ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uztrn GIF version

Theorem uztrn 9665
Description: Transitive law for sets of upper integers. (Contributed by NM, 20-Sep-2005.)
Assertion
Ref Expression
uztrn ((𝑀 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝑀 ∈ (ℤ𝑁))

Proof of Theorem uztrn
StepHypRef Expression
1 eluzel2 9653 . . 3 (𝐾 ∈ (ℤ𝑁) → 𝑁 ∈ ℤ)
21adantl 277 . 2 ((𝑀 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝑁 ∈ ℤ)
3 eluzelz 9657 . . 3 (𝑀 ∈ (ℤ𝐾) → 𝑀 ∈ ℤ)
43adantr 276 . 2 ((𝑀 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝑀 ∈ ℤ)
5 eluzle 9660 . . . 4 (𝐾 ∈ (ℤ𝑁) → 𝑁𝐾)
65adantl 277 . . 3 ((𝑀 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝑁𝐾)
7 eluzle 9660 . . . 4 (𝑀 ∈ (ℤ𝐾) → 𝐾𝑀)
87adantr 276 . . 3 ((𝑀 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝐾𝑀)
9 eluzelz 9657 . . . . 5 (𝐾 ∈ (ℤ𝑁) → 𝐾 ∈ ℤ)
109adantl 277 . . . 4 ((𝑀 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝐾 ∈ ℤ)
11 zletr 9422 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑁𝐾𝐾𝑀) → 𝑁𝑀))
122, 10, 4, 11syl3anc 1250 . . 3 ((𝑀 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ𝑁)) → ((𝑁𝐾𝐾𝑀) → 𝑁𝑀))
136, 8, 12mp2and 433 . 2 ((𝑀 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝑁𝑀)
14 eluz2 9654 . 2 (𝑀 ∈ (ℤ𝑁) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁𝑀))
152, 4, 13, 14syl3anbrc 1184 1 ((𝑀 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝑀 ∈ (ℤ𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2176   class class class wbr 4044  cfv 5271  cle 8108  cz 9372  cuz 9648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-pre-ltwlin 8038
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-ov 5947  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-neg 8246  df-z 9373  df-uz 9649
This theorem is referenced by:  uztrn2  9666  fzsplit2  10172  fzass4  10184  fzss1  10185  fzss2  10186  uzsplit  10214  seq3fveq2  10620  seqfveq2g  10622  ser3mono  10632  seq3split  10633  seqsplitg  10634  seq3f1olemqsumkj  10656  seq3f1olemqsumk  10657  seq3id  10670  seq3id2  10671  seq3z  10673  seq3coll  10987  cvgratgt0  11844  mertenslemi1  11846  zproddc  11890  dvdsfac  12171  gsumfzz  13327
  Copyright terms: Public domain W3C validator