![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lenltd | GIF version |
Description: 'Less than or equal to' in terms of 'less than'. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
Ref | Expression |
---|---|
lenltd | ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | ltd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | lenlt 8095 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | |
4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 ∈ wcel 2164 class class class wbr 4029 ℝcr 7871 < clt 8054 ≤ cle 8055 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-br 4030 df-opab 4091 df-xp 4665 df-cnv 4667 df-xr 8058 df-le 8060 |
This theorem is referenced by: ltnsymd 8139 nltled 8140 lensymd 8141 leadd1 8449 lemul1 8612 leltap 8644 ap0gt0 8659 prodgt0 8871 prodge0 8873 lediv1 8888 lemuldiv 8900 lerec 8903 lt2msq 8905 le2msq 8920 squeeze0 8923 suprleubex 8973 0mnnnnn0 9272 elnn0z 9330 uzm1 9623 infregelbex 9663 fztri3or 10105 fzdisj 10118 uzdisj 10159 nn0disj 10204 fzouzdisj 10247 elfzonelfzo 10297 flqeqceilz 10389 modifeq2int 10457 modsumfzodifsn 10467 nn0leexp2 10781 expcanlem 10786 fimaxq 10898 resqrexlemoverl 11165 leabs 11218 absle 11233 maxleast 11357 minmax 11373 climge0 11468 pcfac 12488 gsumfzz 13067 cxple 15051 gausslemma2dlem1a 15174 |
Copyright terms: Public domain | W3C validator |