| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lenltd | GIF version | ||
| Description: 'Less than or equal to' in terms of 'less than'. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| Ref | Expression |
|---|---|
| lenltd | ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | ltd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 3 | lenlt 8121 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | |
| 4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 ∈ wcel 2167 class class class wbr 4034 ℝcr 7897 < clt 8080 ≤ cle 8081 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-opab 4096 df-xp 4670 df-cnv 4672 df-xr 8084 df-le 8086 |
| This theorem is referenced by: ltnsymd 8165 nltled 8166 lensymd 8167 leadd1 8476 lemul1 8639 leltap 8671 ap0gt0 8686 prodgt0 8898 prodge0 8900 lediv1 8915 lemuldiv 8927 lerec 8930 lt2msq 8932 le2msq 8947 squeeze0 8950 suprleubex 9000 0mnnnnn0 9300 elnn0z 9358 uzm1 9651 infregelbex 9691 fztri3or 10133 fzdisj 10146 uzdisj 10187 nn0disj 10232 fzouzdisj 10275 elfzonelfzo 10325 qdcle 10355 flqeqceilz 10429 modifeq2int 10497 modsumfzodifsn 10507 nn0leexp2 10821 expcanlem 10826 fimaxq 10938 resqrexlemoverl 11205 leabs 11258 absle 11273 maxleast 11397 minmax 11414 climge0 11509 pcfac 12546 gsumfzz 13199 cxple 15261 gausslemma2dlem1a 15407 |
| Copyright terms: Public domain | W3C validator |