ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lenltd GIF version

Theorem lenltd 8163
Description: 'Less than or equal to' in terms of 'less than'. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
ltd.1 (𝜑𝐴 ∈ ℝ)
ltd.2 (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
lenltd (𝜑 → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))

Proof of Theorem lenltd
StepHypRef Expression
1 ltd.1 . 2 (𝜑𝐴 ∈ ℝ)
2 ltd.2 . 2 (𝜑𝐵 ∈ ℝ)
3 lenlt 8121 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
41, 2, 3syl2anc 411 1 (𝜑 → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105  wcel 2167   class class class wbr 4034  cr 7897   < clt 8080  cle 8081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-br 4035  df-opab 4096  df-xp 4670  df-cnv 4672  df-xr 8084  df-le 8086
This theorem is referenced by:  ltnsymd  8165  nltled  8166  lensymd  8167  leadd1  8476  lemul1  8639  leltap  8671  ap0gt0  8686  prodgt0  8898  prodge0  8900  lediv1  8915  lemuldiv  8927  lerec  8930  lt2msq  8932  le2msq  8947  squeeze0  8950  suprleubex  9000  0mnnnnn0  9300  elnn0z  9358  uzm1  9651  infregelbex  9691  fztri3or  10133  fzdisj  10146  uzdisj  10187  nn0disj  10232  fzouzdisj  10275  elfzonelfzo  10325  qdcle  10355  flqeqceilz  10429  modifeq2int  10497  modsumfzodifsn  10507  nn0leexp2  10821  expcanlem  10826  fimaxq  10938  resqrexlemoverl  11205  leabs  11258  absle  11273  maxleast  11397  minmax  11414  climge0  11509  pcfac  12546  gsumfzz  13199  cxple  15261  gausslemma2dlem1a  15407
  Copyright terms: Public domain W3C validator