| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > topontop | GIF version | ||
| Description: A topology on a given base set is a topology. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| topontop | ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | istopon 14485 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐵) ↔ (𝐽 ∈ Top ∧ 𝐵 = ∪ 𝐽)) | |
| 2 | 1 | simplbi 274 | 1 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2176 ∪ cuni 3850 ‘cfv 5271 Topctop 14469 TopOnctopon 14482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-iota 5232 df-fun 5273 df-fv 5279 df-topon 14483 |
| This theorem is referenced by: topontopi 14488 topontopon 14492 toponmax 14497 topgele 14501 istps 14504 topontopn 14509 resttopon 14643 resttopon2 14650 lmfval 14664 cnfval 14666 cnpfval 14667 cnprcl2k 14678 cnpf2 14679 tgcn 14680 tgcnp 14681 iscnp4 14690 cnntr 14697 cncnp 14702 cnptopresti 14710 txtopon 14734 txcnp 14743 txlm 14751 cnmpt2res 14769 mopntop 14916 metcnpi 14987 metcnpi3 14989 dvfvalap 15153 dvfgg 15160 dvaddxxbr 15173 dvmulxxbr 15174 |
| Copyright terms: Public domain | W3C validator |