MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0lepnf Structured version   Visualization version   GIF version

Theorem 0lepnf 12515
Description: 0 less than or equal to positive infinity. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
0lepnf 0 ≤ +∞

Proof of Theorem 0lepnf
StepHypRef Expression
1 0xr 10677 . 2 0 ∈ ℝ*
2 pnfge 12513 . 2 (0 ∈ ℝ* → 0 ≤ +∞)
31, 2ax-mp 5 1 0 ≤ +∞
Colors of variables: wff setvar class
Syntax hints:  wcel 2111   class class class wbr 5030  0cc0 10526  +∞cpnf 10661  *cxr 10663  cle 10665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-addrcl 10587  ax-rnegex 10597  ax-cnre 10599
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-xp 5525  df-cnv 5527  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670
This theorem is referenced by:  xnn0ge0  12516  xsubge0  12642  xadddi2  12678  xnn0xrge0  12884  pcge0  16188  leordtval2  21817  iccpnfcnv  23549  taylfval  24954  elxrge02  30634  xrge0adddir  30726  xrge0iifcnv  31286  lmxrge0  31305  esumpinfval  31442  hashf2  31453  esumcvg  31455  pnfel0pnf  42163
  Copyright terms: Public domain W3C validator