![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lenltd | GIF version |
Description: 'Less than or equal to' in terms of 'less than'. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
Ref | Expression |
---|---|
lenltd | ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | ltd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | lenlt 8097 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | |
4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 ∈ wcel 2164 class class class wbr 4030 ℝcr 7873 < clt 8056 ≤ cle 8057 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-br 4031 df-opab 4092 df-xp 4666 df-cnv 4668 df-xr 8060 df-le 8062 |
This theorem is referenced by: ltnsymd 8141 nltled 8142 lensymd 8143 leadd1 8451 lemul1 8614 leltap 8646 ap0gt0 8661 prodgt0 8873 prodge0 8875 lediv1 8890 lemuldiv 8902 lerec 8905 lt2msq 8907 le2msq 8922 squeeze0 8925 suprleubex 8975 0mnnnnn0 9275 elnn0z 9333 uzm1 9626 infregelbex 9666 fztri3or 10108 fzdisj 10121 uzdisj 10162 nn0disj 10207 fzouzdisj 10250 elfzonelfzo 10300 flqeqceilz 10392 modifeq2int 10460 modsumfzodifsn 10470 nn0leexp2 10784 expcanlem 10789 fimaxq 10901 resqrexlemoverl 11168 leabs 11221 absle 11236 maxleast 11360 minmax 11376 climge0 11471 pcfac 12491 gsumfzz 13070 cxple 15092 gausslemma2dlem1a 15215 |
Copyright terms: Public domain | W3C validator |