ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lenltd GIF version

Theorem lenltd 8075
Description: 'Less than or equal to' in terms of 'less than'. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
ltd.1 (𝜑𝐴 ∈ ℝ)
ltd.2 (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
lenltd (𝜑 → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))

Proof of Theorem lenltd
StepHypRef Expression
1 ltd.1 . 2 (𝜑𝐴 ∈ ℝ)
2 ltd.2 . 2 (𝜑𝐵 ∈ ℝ)
3 lenlt 8033 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
41, 2, 3syl2anc 411 1 (𝜑 → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105  wcel 2148   class class class wbr 4004  cr 7810   < clt 7992  cle 7993
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2740  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-br 4005  df-opab 4066  df-xp 4633  df-cnv 4635  df-xr 7996  df-le 7998
This theorem is referenced by:  ltnsymd  8077  nltled  8078  lensymd  8079  leadd1  8387  lemul1  8550  leltap  8582  ap0gt0  8597  prodgt0  8809  prodge0  8811  lediv1  8826  lemuldiv  8838  lerec  8841  lt2msq  8843  le2msq  8858  squeeze0  8861  suprleubex  8911  0mnnnnn0  9208  elnn0z  9266  uzm1  9558  infregelbex  9598  fztri3or  10039  fzdisj  10052  uzdisj  10093  nn0disj  10138  fzouzdisj  10180  elfzonelfzo  10230  flqeqceilz  10318  modifeq2int  10386  modsumfzodifsn  10396  nn0leexp2  10690  expcanlem  10695  fimaxq  10807  resqrexlemoverl  11030  leabs  11083  absle  11098  maxleast  11222  minmax  11238  climge0  11333  pcfac  12348  cxple  14340
  Copyright terms: Public domain W3C validator