![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0lepnf | Structured version Visualization version GIF version |
Description: 0 less than or equal to positive infinity. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
0lepnf | ⊢ 0 ≤ +∞ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0xr 11305 | . 2 ⊢ 0 ∈ ℝ* | |
2 | pnfge 13169 | . 2 ⊢ (0 ∈ ℝ* → 0 ≤ +∞) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 0 ≤ +∞ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 class class class wbr 5147 0cc0 11152 +∞cpnf 11289 ℝ*cxr 11291 ≤ cle 11293 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-addrcl 11213 ax-rnegex 11223 ax-cnre 11225 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-xp 5694 df-cnv 5696 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 |
This theorem is referenced by: xnn0ge0 13172 xsubge0 13299 xadddi2 13335 xnn0xrge0 13542 pcge0 16895 leordtval2 23235 iccpnfcnv 24988 taylfval 26414 elxrge02 32898 xrge0adddir 33005 xrge0iifcnv 33893 lmxrge0 33912 esumpinfval 34053 hashf2 34064 esumcvg 34066 aks4d1p1p6 42054 pnfel0pnf 45480 |
Copyright terms: Public domain | W3C validator |