ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  topontop GIF version

Theorem topontop 14486
Description: A topology on a given base set is a topology. (Contributed by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
topontop (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top)

Proof of Theorem topontop
StepHypRef Expression
1 istopon 14485 . 2 (𝐽 ∈ (TopOn‘𝐵) ↔ (𝐽 ∈ Top ∧ 𝐵 = 𝐽))
21simplbi 274 1 (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2176   cuni 3850  cfv 5271  Topctop 14469  TopOnctopon 14482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-iota 5232  df-fun 5273  df-fv 5279  df-topon 14483
This theorem is referenced by:  topontopi  14488  topontopon  14492  toponmax  14497  topgele  14501  istps  14504  topontopn  14509  resttopon  14643  resttopon2  14650  lmfval  14664  cnfval  14666  cnpfval  14667  cnprcl2k  14678  cnpf2  14679  tgcn  14680  tgcnp  14681  iscnp4  14690  cnntr  14697  cncnp  14702  cnptopresti  14710  txtopon  14734  txcnp  14743  txlm  14751  cnmpt2res  14769  mopntop  14916  metcnpi  14987  metcnpi3  14989  dvfvalap  15153  dvfgg  15160  dvaddxxbr  15173  dvmulxxbr  15174
  Copyright terms: Public domain W3C validator