| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0lepnf | Structured version Visualization version GIF version | ||
| Description: 0 less than or equal to positive infinity. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| 0lepnf | ⊢ 0 ≤ +∞ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0xr 11221 | . 2 ⊢ 0 ∈ ℝ* | |
| 2 | pnfge 13090 | . 2 ⊢ (0 ∈ ℝ* → 0 ≤ +∞) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 0 ≤ +∞ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 class class class wbr 5107 0cc0 11068 +∞cpnf 11205 ℝ*cxr 11207 ≤ cle 11209 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-addrcl 11129 ax-rnegex 11139 ax-cnre 11141 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-xp 5644 df-cnv 5646 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 |
| This theorem is referenced by: xnn0ge0 13094 xsubge0 13221 xadddi2 13257 xnn0xrge0 13467 pcge0 16833 leordtval2 23099 iccpnfcnv 24842 taylfval 26266 elxrge02 32852 xrge0adddir 32959 xrge0iifcnv 33923 lmxrge0 33942 esumpinfval 34063 hashf2 34074 esumcvg 34076 aks4d1p1p6 42061 pnfel0pnf 45526 |
| Copyright terms: Public domain | W3C validator |