Proof of Theorem fzsuc2
Step | Hyp | Ref
| Expression |
1 | | uzp1 9520 |
. 2
⊢ (𝑁 ∈
(ℤ≥‘(𝑀 − 1)) → (𝑁 = (𝑀 − 1) ∨ 𝑁 ∈
(ℤ≥‘((𝑀 − 1) + 1)))) |
2 | | zcn 9217 |
. . . . . . . 8
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
ℂ) |
3 | | ax-1cn 7867 |
. . . . . . . 8
⊢ 1 ∈
ℂ |
4 | | npcan 8128 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑀 −
1) + 1) = 𝑀) |
5 | 2, 3, 4 | sylancl 411 |
. . . . . . 7
⊢ (𝑀 ∈ ℤ → ((𝑀 − 1) + 1) = 𝑀) |
6 | 5 | oveq2d 5869 |
. . . . . 6
⊢ (𝑀 ∈ ℤ → (𝑀...((𝑀 − 1) + 1)) = (𝑀...𝑀)) |
7 | | uncom 3271 |
. . . . . . . 8
⊢ (∅
∪ {𝑀}) = ({𝑀} ∪
∅) |
8 | | un0 3448 |
. . . . . . . 8
⊢ ({𝑀} ∪ ∅) = {𝑀} |
9 | 7, 8 | eqtri 2191 |
. . . . . . 7
⊢ (∅
∪ {𝑀}) = {𝑀} |
10 | | zre 9216 |
. . . . . . . . . 10
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
ℝ) |
11 | 10 | ltm1d 8848 |
. . . . . . . . 9
⊢ (𝑀 ∈ ℤ → (𝑀 − 1) < 𝑀) |
12 | | peano2zm 9250 |
. . . . . . . . . 10
⊢ (𝑀 ∈ ℤ → (𝑀 − 1) ∈
ℤ) |
13 | | fzn 9998 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℤ ∧ (𝑀 − 1) ∈ ℤ)
→ ((𝑀 − 1) <
𝑀 ↔ (𝑀...(𝑀 − 1)) = ∅)) |
14 | 12, 13 | mpdan 419 |
. . . . . . . . 9
⊢ (𝑀 ∈ ℤ → ((𝑀 − 1) < 𝑀 ↔ (𝑀...(𝑀 − 1)) = ∅)) |
15 | 11, 14 | mpbid 146 |
. . . . . . . 8
⊢ (𝑀 ∈ ℤ → (𝑀...(𝑀 − 1)) = ∅) |
16 | 5 | sneqd 3596 |
. . . . . . . 8
⊢ (𝑀 ∈ ℤ → {((𝑀 − 1) + 1)} = {𝑀}) |
17 | 15, 16 | uneq12d 3282 |
. . . . . . 7
⊢ (𝑀 ∈ ℤ → ((𝑀...(𝑀 − 1)) ∪ {((𝑀 − 1) + 1)}) = (∅ ∪ {𝑀})) |
18 | | fzsn 10022 |
. . . . . . 7
⊢ (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀}) |
19 | 9, 17, 18 | 3eqtr4a 2229 |
. . . . . 6
⊢ (𝑀 ∈ ℤ → ((𝑀...(𝑀 − 1)) ∪ {((𝑀 − 1) + 1)}) = (𝑀...𝑀)) |
20 | 6, 19 | eqtr4d 2206 |
. . . . 5
⊢ (𝑀 ∈ ℤ → (𝑀...((𝑀 − 1) + 1)) = ((𝑀...(𝑀 − 1)) ∪ {((𝑀 − 1) + 1)})) |
21 | | oveq1 5860 |
. . . . . . 7
⊢ (𝑁 = (𝑀 − 1) → (𝑁 + 1) = ((𝑀 − 1) + 1)) |
22 | 21 | oveq2d 5869 |
. . . . . 6
⊢ (𝑁 = (𝑀 − 1) → (𝑀...(𝑁 + 1)) = (𝑀...((𝑀 − 1) + 1))) |
23 | | oveq2 5861 |
. . . . . . 7
⊢ (𝑁 = (𝑀 − 1) → (𝑀...𝑁) = (𝑀...(𝑀 − 1))) |
24 | 21 | sneqd 3596 |
. . . . . . 7
⊢ (𝑁 = (𝑀 − 1) → {(𝑁 + 1)} = {((𝑀 − 1) + 1)}) |
25 | 23, 24 | uneq12d 3282 |
. . . . . 6
⊢ (𝑁 = (𝑀 − 1) → ((𝑀...𝑁) ∪ {(𝑁 + 1)}) = ((𝑀...(𝑀 − 1)) ∪ {((𝑀 − 1) + 1)})) |
26 | 22, 25 | eqeq12d 2185 |
. . . . 5
⊢ (𝑁 = (𝑀 − 1) → ((𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)}) ↔ (𝑀...((𝑀 − 1) + 1)) = ((𝑀...(𝑀 − 1)) ∪ {((𝑀 − 1) + 1)}))) |
27 | 20, 26 | syl5ibrcom 156 |
. . . 4
⊢ (𝑀 ∈ ℤ → (𝑁 = (𝑀 − 1) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)}))) |
28 | 27 | imp 123 |
. . 3
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 = (𝑀 − 1)) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)})) |
29 | 5 | fveq2d 5500 |
. . . . . 6
⊢ (𝑀 ∈ ℤ →
(ℤ≥‘((𝑀 − 1) + 1)) =
(ℤ≥‘𝑀)) |
30 | 29 | eleq2d 2240 |
. . . . 5
⊢ (𝑀 ∈ ℤ → (𝑁 ∈
(ℤ≥‘((𝑀 − 1) + 1)) ↔ 𝑁 ∈ (ℤ≥‘𝑀))) |
31 | 30 | biimpa 294 |
. . . 4
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈
(ℤ≥‘((𝑀 − 1) + 1))) → 𝑁 ∈ (ℤ≥‘𝑀)) |
32 | | fzsuc 10025 |
. . . 4
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)})) |
33 | 31, 32 | syl 14 |
. . 3
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈
(ℤ≥‘((𝑀 − 1) + 1))) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)})) |
34 | 28, 33 | jaodan 792 |
. 2
⊢ ((𝑀 ∈ ℤ ∧ (𝑁 = (𝑀 − 1) ∨ 𝑁 ∈
(ℤ≥‘((𝑀 − 1) + 1)))) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)})) |
35 | 1, 34 | sylan2 284 |
1
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈
(ℤ≥‘(𝑀 − 1))) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)})) |