| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lenltd | GIF version | ||
| Description: 'Less than or equal to' in terms of 'less than'. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| Ref | Expression |
|---|---|
| lenltd | ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | ltd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 3 | lenlt 8147 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | |
| 4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 ∈ wcel 2175 class class class wbr 4043 ℝcr 7923 < clt 8106 ≤ cle 8107 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-br 4044 df-opab 4105 df-xp 4680 df-cnv 4682 df-xr 8110 df-le 8112 |
| This theorem is referenced by: ltnsymd 8191 nltled 8192 lensymd 8193 leadd1 8502 lemul1 8665 leltap 8697 ap0gt0 8712 prodgt0 8924 prodge0 8926 lediv1 8941 lemuldiv 8953 lerec 8956 lt2msq 8958 le2msq 8973 squeeze0 8976 suprleubex 9026 0mnnnnn0 9326 elnn0z 9384 uzm1 9678 infregelbex 9718 fztri3or 10160 fzdisj 10173 uzdisj 10214 nn0disj 10259 fzouzdisj 10302 elfzonelfzo 10357 qdcle 10387 flqeqceilz 10461 modifeq2int 10529 modsumfzodifsn 10539 nn0leexp2 10853 expcanlem 10858 fimaxq 10970 resqrexlemoverl 11303 leabs 11356 absle 11371 maxleast 11495 minmax 11512 climge0 11607 pcfac 12644 gsumfzz 13298 cxple 15360 gausslemma2dlem1a 15506 |
| Copyright terms: Public domain | W3C validator |