integer is one or greater. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℕ)       (𝜑 → 1 ≤ 𝐴)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-13960
  Copyright terms: Public domain < Previous  Next >