![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > topontop | GIF version |
Description: A topology on a given base set is a topology. (Contributed by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
topontop | ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | istopon 14192 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐵) ↔ (𝐽 ∈ Top ∧ 𝐵 = ∪ 𝐽)) | |
2 | 1 | simplbi 274 | 1 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 ∪ cuni 3836 ‘cfv 5255 Topctop 14176 TopOnctopon 14189 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2987 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-iota 5216 df-fun 5257 df-fv 5263 df-topon 14190 |
This theorem is referenced by: topontopi 14195 topontopon 14199 toponmax 14204 topgele 14208 istps 14211 topontopn 14216 resttopon 14350 resttopon2 14357 lmfval 14371 cnfval 14373 cnpfval 14374 cnprcl2k 14385 cnpf2 14386 tgcn 14387 tgcnp 14388 iscnp4 14397 cnntr 14404 cncnp 14409 cnptopresti 14417 txtopon 14441 txcnp 14450 txlm 14458 cnmpt2res 14476 mopntop 14623 metcnpi 14694 metcnpi3 14696 dvfvalap 14860 dvfgg 14867 dvaddxxbr 14880 dvmulxxbr 14881 |
Copyright terms: Public domain | W3C validator |