MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0lepnf Structured version   Visualization version   GIF version

Theorem 0lepnf 13171
Description: 0 less than or equal to positive infinity. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
0lepnf 0 ≤ +∞

Proof of Theorem 0lepnf
StepHypRef Expression
1 0xr 11305 . 2 0 ∈ ℝ*
2 pnfge 13169 . 2 (0 ∈ ℝ* → 0 ≤ +∞)
31, 2ax-mp 5 1 0 ≤ +∞
Colors of variables: wff setvar class
Syntax hints:  wcel 2105   class class class wbr 5147  0cc0 11152  +∞cpnf 11289  *cxr 11291  cle 11293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-addrcl 11213  ax-rnegex 11223  ax-cnre 11225
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-br 5148  df-opab 5210  df-xp 5694  df-cnv 5696  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298
This theorem is referenced by:  xnn0ge0  13172  xsubge0  13299  xadddi2  13335  xnn0xrge0  13542  pcge0  16895  leordtval2  23235  iccpnfcnv  24988  taylfval  26414  elxrge02  32898  xrge0adddir  33005  xrge0iifcnv  33893  lmxrge0  33912  esumpinfval  34053  hashf2  34064  esumcvg  34066  aks4d1p1p6  42054  pnfel0pnf  45480
  Copyright terms: Public domain W3C validator