ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  topontop GIF version

Theorem topontop 14358
Description: A topology on a given base set is a topology. (Contributed by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
topontop (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top)

Proof of Theorem topontop
StepHypRef Expression
1 istopon 14357 . 2 (𝐽 ∈ (TopOn‘𝐵) ↔ (𝐽 ∈ Top ∧ 𝐵 = 𝐽))
21simplbi 274 1 (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167   cuni 3840  cfv 5259  Topctop 14341  TopOnctopon 14354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-topon 14355
This theorem is referenced by:  topontopi  14360  topontopon  14364  toponmax  14369  topgele  14373  istps  14376  topontopn  14381  resttopon  14515  resttopon2  14522  lmfval  14536  cnfval  14538  cnpfval  14539  cnprcl2k  14550  cnpf2  14551  tgcn  14552  tgcnp  14553  iscnp4  14562  cnntr  14569  cncnp  14574  cnptopresti  14582  txtopon  14606  txcnp  14615  txlm  14623  cnmpt2res  14641  mopntop  14788  metcnpi  14859  metcnpi3  14861  dvfvalap  15025  dvfgg  15032  dvaddxxbr  15045  dvmulxxbr  15046
  Copyright terms: Public domain W3C validator