ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzsuc2 GIF version

Theorem fzsuc2 10004
Description: Join a successor to the end of a finite set of sequential integers. (Contributed by Mario Carneiro, 7-Mar-2014.)
Assertion
Ref Expression
fzsuc2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 − 1))) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)}))

Proof of Theorem fzsuc2
StepHypRef Expression
1 uzp1 9490 . 2 (𝑁 ∈ (ℤ‘(𝑀 − 1)) → (𝑁 = (𝑀 − 1) ∨ 𝑁 ∈ (ℤ‘((𝑀 − 1) + 1))))
2 zcn 9187 . . . . . . . 8 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
3 ax-1cn 7837 . . . . . . . 8 1 ∈ ℂ
4 npcan 8098 . . . . . . . 8 ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑀 − 1) + 1) = 𝑀)
52, 3, 4sylancl 410 . . . . . . 7 (𝑀 ∈ ℤ → ((𝑀 − 1) + 1) = 𝑀)
65oveq2d 5852 . . . . . 6 (𝑀 ∈ ℤ → (𝑀...((𝑀 − 1) + 1)) = (𝑀...𝑀))
7 uncom 3261 . . . . . . . 8 (∅ ∪ {𝑀}) = ({𝑀} ∪ ∅)
8 un0 3437 . . . . . . . 8 ({𝑀} ∪ ∅) = {𝑀}
97, 8eqtri 2185 . . . . . . 7 (∅ ∪ {𝑀}) = {𝑀}
10 zre 9186 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
1110ltm1d 8818 . . . . . . . . 9 (𝑀 ∈ ℤ → (𝑀 − 1) < 𝑀)
12 peano2zm 9220 . . . . . . . . . 10 (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ)
13 fzn 9967 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ (𝑀 − 1) ∈ ℤ) → ((𝑀 − 1) < 𝑀 ↔ (𝑀...(𝑀 − 1)) = ∅))
1412, 13mpdan 418 . . . . . . . . 9 (𝑀 ∈ ℤ → ((𝑀 − 1) < 𝑀 ↔ (𝑀...(𝑀 − 1)) = ∅))
1511, 14mpbid 146 . . . . . . . 8 (𝑀 ∈ ℤ → (𝑀...(𝑀 − 1)) = ∅)
165sneqd 3583 . . . . . . . 8 (𝑀 ∈ ℤ → {((𝑀 − 1) + 1)} = {𝑀})
1715, 16uneq12d 3272 . . . . . . 7 (𝑀 ∈ ℤ → ((𝑀...(𝑀 − 1)) ∪ {((𝑀 − 1) + 1)}) = (∅ ∪ {𝑀}))
18 fzsn 9991 . . . . . . 7 (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀})
199, 17, 183eqtr4a 2223 . . . . . 6 (𝑀 ∈ ℤ → ((𝑀...(𝑀 − 1)) ∪ {((𝑀 − 1) + 1)}) = (𝑀...𝑀))
206, 19eqtr4d 2200 . . . . 5 (𝑀 ∈ ℤ → (𝑀...((𝑀 − 1) + 1)) = ((𝑀...(𝑀 − 1)) ∪ {((𝑀 − 1) + 1)}))
21 oveq1 5843 . . . . . . 7 (𝑁 = (𝑀 − 1) → (𝑁 + 1) = ((𝑀 − 1) + 1))
2221oveq2d 5852 . . . . . 6 (𝑁 = (𝑀 − 1) → (𝑀...(𝑁 + 1)) = (𝑀...((𝑀 − 1) + 1)))
23 oveq2 5844 . . . . . . 7 (𝑁 = (𝑀 − 1) → (𝑀...𝑁) = (𝑀...(𝑀 − 1)))
2421sneqd 3583 . . . . . . 7 (𝑁 = (𝑀 − 1) → {(𝑁 + 1)} = {((𝑀 − 1) + 1)})
2523, 24uneq12d 3272 . . . . . 6 (𝑁 = (𝑀 − 1) → ((𝑀...𝑁) ∪ {(𝑁 + 1)}) = ((𝑀...(𝑀 − 1)) ∪ {((𝑀 − 1) + 1)}))
2622, 25eqeq12d 2179 . . . . 5 (𝑁 = (𝑀 − 1) → ((𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)}) ↔ (𝑀...((𝑀 − 1) + 1)) = ((𝑀...(𝑀 − 1)) ∪ {((𝑀 − 1) + 1)})))
2720, 26syl5ibrcom 156 . . . 4 (𝑀 ∈ ℤ → (𝑁 = (𝑀 − 1) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)})))
2827imp 123 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 = (𝑀 − 1)) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)}))
295fveq2d 5484 . . . . . 6 (𝑀 ∈ ℤ → (ℤ‘((𝑀 − 1) + 1)) = (ℤ𝑀))
3029eleq2d 2234 . . . . 5 (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ‘((𝑀 − 1) + 1)) ↔ 𝑁 ∈ (ℤ𝑀)))
3130biimpa 294 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘((𝑀 − 1) + 1))) → 𝑁 ∈ (ℤ𝑀))
32 fzsuc 9994 . . . 4 (𝑁 ∈ (ℤ𝑀) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)}))
3331, 32syl 14 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘((𝑀 − 1) + 1))) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)}))
3428, 33jaodan 787 . 2 ((𝑀 ∈ ℤ ∧ (𝑁 = (𝑀 − 1) ∨ 𝑁 ∈ (ℤ‘((𝑀 − 1) + 1)))) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)}))
351, 34sylan2 284 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 − 1))) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)}))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 698   = wceq 1342  wcel 2135  cun 3109  c0 3404  {csn 3570   class class class wbr 3976  cfv 5182  (class class class)co 5836  cc 7742  1c1 7745   + caddc 7747   < clt 7924  cmin 8060  cz 9182  cuz 9457  ...cfz 9935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-cnex 7835  ax-resscn 7836  ax-1cn 7837  ax-1re 7838  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-addcom 7844  ax-addass 7846  ax-distr 7848  ax-i2m1 7849  ax-0lt1 7850  ax-0id 7852  ax-rnegex 7853  ax-cnre 7855  ax-pre-ltirr 7856  ax-pre-ltwlin 7857  ax-pre-lttrn 7858  ax-pre-apti 7859  ax-pre-ltadd 7860
This theorem depends on definitions:  df-bi 116  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2723  df-sbc 2947  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-br 3977  df-opab 4038  df-mpt 4039  df-id 4265  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-fv 5190  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-pnf 7926  df-mnf 7927  df-xr 7928  df-ltxr 7929  df-le 7930  df-sub 8062  df-neg 8063  df-inn 8849  df-n0 9106  df-z 9183  df-uz 9458  df-fz 9936
This theorem is referenced by:  fseq1p1m1  10019  frecfzennn  10351  zfz1isolemsplit  10737  fsumm1  11343  fprodm1  11525
  Copyright terms: Public domain W3C validator