![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0lepnf | Structured version Visualization version GIF version |
Description: 0 less than or equal to positive infinity. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
0lepnf | ⊢ 0 ≤ +∞ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0xr 10479 | . 2 ⊢ 0 ∈ ℝ* | |
2 | pnfge 12335 | . 2 ⊢ (0 ∈ ℝ* → 0 ≤ +∞) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 0 ≤ +∞ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2048 class class class wbr 4923 0cc0 10327 +∞cpnf 10463 ℝ*cxr 10465 ≤ cle 10467 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 ax-cnex 10383 ax-resscn 10384 ax-1cn 10385 ax-addrcl 10388 ax-rnegex 10398 ax-cnre 10400 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-rab 3091 df-v 3411 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-nul 4174 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4707 df-br 4924 df-opab 4986 df-xp 5406 df-cnv 5408 df-pnf 10468 df-mnf 10469 df-xr 10470 df-ltxr 10471 df-le 10472 |
This theorem is referenced by: xnn0ge0 12338 xsubge0 12463 xadddi2 12499 xnn0xrge0 12700 pcge0 16044 leordtval2 21514 iccpnfcnv 23241 taylfval 24640 elxrge02 30343 xrge0adddir 30389 xrge0iifcnv 30777 lmxrge0 30796 esumpinfval 30933 hashf2 30944 esumcvg 30946 pnfel0pnf 41181 |
Copyright terms: Public domain | W3C validator |