| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0lepnf | Structured version Visualization version GIF version | ||
| Description: 0 less than or equal to positive infinity. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| 0lepnf | ⊢ 0 ≤ +∞ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0xr 11282 | . 2 ⊢ 0 ∈ ℝ* | |
| 2 | pnfge 13146 | . 2 ⊢ (0 ∈ ℝ* → 0 ≤ +∞) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 0 ≤ +∞ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 class class class wbr 5119 0cc0 11129 +∞cpnf 11266 ℝ*cxr 11268 ≤ cle 11270 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-addrcl 11190 ax-rnegex 11200 ax-cnre 11202 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-xp 5660 df-cnv 5662 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 |
| This theorem is referenced by: xnn0ge0 13150 xsubge0 13277 xadddi2 13313 xnn0xrge0 13523 pcge0 16882 leordtval2 23150 iccpnfcnv 24893 taylfval 26318 elxrge02 32906 xrge0adddir 33013 xrge0iifcnv 33964 lmxrge0 33983 esumpinfval 34104 hashf2 34115 esumcvg 34117 aks4d1p1p6 42086 pnfel0pnf 45557 |
| Copyright terms: Public domain | W3C validator |