| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0xr | Structured version Visualization version GIF version | ||
| Description: Zero is an extended real. (Contributed by Mario Carneiro, 15-Jun-2014.) |
| Ref | Expression |
|---|---|
| 0xr | ⊢ 0 ∈ ℝ* |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressxr 11305 | . 2 ⊢ ℝ ⊆ ℝ* | |
| 2 | 0re 11263 | . 2 ⊢ 0 ∈ ℝ | |
| 3 | 1, 2 | sselii 3980 | 1 ⊢ 0 ∈ ℝ* |
| Copyright terms: Public domain | W3C validator |