Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0lepnf | Structured version Visualization version GIF version |
Description: 0 less than or equal to positive infinity. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
0lepnf | ⊢ 0 ≤ +∞ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0xr 11115 | . 2 ⊢ 0 ∈ ℝ* | |
2 | pnfge 12959 | . 2 ⊢ (0 ∈ ℝ* → 0 ≤ +∞) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 0 ≤ +∞ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 class class class wbr 5089 0cc0 10964 +∞cpnf 11099 ℝ*cxr 11101 ≤ cle 11103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-cnex 11020 ax-resscn 11021 ax-1cn 11022 ax-addrcl 11025 ax-rnegex 11035 ax-cnre 11037 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-br 5090 df-opab 5152 df-xp 5620 df-cnv 5622 df-pnf 11104 df-mnf 11105 df-xr 11106 df-ltxr 11107 df-le 11108 |
This theorem is referenced by: xnn0ge0 12962 xsubge0 13088 xadddi2 13124 xnn0xrge0 13331 pcge0 16652 leordtval2 22461 iccpnfcnv 24205 taylfval 25616 elxrge02 31434 xrge0adddir 31529 xrge0iifcnv 32122 lmxrge0 32141 esumpinfval 32280 hashf2 32291 esumcvg 32293 aks4d1p1p6 40328 pnfel0pnf 43391 |
Copyright terms: Public domain | W3C validator |