| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lenltd | GIF version | ||
| Description: 'Less than or equal to' in terms of 'less than'. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| Ref | Expression |
|---|---|
| lenltd | ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | ltd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 3 | lenlt 8119 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | |
| 4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 ∈ wcel 2167 class class class wbr 4034 ℝcr 7895 < clt 8078 ≤ cle 8079 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-opab 4096 df-xp 4670 df-cnv 4672 df-xr 8082 df-le 8084 |
| This theorem is referenced by: ltnsymd 8163 nltled 8164 lensymd 8165 leadd1 8474 lemul1 8637 leltap 8669 ap0gt0 8684 prodgt0 8896 prodge0 8898 lediv1 8913 lemuldiv 8925 lerec 8928 lt2msq 8930 le2msq 8945 squeeze0 8948 suprleubex 8998 0mnnnnn0 9298 elnn0z 9356 uzm1 9649 infregelbex 9689 fztri3or 10131 fzdisj 10144 uzdisj 10185 nn0disj 10230 fzouzdisj 10273 elfzonelfzo 10323 qdcle 10353 flqeqceilz 10427 modifeq2int 10495 modsumfzodifsn 10505 nn0leexp2 10819 expcanlem 10824 fimaxq 10936 resqrexlemoverl 11203 leabs 11256 absle 11271 maxleast 11395 minmax 11412 climge0 11507 pcfac 12544 gsumfzz 13197 cxple 15237 gausslemma2dlem1a 15383 |
| Copyright terms: Public domain | W3C validator |