| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lenltd | GIF version | ||
| Description: 'Less than or equal to' in terms of 'less than'. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| Ref | Expression |
|---|---|
| lenltd | ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | ltd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 3 | lenlt 8218 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | |
| 4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 ∈ wcel 2200 class class class wbr 4082 ℝcr 7994 < clt 8177 ≤ cle 8178 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-xp 4724 df-cnv 4726 df-xr 8181 df-le 8183 |
| This theorem is referenced by: ltnsymd 8262 nltled 8263 lensymd 8264 leadd1 8573 lemul1 8736 leltap 8768 ap0gt0 8783 prodgt0 8995 prodge0 8997 lediv1 9012 lemuldiv 9024 lerec 9027 lt2msq 9029 le2msq 9044 squeeze0 9047 suprleubex 9097 0mnnnnn0 9397 elnn0z 9455 uzm1 9749 infregelbex 9789 fztri3or 10231 fzdisj 10244 uzdisj 10285 nn0disj 10330 fzouzdisj 10374 elfzonelfzo 10431 qdcle 10461 flqeqceilz 10535 modifeq2int 10603 modsumfzodifsn 10613 nn0leexp2 10927 expcanlem 10932 fimaxq 11044 swrdccatin2 11256 resqrexlemoverl 11527 leabs 11580 absle 11595 maxleast 11719 minmax 11736 climge0 11831 pcfac 12868 gsumfzz 13523 cxple 15585 gausslemma2dlem1a 15731 |
| Copyright terms: Public domain | W3C validator |