| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0lepnf | Structured version Visualization version GIF version | ||
| Description: 0 less than or equal to positive infinity. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| 0lepnf | ⊢ 0 ≤ +∞ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0xr 11162 | . 2 ⊢ 0 ∈ ℝ* | |
| 2 | pnfge 13032 | . 2 ⊢ (0 ∈ ℝ* → 0 ≤ +∞) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 0 ≤ +∞ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 class class class wbr 5092 0cc0 11009 +∞cpnf 11146 ℝ*cxr 11148 ≤ cle 11150 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-addrcl 11070 ax-rnegex 11080 ax-cnre 11082 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-xp 5625 df-cnv 5627 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 |
| This theorem is referenced by: xnn0ge0 13036 xsubge0 13163 xadddi2 13199 xnn0xrge0 13409 pcge0 16774 leordtval2 23097 iccpnfcnv 24840 taylfval 26264 elxrge02 32872 xrge0adddir 32972 xrge0iifcnv 33900 lmxrge0 33919 esumpinfval 34040 hashf2 34051 esumcvg 34053 aks4d1p1p6 42050 pnfel0pnf 45513 |
| Copyright terms: Public domain | W3C validator |