Theorem List for Intuitionistic Logic Explorer - 8801-8900 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | divrecapi 8801 |
Relationship between division and reciprocal. (Contributed by Jim
Kingdon, 28-Feb-2020.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐵 # 0
⇒ ⊢ (𝐴 / 𝐵) = (𝐴 · (1 / 𝐵)) |
| |
| Theorem | divcanap3i 8802 |
A cancellation law for division. (Contributed by Jim Kingdon,
28-Feb-2020.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐵 # 0
⇒ ⊢ ((𝐵 · 𝐴) / 𝐵) = 𝐴 |
| |
| Theorem | divcanap4i 8803 |
A cancellation law for division. (Contributed by Jim Kingdon,
28-Feb-2020.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐵 # 0
⇒ ⊢ ((𝐴 · 𝐵) / 𝐵) = 𝐴 |
| |
| Theorem | divap0i 8804 |
The ratio of numbers apart from zero is apart from zero. (Contributed
by Jim Kingdon, 28-Feb-2020.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐴 # 0 & ⊢ 𝐵 # 0
⇒ ⊢ (𝐴 / 𝐵) # 0 |
| |
| Theorem | rec11apii 8805 |
Reciprocal is one-to-one. (Contributed by Jim Kingdon,
28-Feb-2020.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐴 # 0 & ⊢ 𝐵 # 0
⇒ ⊢ ((1 / 𝐴) = (1 / 𝐵) ↔ 𝐴 = 𝐵) |
| |
| Theorem | divassapzi 8806 |
An associative law for division. (Contributed by Jim Kingdon,
28-Feb-2020.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈
ℂ ⇒ ⊢ (𝐶 # 0 → ((𝐴 · 𝐵) / 𝐶) = (𝐴 · (𝐵 / 𝐶))) |
| |
| Theorem | divmulapzi 8807 |
Relationship between division and multiplication. (Contributed by Jim
Kingdon, 28-Feb-2020.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈
ℂ ⇒ ⊢ (𝐵 # 0 → ((𝐴 / 𝐵) = 𝐶 ↔ (𝐵 · 𝐶) = 𝐴)) |
| |
| Theorem | divdirapzi 8808 |
Distribution of division over addition. (Contributed by Jim Kingdon,
28-Feb-2020.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈
ℂ ⇒ ⊢ (𝐶 # 0 → ((𝐴 + 𝐵) / 𝐶) = ((𝐴 / 𝐶) + (𝐵 / 𝐶))) |
| |
| Theorem | divdiv23apzi 8809 |
Swap denominators in a division. (Contributed by Jim Kingdon,
28-Feb-2020.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈
ℂ ⇒ ⊢ ((𝐵 # 0 ∧ 𝐶 # 0) → ((𝐴 / 𝐵) / 𝐶) = ((𝐴 / 𝐶) / 𝐵)) |
| |
| Theorem | divmulapi 8810 |
Relationship between division and multiplication. (Contributed by Jim
Kingdon, 29-Feb-2020.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐵 # 0
⇒ ⊢ ((𝐴 / 𝐵) = 𝐶 ↔ (𝐵 · 𝐶) = 𝐴) |
| |
| Theorem | divdiv32api 8811 |
Swap denominators in a division. (Contributed by Jim Kingdon,
29-Feb-2020.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐵 # 0 & ⊢ 𝐶 # 0
⇒ ⊢ ((𝐴 / 𝐵) / 𝐶) = ((𝐴 / 𝐶) / 𝐵) |
| |
| Theorem | divassapi 8812 |
An associative law for division. (Contributed by Jim Kingdon,
9-Mar-2020.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐶 # 0
⇒ ⊢ ((𝐴 · 𝐵) / 𝐶) = (𝐴 · (𝐵 / 𝐶)) |
| |
| Theorem | divdirapi 8813 |
Distribution of division over addition. (Contributed by Jim Kingdon,
9-Mar-2020.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐶 # 0
⇒ ⊢ ((𝐴 + 𝐵) / 𝐶) = ((𝐴 / 𝐶) + (𝐵 / 𝐶)) |
| |
| Theorem | div23api 8814 |
A commutative/associative law for division. (Contributed by Jim
Kingdon, 9-Mar-2020.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐶 # 0
⇒ ⊢ ((𝐴 · 𝐵) / 𝐶) = ((𝐴 / 𝐶) · 𝐵) |
| |
| Theorem | div11api 8815 |
One-to-one relationship for division. (Contributed by Jim Kingdon,
9-Mar-2020.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐶 # 0
⇒ ⊢ ((𝐴 / 𝐶) = (𝐵 / 𝐶) ↔ 𝐴 = 𝐵) |
| |
| Theorem | divmuldivapi 8816 |
Multiplication of two ratios. (Contributed by Jim Kingdon,
9-Mar-2020.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐷 ∈ ℂ & ⊢ 𝐵 # 0 & ⊢ 𝐷 # 0
⇒ ⊢ ((𝐴 / 𝐵) · (𝐶 / 𝐷)) = ((𝐴 · 𝐶) / (𝐵 · 𝐷)) |
| |
| Theorem | divmul13api 8817 |
Swap denominators of two ratios. (Contributed by Jim Kingdon,
9-Mar-2020.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐷 ∈ ℂ & ⊢ 𝐵 # 0 & ⊢ 𝐷 # 0
⇒ ⊢ ((𝐴 / 𝐵) · (𝐶 / 𝐷)) = ((𝐶 / 𝐵) · (𝐴 / 𝐷)) |
| |
| Theorem | divadddivapi 8818 |
Addition of two ratios. (Contributed by Jim Kingdon, 9-Mar-2020.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐷 ∈ ℂ & ⊢ 𝐵 # 0 & ⊢ 𝐷 # 0
⇒ ⊢ ((𝐴 / 𝐵) + (𝐶 / 𝐷)) = (((𝐴 · 𝐷) + (𝐶 · 𝐵)) / (𝐵 · 𝐷)) |
| |
| Theorem | divdivdivapi 8819 |
Division of two ratios. (Contributed by Jim Kingdon, 9-Mar-2020.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐷 ∈ ℂ & ⊢ 𝐵 # 0 & ⊢ 𝐷 # 0 & ⊢ 𝐶 # 0
⇒ ⊢ ((𝐴 / 𝐵) / (𝐶 / 𝐷)) = ((𝐴 · 𝐷) / (𝐵 · 𝐶)) |
| |
| Theorem | rerecclapzi 8820 |
Closure law for reciprocal. (Contributed by Jim Kingdon,
9-Mar-2020.)
|
| ⊢ 𝐴 ∈ ℝ
⇒ ⊢ (𝐴 # 0 → (1 / 𝐴) ∈ ℝ) |
| |
| Theorem | rerecclapi 8821 |
Closure law for reciprocal. (Contributed by Jim Kingdon,
9-Mar-2020.)
|
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐴 # 0
⇒ ⊢ (1 / 𝐴) ∈ ℝ |
| |
| Theorem | redivclapzi 8822 |
Closure law for division of reals. (Contributed by Jim Kingdon,
9-Mar-2020.)
|
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈
ℝ ⇒ ⊢ (𝐵 # 0 → (𝐴 / 𝐵) ∈ ℝ) |
| |
| Theorem | redivclapi 8823 |
Closure law for division of reals. (Contributed by Jim Kingdon,
9-Mar-2020.)
|
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐵 # 0
⇒ ⊢ (𝐴 / 𝐵) ∈ ℝ |
| |
| Theorem | div1d 8824 |
A number divided by 1 is itself. (Contributed by Mario Carneiro,
27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → (𝐴 / 1) = 𝐴) |
| |
| Theorem | recclapd 8825 |
Closure law for reciprocal. (Contributed by Jim Kingdon,
3-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 0) ⇒ ⊢ (𝜑 → (1 / 𝐴) ∈ ℂ) |
| |
| Theorem | recap0d 8826 |
The reciprocal of a number apart from zero is apart from zero.
(Contributed by Jim Kingdon, 3-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 0) ⇒ ⊢ (𝜑 → (1 / 𝐴) # 0) |
| |
| Theorem | recidapd 8827 |
Multiplication of a number and its reciprocal. (Contributed by Jim
Kingdon, 3-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 0) ⇒ ⊢ (𝜑 → (𝐴 · (1 / 𝐴)) = 1) |
| |
| Theorem | recidap2d 8828 |
Multiplication of a number and its reciprocal. (Contributed by Jim
Kingdon, 3-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 0) ⇒ ⊢ (𝜑 → ((1 / 𝐴) · 𝐴) = 1) |
| |
| Theorem | recrecapd 8829 |
A number is equal to the reciprocal of its reciprocal. (Contributed
by Jim Kingdon, 3-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 0) ⇒ ⊢ (𝜑 → (1 / (1 / 𝐴)) = 𝐴) |
| |
| Theorem | dividapd 8830 |
A number divided by itself is one. (Contributed by Jim Kingdon,
3-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 0) ⇒ ⊢ (𝜑 → (𝐴 / 𝐴) = 1) |
| |
| Theorem | div0apd 8831 |
Division into zero is zero. (Contributed by Jim Kingdon,
3-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 0) ⇒ ⊢ (𝜑 → (0 / 𝐴) = 0) |
| |
| Theorem | apmul1 8832 |
Multiplication of both sides of complex apartness by a complex number
apart from zero. (Contributed by Jim Kingdon, 20-Mar-2020.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → (𝐴 # 𝐵 ↔ (𝐴 · 𝐶) # (𝐵 · 𝐶))) |
| |
| Theorem | apmul2 8833 |
Multiplication of both sides of complex apartness by a complex number
apart from zero. (Contributed by Jim Kingdon, 6-Jan-2023.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → (𝐴 # 𝐵 ↔ (𝐶 · 𝐴) # (𝐶 · 𝐵))) |
| |
| Theorem | divclapd 8834 |
Closure law for division. (Contributed by Jim Kingdon,
29-Feb-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → (𝐴 / 𝐵) ∈ ℂ) |
| |
| Theorem | divcanap1d 8835 |
A cancellation law for division. (Contributed by Jim Kingdon,
29-Feb-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐵) · 𝐵) = 𝐴) |
| |
| Theorem | divcanap2d 8836 |
A cancellation law for division. (Contributed by Jim Kingdon,
29-Feb-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → (𝐵 · (𝐴 / 𝐵)) = 𝐴) |
| |
| Theorem | divrecapd 8837 |
Relationship between division and reciprocal. Theorem I.9 of
[Apostol] p. 18. (Contributed by Jim
Kingdon, 29-Feb-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → (𝐴 / 𝐵) = (𝐴 · (1 / 𝐵))) |
| |
| Theorem | divrecap2d 8838 |
Relationship between division and reciprocal. (Contributed by Jim
Kingdon, 29-Feb-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → (𝐴 / 𝐵) = ((1 / 𝐵) · 𝐴)) |
| |
| Theorem | divcanap3d 8839 |
A cancellation law for division. (Contributed by Jim Kingdon,
29-Feb-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → ((𝐵 · 𝐴) / 𝐵) = 𝐴) |
| |
| Theorem | divcanap4d 8840 |
A cancellation law for division. (Contributed by Jim Kingdon,
29-Feb-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → ((𝐴 · 𝐵) / 𝐵) = 𝐴) |
| |
| Theorem | diveqap0d 8841 |
If a ratio is zero, the numerator is zero. (Contributed by Jim
Kingdon, 19-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) & ⊢ (𝜑 → (𝐴 / 𝐵) = 0) ⇒ ⊢ (𝜑 → 𝐴 = 0) |
| |
| Theorem | diveqap1d 8842 |
Equality in terms of unit ratio. (Contributed by Jim Kingdon,
19-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) & ⊢ (𝜑 → (𝐴 / 𝐵) = 1) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) |
| |
| Theorem | diveqap1ad 8843 |
The quotient of two complex numbers is one iff they are equal.
Deduction form of diveqap1 8749. Generalization of diveqap1d 8842.
(Contributed by Jim Kingdon, 19-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐵) = 1 ↔ 𝐴 = 𝐵)) |
| |
| Theorem | diveqap0ad 8844 |
A fraction of complex numbers is zero iff its numerator is. Deduction
form of diveqap0 8726. (Contributed by Jim Kingdon, 19-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐵) = 0 ↔ 𝐴 = 0)) |
| |
| Theorem | divap1d 8845 |
If two complex numbers are apart, their quotient is apart from one.
(Contributed by Jim Kingdon, 20-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) & ⊢ (𝜑 → 𝐴 # 𝐵) ⇒ ⊢ (𝜑 → (𝐴 / 𝐵) # 1) |
| |
| Theorem | divap0bd 8846 |
A ratio is zero iff the numerator is zero. (Contributed by Jim
Kingdon, 19-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → (𝐴 # 0 ↔ (𝐴 / 𝐵) # 0)) |
| |
| Theorem | divnegapd 8847 |
Move negative sign inside of a division. (Contributed by Jim Kingdon,
19-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → -(𝐴 / 𝐵) = (-𝐴 / 𝐵)) |
| |
| Theorem | divneg2apd 8848 |
Move negative sign inside of a division. (Contributed by Jim Kingdon,
19-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → -(𝐴 / 𝐵) = (𝐴 / -𝐵)) |
| |
| Theorem | div2negapd 8849 |
Quotient of two negatives. (Contributed by Jim Kingdon,
19-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → (-𝐴 / -𝐵) = (𝐴 / 𝐵)) |
| |
| Theorem | divap0d 8850 |
The ratio of numbers apart from zero is apart from zero. (Contributed
by Jim Kingdon, 3-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 0) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → (𝐴 / 𝐵) # 0) |
| |
| Theorem | recdivapd 8851 |
The reciprocal of a ratio. (Contributed by Jim Kingdon,
3-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 0) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → (1 / (𝐴 / 𝐵)) = (𝐵 / 𝐴)) |
| |
| Theorem | recdivap2d 8852 |
Division into a reciprocal. (Contributed by Jim Kingdon,
3-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 0) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → ((1 / 𝐴) / 𝐵) = (1 / (𝐴 · 𝐵))) |
| |
| Theorem | divcanap6d 8853 |
Cancellation of inverted fractions. (Contributed by Jim Kingdon,
3-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 0) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐵) · (𝐵 / 𝐴)) = 1) |
| |
| Theorem | ddcanapd 8854 |
Cancellation in a double division. (Contributed by Jim Kingdon,
3-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 0) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → (𝐴 / (𝐴 / 𝐵)) = 𝐵) |
| |
| Theorem | rec11apd 8855 |
Reciprocal is one-to-one. (Contributed by Jim Kingdon,
3-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 0) & ⊢ (𝜑 → 𝐵 # 0) & ⊢ (𝜑 → (1 / 𝐴) = (1 / 𝐵)) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) |
| |
| Theorem | divmulapd 8856 |
Relationship between division and multiplication. (Contributed by Jim
Kingdon, 8-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐵) = 𝐶 ↔ (𝐵 · 𝐶) = 𝐴)) |
| |
| Theorem | apdivmuld 8857 |
Relationship between division and multiplication. (Contributed by Jim
Kingdon, 26-Dec-2022.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐵) # 𝐶 ↔ (𝐵 · 𝐶) # 𝐴)) |
| |
| Theorem | div32apd 8858 |
A commutative/associative law for division. (Contributed by Jim
Kingdon, 8-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐵) · 𝐶) = (𝐴 · (𝐶 / 𝐵))) |
| |
| Theorem | div13apd 8859 |
A commutative/associative law for division. (Contributed by Jim
Kingdon, 8-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐵) · 𝐶) = ((𝐶 / 𝐵) · 𝐴)) |
| |
| Theorem | divdiv32apd 8860 |
Swap denominators in a division. (Contributed by Jim Kingdon,
8-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) & ⊢ (𝜑 → 𝐶 # 0) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐵) / 𝐶) = ((𝐴 / 𝐶) / 𝐵)) |
| |
| Theorem | divcanap5d 8861 |
Cancellation of common factor in a ratio. (Contributed by Jim
Kingdon, 8-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) & ⊢ (𝜑 → 𝐶 # 0) ⇒ ⊢ (𝜑 → ((𝐶 · 𝐴) / (𝐶 · 𝐵)) = (𝐴 / 𝐵)) |
| |
| Theorem | divcanap5rd 8862 |
Cancellation of common factor in a ratio. (Contributed by Jim
Kingdon, 8-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) & ⊢ (𝜑 → 𝐶 # 0) ⇒ ⊢ (𝜑 → ((𝐴 · 𝐶) / (𝐵 · 𝐶)) = (𝐴 / 𝐵)) |
| |
| Theorem | divcanap7d 8863 |
Cancel equal divisors in a division. (Contributed by Jim Kingdon,
8-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) & ⊢ (𝜑 → 𝐶 # 0) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐶) / (𝐵 / 𝐶)) = (𝐴 / 𝐵)) |
| |
| Theorem | dmdcanapd 8864 |
Cancellation law for division and multiplication. (Contributed by Jim
Kingdon, 8-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) & ⊢ (𝜑 → 𝐶 # 0) ⇒ ⊢ (𝜑 → ((𝐵 / 𝐶) · (𝐴 / 𝐵)) = (𝐴 / 𝐶)) |
| |
| Theorem | dmdcanap2d 8865 |
Cancellation law for division and multiplication. (Contributed by Jim
Kingdon, 8-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) & ⊢ (𝜑 → 𝐶 # 0) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐵) · (𝐵 / 𝐶)) = (𝐴 / 𝐶)) |
| |
| Theorem | divdivap1d 8866 |
Division into a fraction. (Contributed by Jim Kingdon,
8-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) & ⊢ (𝜑 → 𝐶 # 0) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐵) / 𝐶) = (𝐴 / (𝐵 · 𝐶))) |
| |
| Theorem | divdivap2d 8867 |
Division by a fraction. (Contributed by Jim Kingdon, 8-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) & ⊢ (𝜑 → 𝐶 # 0) ⇒ ⊢ (𝜑 → (𝐴 / (𝐵 / 𝐶)) = ((𝐴 · 𝐶) / 𝐵)) |
| |
| Theorem | divmulap2d 8868 |
Relationship between division and multiplication. (Contributed by Jim
Kingdon, 2-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐶 # 0) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐶) = 𝐵 ↔ 𝐴 = (𝐶 · 𝐵))) |
| |
| Theorem | divmulap3d 8869 |
Relationship between division and multiplication. (Contributed by Jim
Kingdon, 2-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐶 # 0) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐶) = 𝐵 ↔ 𝐴 = (𝐵 · 𝐶))) |
| |
| Theorem | divassapd 8870 |
An associative law for division. (Contributed by Jim Kingdon,
2-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐶 # 0) ⇒ ⊢ (𝜑 → ((𝐴 · 𝐵) / 𝐶) = (𝐴 · (𝐵 / 𝐶))) |
| |
| Theorem | div12apd 8871 |
A commutative/associative law for division. (Contributed by Jim
Kingdon, 2-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐶 # 0) ⇒ ⊢ (𝜑 → (𝐴 · (𝐵 / 𝐶)) = (𝐵 · (𝐴 / 𝐶))) |
| |
| Theorem | div23apd 8872 |
A commutative/associative law for division. (Contributed by Jim
Kingdon, 2-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐶 # 0) ⇒ ⊢ (𝜑 → ((𝐴 · 𝐵) / 𝐶) = ((𝐴 / 𝐶) · 𝐵)) |
| |
| Theorem | divdirapd 8873 |
Distribution of division over addition. (Contributed by Jim Kingdon,
2-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐶 # 0) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) / 𝐶) = ((𝐴 / 𝐶) + (𝐵 / 𝐶))) |
| |
| Theorem | divsubdirapd 8874 |
Distribution of division over subtraction. (Contributed by Jim
Kingdon, 2-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐶 # 0) ⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) / 𝐶) = ((𝐴 / 𝐶) − (𝐵 / 𝐶))) |
| |
| Theorem | div11apd 8875 |
One-to-one relationship for division. (Contributed by Jim Kingdon,
2-Mar-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐶 # 0) & ⊢ (𝜑 → (𝐴 / 𝐶) = (𝐵 / 𝐶)) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) |
| |
| Theorem | divmuldivapd 8876 |
Multiplication of two ratios. (Contributed by Jim Kingdon,
30-Jul-2021.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) & ⊢ (𝜑 → 𝐷 # 0) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐵) · (𝐶 / 𝐷)) = ((𝐴 · 𝐶) / (𝐵 · 𝐷))) |
| |
| Theorem | divmuleqapd 8877 |
Cross-multiply in an equality of ratios. (Contributed by Mario
Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) & ⊢ (𝜑 → 𝐷 # 0) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐵) = (𝐶 / 𝐷) ↔ (𝐴 · 𝐷) = (𝐶 · 𝐵))) |
| |
| Theorem | rerecclapd 8878 |
Closure law for reciprocal. (Contributed by Jim Kingdon,
29-Feb-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 # 0) ⇒ ⊢ (𝜑 → (1 / 𝐴) ∈ ℝ) |
| |
| Theorem | redivclapd 8879 |
Closure law for division of reals. (Contributed by Jim Kingdon,
29-Feb-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → (𝐴 / 𝐵) ∈ ℝ) |
| |
| Theorem | diveqap1bd 8880 |
If two complex numbers are equal, their quotient is one. One-way
deduction form of diveqap1 8749. Converse of diveqap1d 8842. (Contributed
by David Moews, 28-Feb-2017.) (Revised by Jim Kingdon, 2-Aug-2023.)
|
| ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐴 / 𝐵) = 1) |
| |
| Theorem | div2subap 8881 |
Swap the order of subtraction in a division. (Contributed by Scott
Fenton, 24-Jun-2013.)
|
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 # 𝐷)) → ((𝐴 − 𝐵) / (𝐶 − 𝐷)) = ((𝐵 − 𝐴) / (𝐷 − 𝐶))) |
| |
| Theorem | div2subapd 8882 |
Swap subtrahend and minuend inside the numerator and denominator of a
fraction. Deduction form of div2subap 8881. (Contributed by David Moews,
28-Feb-2017.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → 𝐶 # 𝐷) ⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) / (𝐶 − 𝐷)) = ((𝐵 − 𝐴) / (𝐷 − 𝐶))) |
| |
| Theorem | subrecap 8883 |
Subtraction of reciprocals. (Contributed by Scott Fenton, 9-Jul-2015.)
|
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → ((1 / 𝐴) − (1 / 𝐵)) = ((𝐵 − 𝐴) / (𝐴 · 𝐵))) |
| |
| Theorem | subrecapi 8884 |
Subtraction of reciprocals. (Contributed by Scott Fenton,
9-Jan-2017.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐴 # 0 & ⊢ 𝐵 # 0
⇒ ⊢ ((1 / 𝐴) − (1 / 𝐵)) = ((𝐵 − 𝐴) / (𝐴 · 𝐵)) |
| |
| Theorem | subrecapd 8885 |
Subtraction of reciprocals. (Contributed by Scott Fenton,
9-Jan-2017.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 0) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → ((1 / 𝐴) − (1 / 𝐵)) = ((𝐵 − 𝐴) / (𝐴 · 𝐵))) |
| |
| Theorem | mvllmulapd 8886 |
Move LHS left multiplication to RHS. (Contributed by Jim Kingdon,
10-Jun-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 0) & ⊢ (𝜑 → (𝐴 · 𝐵) = 𝐶) ⇒ ⊢ (𝜑 → 𝐵 = (𝐶 / 𝐴)) |
| |
| Theorem | rerecapb 8887* |
A real number has a multiplicative inverse if and only if it is apart
from zero. Theorem 11.2.4 of [HoTT], p.
(varies). (Contributed by Jim
Kingdon, 18-Jan-2025.)
|
| ⊢ (𝐴 ∈ ℝ → (𝐴 # 0 ↔ ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)) |
| |
| 4.3.9 Ordering on reals (cont.)
|
| |
| Theorem | ltp1 8888 |
A number is less than itself plus 1. (Contributed by NM, 20-Aug-2001.)
|
| ⊢ (𝐴 ∈ ℝ → 𝐴 < (𝐴 + 1)) |
| |
| Theorem | lep1 8889 |
A number is less than or equal to itself plus 1. (Contributed by NM,
5-Jan-2006.)
|
| ⊢ (𝐴 ∈ ℝ → 𝐴 ≤ (𝐴 + 1)) |
| |
| Theorem | ltm1 8890 |
A number minus 1 is less than itself. (Contributed by NM, 9-Apr-2006.)
|
| ⊢ (𝐴 ∈ ℝ → (𝐴 − 1) < 𝐴) |
| |
| Theorem | lem1 8891 |
A number minus 1 is less than or equal to itself. (Contributed by Mario
Carneiro, 2-Oct-2015.)
|
| ⊢ (𝐴 ∈ ℝ → (𝐴 − 1) ≤ 𝐴) |
| |
| Theorem | letrp1 8892 |
A transitive property of 'less than or equal' and plus 1. (Contributed by
NM, 5-Aug-2005.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → 𝐴 ≤ (𝐵 + 1)) |
| |
| Theorem | p1le 8893 |
A transitive property of plus 1 and 'less than or equal'. (Contributed by
NM, 16-Aug-2005.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 + 1) ≤ 𝐵) → 𝐴 ≤ 𝐵) |
| |
| Theorem | recgt0 8894 |
The reciprocal of a positive number is positive. Exercise 4 of [Apostol]
p. 21. (Contributed by NM, 25-Aug-1999.) (Revised by Mario Carneiro,
27-May-2016.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 < (1 / 𝐴)) |
| |
| Theorem | prodgt0gt0 8895 |
Infer that a multiplicand is positive from a positive multiplier and
positive product. See prodgt0 8896 for the same theorem with 0 < 𝐴
replaced by the weaker condition 0 ≤ 𝐴. (Contributed by Jim
Kingdon, 29-Feb-2020.)
|
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 < (𝐴 · 𝐵))) → 0 < 𝐵) |
| |
| Theorem | prodgt0 8896 |
Infer that a multiplicand is positive from a nonnegative multiplier and
positive product. (Contributed by NM, 24-Apr-2005.) (Revised by Mario
Carneiro, 27-May-2016.)
|
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 < (𝐴 · 𝐵))) → 0 < 𝐵) |
| |
| Theorem | prodgt02 8897 |
Infer that a multiplier is positive from a nonnegative multiplicand and
positive product. (Contributed by NM, 24-Apr-2005.)
|
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐵 ∧ 0 < (𝐴 · 𝐵))) → 0 < 𝐴) |
| |
| Theorem | prodge0 8898 |
Infer that a multiplicand is nonnegative from a positive multiplier and
nonnegative product. (Contributed by NM, 2-Jul-2005.) (Revised by Mario
Carneiro, 27-May-2016.)
|
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 ≤ (𝐴 · 𝐵))) → 0 ≤ 𝐵) |
| |
| Theorem | prodge02 8899 |
Infer that a multiplier is nonnegative from a positive multiplicand and
nonnegative product. (Contributed by NM, 2-Jul-2005.)
|
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐵 ∧ 0 ≤ (𝐴 · 𝐵))) → 0 ≤ 𝐴) |
| |
| Theorem | ltmul2 8900 |
Multiplication of both sides of 'less than' by a positive number. Theorem
I.19 of [Apostol] p. 20. (Contributed by
NM, 13-Feb-2005.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 < 𝐵 ↔ (𝐶 · 𝐴) < (𝐶 · 𝐵))) |