| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lenltd | GIF version | ||
| Description: 'Less than or equal to' in terms of 'less than'. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| Ref | Expression |
|---|---|
| lenltd | ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | ltd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 3 | lenlt 8183 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | |
| 4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 ∈ wcel 2178 class class class wbr 4059 ℝcr 7959 < clt 8142 ≤ cle 8143 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 df-opab 4122 df-xp 4699 df-cnv 4701 df-xr 8146 df-le 8148 |
| This theorem is referenced by: ltnsymd 8227 nltled 8228 lensymd 8229 leadd1 8538 lemul1 8701 leltap 8733 ap0gt0 8748 prodgt0 8960 prodge0 8962 lediv1 8977 lemuldiv 8989 lerec 8992 lt2msq 8994 le2msq 9009 squeeze0 9012 suprleubex 9062 0mnnnnn0 9362 elnn0z 9420 uzm1 9714 infregelbex 9754 fztri3or 10196 fzdisj 10209 uzdisj 10250 nn0disj 10295 fzouzdisj 10339 elfzonelfzo 10396 qdcle 10426 flqeqceilz 10500 modifeq2int 10568 modsumfzodifsn 10578 nn0leexp2 10892 expcanlem 10897 fimaxq 11009 swrdccatin2 11220 resqrexlemoverl 11447 leabs 11500 absle 11515 maxleast 11639 minmax 11656 climge0 11751 pcfac 12788 gsumfzz 13442 cxple 15504 gausslemma2dlem1a 15650 |
| Copyright terms: Public domain | W3C validator |