Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0lepnf | Structured version Visualization version GIF version |
Description: 0 less than or equal to positive infinity. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
0lepnf | ⊢ 0 ≤ +∞ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0xr 11022 | . 2 ⊢ 0 ∈ ℝ* | |
2 | pnfge 12866 | . 2 ⊢ (0 ∈ ℝ* → 0 ≤ +∞) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 0 ≤ +∞ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 class class class wbr 5074 0cc0 10871 +∞cpnf 11006 ℝ*cxr 11008 ≤ cle 11010 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-addrcl 10932 ax-rnegex 10942 ax-cnre 10944 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-xp 5595 df-cnv 5597 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 |
This theorem is referenced by: xnn0ge0 12869 xsubge0 12995 xadddi2 13031 xnn0xrge0 13238 pcge0 16563 leordtval2 22363 iccpnfcnv 24107 taylfval 25518 elxrge02 31206 xrge0adddir 31301 xrge0iifcnv 31883 lmxrge0 31902 esumpinfval 32041 hashf2 32052 esumcvg 32054 aks4d1p1p6 40081 pnfel0pnf 43066 |
Copyright terms: Public domain | W3C validator |