ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzsuc2 GIF version

Theorem fzsuc2 10047
Description: Join a successor to the end of a finite set of sequential integers. (Contributed by Mario Carneiro, 7-Mar-2014.)
Assertion
Ref Expression
fzsuc2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 − 1))) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)}))

Proof of Theorem fzsuc2
StepHypRef Expression
1 uzp1 9532 . 2 (𝑁 ∈ (ℤ‘(𝑀 − 1)) → (𝑁 = (𝑀 − 1) ∨ 𝑁 ∈ (ℤ‘((𝑀 − 1) + 1))))
2 zcn 9229 . . . . . . . 8 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
3 ax-1cn 7879 . . . . . . . 8 1 ∈ ℂ
4 npcan 8140 . . . . . . . 8 ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑀 − 1) + 1) = 𝑀)
52, 3, 4sylancl 413 . . . . . . 7 (𝑀 ∈ ℤ → ((𝑀 − 1) + 1) = 𝑀)
65oveq2d 5881 . . . . . 6 (𝑀 ∈ ℤ → (𝑀...((𝑀 − 1) + 1)) = (𝑀...𝑀))
7 uncom 3277 . . . . . . . 8 (∅ ∪ {𝑀}) = ({𝑀} ∪ ∅)
8 un0 3454 . . . . . . . 8 ({𝑀} ∪ ∅) = {𝑀}
97, 8eqtri 2196 . . . . . . 7 (∅ ∪ {𝑀}) = {𝑀}
10 zre 9228 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
1110ltm1d 8860 . . . . . . . . 9 (𝑀 ∈ ℤ → (𝑀 − 1) < 𝑀)
12 peano2zm 9262 . . . . . . . . . 10 (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ)
13 fzn 10010 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ (𝑀 − 1) ∈ ℤ) → ((𝑀 − 1) < 𝑀 ↔ (𝑀...(𝑀 − 1)) = ∅))
1412, 13mpdan 421 . . . . . . . . 9 (𝑀 ∈ ℤ → ((𝑀 − 1) < 𝑀 ↔ (𝑀...(𝑀 − 1)) = ∅))
1511, 14mpbid 147 . . . . . . . 8 (𝑀 ∈ ℤ → (𝑀...(𝑀 − 1)) = ∅)
165sneqd 3602 . . . . . . . 8 (𝑀 ∈ ℤ → {((𝑀 − 1) + 1)} = {𝑀})
1715, 16uneq12d 3288 . . . . . . 7 (𝑀 ∈ ℤ → ((𝑀...(𝑀 − 1)) ∪ {((𝑀 − 1) + 1)}) = (∅ ∪ {𝑀}))
18 fzsn 10034 . . . . . . 7 (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀})
199, 17, 183eqtr4a 2234 . . . . . 6 (𝑀 ∈ ℤ → ((𝑀...(𝑀 − 1)) ∪ {((𝑀 − 1) + 1)}) = (𝑀...𝑀))
206, 19eqtr4d 2211 . . . . 5 (𝑀 ∈ ℤ → (𝑀...((𝑀 − 1) + 1)) = ((𝑀...(𝑀 − 1)) ∪ {((𝑀 − 1) + 1)}))
21 oveq1 5872 . . . . . . 7 (𝑁 = (𝑀 − 1) → (𝑁 + 1) = ((𝑀 − 1) + 1))
2221oveq2d 5881 . . . . . 6 (𝑁 = (𝑀 − 1) → (𝑀...(𝑁 + 1)) = (𝑀...((𝑀 − 1) + 1)))
23 oveq2 5873 . . . . . . 7 (𝑁 = (𝑀 − 1) → (𝑀...𝑁) = (𝑀...(𝑀 − 1)))
2421sneqd 3602 . . . . . . 7 (𝑁 = (𝑀 − 1) → {(𝑁 + 1)} = {((𝑀 − 1) + 1)})
2523, 24uneq12d 3288 . . . . . 6 (𝑁 = (𝑀 − 1) → ((𝑀...𝑁) ∪ {(𝑁 + 1)}) = ((𝑀...(𝑀 − 1)) ∪ {((𝑀 − 1) + 1)}))
2622, 25eqeq12d 2190 . . . . 5 (𝑁 = (𝑀 − 1) → ((𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)}) ↔ (𝑀...((𝑀 − 1) + 1)) = ((𝑀...(𝑀 − 1)) ∪ {((𝑀 − 1) + 1)})))
2720, 26syl5ibrcom 157 . . . 4 (𝑀 ∈ ℤ → (𝑁 = (𝑀 − 1) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)})))
2827imp 124 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 = (𝑀 − 1)) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)}))
295fveq2d 5511 . . . . . 6 (𝑀 ∈ ℤ → (ℤ‘((𝑀 − 1) + 1)) = (ℤ𝑀))
3029eleq2d 2245 . . . . 5 (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ‘((𝑀 − 1) + 1)) ↔ 𝑁 ∈ (ℤ𝑀)))
3130biimpa 296 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘((𝑀 − 1) + 1))) → 𝑁 ∈ (ℤ𝑀))
32 fzsuc 10037 . . . 4 (𝑁 ∈ (ℤ𝑀) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)}))
3331, 32syl 14 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘((𝑀 − 1) + 1))) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)}))
3428, 33jaodan 797 . 2 ((𝑀 ∈ ℤ ∧ (𝑁 = (𝑀 − 1) ∨ 𝑁 ∈ (ℤ‘((𝑀 − 1) + 1)))) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)}))
351, 34sylan2 286 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 − 1))) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)}))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 708   = wceq 1353  wcel 2146  cun 3125  c0 3420  {csn 3589   class class class wbr 3998  cfv 5208  (class class class)co 5865  cc 7784  1c1 7787   + caddc 7789   < clt 7966  cmin 8102  cz 9224  cuz 9499  ...cfz 9977
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-addcom 7886  ax-addass 7888  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-0id 7894  ax-rnegex 7895  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-apti 7901  ax-pre-ltadd 7902
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rab 2462  df-v 2737  df-sbc 2961  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-sub 8104  df-neg 8105  df-inn 8891  df-n0 9148  df-z 9225  df-uz 9500  df-fz 9978
This theorem is referenced by:  fseq1p1m1  10062  frecfzennn  10394  zfz1isolemsplit  10784  fsumm1  11390  fprodm1  11572
  Copyright terms: Public domain W3C validator