| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0lepnf | Structured version Visualization version GIF version | ||
| Description: 0 less than or equal to positive infinity. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| 0lepnf | ⊢ 0 ≤ +∞ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0xr 11159 | . 2 ⊢ 0 ∈ ℝ* | |
| 2 | pnfge 13029 | . 2 ⊢ (0 ∈ ℝ* → 0 ≤ +∞) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 0 ≤ +∞ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 class class class wbr 5089 0cc0 11006 +∞cpnf 11143 ℝ*cxr 11145 ≤ cle 11147 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-addrcl 11067 ax-rnegex 11077 ax-cnre 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-xp 5620 df-cnv 5622 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 |
| This theorem is referenced by: xnn0ge0 13033 xsubge0 13160 xadddi2 13196 xnn0xrge0 13406 pcge0 16774 leordtval2 23127 iccpnfcnv 24869 taylfval 26293 elxrge02 32912 xrge0adddir 32999 xrge0iifcnv 33946 lmxrge0 33965 esumpinfval 34086 hashf2 34097 esumcvg 34099 aks4d1p1p6 42176 pnfel0pnf 45638 |
| Copyright terms: Public domain | W3C validator |