Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks4d1p1p6 Structured version   Visualization version   GIF version

Theorem aks4d1p1p6 40081
Description: Inequality lift to differentiable functions for a term in AKS inequality lemma. (Contributed by metakunt, 19-Aug-2024.)
Hypotheses
Ref Expression
aks4d1p1p6.1 (𝜑𝐴 ∈ ℝ)
aks4d1p1p6.2 (𝜑𝐵 ∈ ℝ)
aks4d1p1p6.3 (𝜑 → 3 ≤ 𝐴)
aks4d1p1p6.4 (𝜑𝐴𝐵)
Assertion
Ref Expression
aks4d1p1p6 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2)))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((2 · ((1 / ((((2 logb 𝑥)↑5) + 1) · (log‘2))) · (((5 · ((2 logb 𝑥)↑4)) · (1 / (𝑥 · (log‘2)))) + 0))) + ((2 / ((log‘2)↑2)) · (((log‘𝑥)↑(2 − 1)) / 𝑥)))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥

Proof of Theorem aks4d1p1p6
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reelprrecn 10963 . . 3 ℝ ∈ {ℝ, ℂ}
21a1i 11 . 2 (𝜑 → ℝ ∈ {ℝ, ℂ})
3 2cnd 12051 . . 3 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 2 ∈ ℂ)
4 2re 12047 . . . . . 6 2 ∈ ℝ
54a1i 11 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 2 ∈ ℝ)
6 2pos 12076 . . . . . 6 0 < 2
76a1i 11 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 0 < 2)
8 elioore 13109 . . . . . . . . 9 (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 ∈ ℝ)
98adantl 482 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ ℝ)
10 0red 10978 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 0 ∈ ℝ)
11 aks4d1p1p6.1 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
1211adantr 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ)
13 3re 12053 . . . . . . . . . . 11 3 ∈ ℝ
1413a1i 11 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 3 ∈ ℝ)
15 3pos 12078 . . . . . . . . . . 11 0 < 3
1615a1i 11 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 0 < 3)
17 aks4d1p1p6.3 . . . . . . . . . . 11 (𝜑 → 3 ≤ 𝐴)
1817adantr 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 3 ≤ 𝐴)
1910, 14, 12, 16, 18ltletrd 11135 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 0 < 𝐴)
20 simpr 485 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ (𝐴(,)𝐵))
2111rexrd 11025 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℝ*)
2221adantr 481 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ*)
23 aks4d1p1p6.2 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ ℝ)
2423rexrd 11025 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℝ*)
2524adantr 481 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ*)
269rexrd 11025 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ ℝ*)
27 elioo5 13136 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ ℝ*) → (𝑥 ∈ (𝐴(,)𝐵) ↔ (𝐴 < 𝑥𝑥 < 𝐵)))
2822, 25, 26, 27syl3anc 1370 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑥 ∈ (𝐴(,)𝐵) ↔ (𝐴 < 𝑥𝑥 < 𝐵)))
2920, 28mpbid 231 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐴 < 𝑥𝑥 < 𝐵))
3029simpld 495 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑥)
3110, 12, 9, 19, 30lttrd 11136 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 0 < 𝑥)
32 1red 10976 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 1 ∈ ℝ)
33 1lt2 12144 . . . . . . . . . . 11 1 < 2
3433a1i 11 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 1 < 2)
3532, 34ltned 11111 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 1 ≠ 2)
3635necomd 2999 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 2 ≠ 1)
375, 7, 9, 31, 36relogbcld 39981 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (2 logb 𝑥) ∈ ℝ)
38 5nn0 12253 . . . . . . . 8 5 ∈ ℕ0
3938a1i 11 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 5 ∈ ℕ0)
4037, 39reexpcld 13881 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((2 logb 𝑥)↑5) ∈ ℝ)
4140, 32readdcld 11004 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((2 logb 𝑥)↑5) + 1) ∈ ℝ)
4210, 32readdcld 11004 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (0 + 1) ∈ ℝ)
4310ltp1d 11905 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 0 < (0 + 1))
4439nn0zd 12424 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 5 ∈ ℤ)
45 2cnd 12051 . . . . . . . . . . 11 (⊤ → 2 ∈ ℂ)
46 0red 10978 . . . . . . . . . . . . 13 (⊤ → 0 ∈ ℝ)
476a1i 11 . . . . . . . . . . . . 13 (⊤ → 0 < 2)
4846, 47ltned 11111 . . . . . . . . . . . 12 (⊤ → 0 ≠ 2)
4948necomd 2999 . . . . . . . . . . 11 (⊤ → 2 ≠ 0)
50 1red 10976 . . . . . . . . . . . . 13 (⊤ → 1 ∈ ℝ)
5133a1i 11 . . . . . . . . . . . . 13 (⊤ → 1 < 2)
5250, 51ltned 11111 . . . . . . . . . . . 12 (⊤ → 1 ≠ 2)
5352necomd 2999 . . . . . . . . . . 11 (⊤ → 2 ≠ 1)
54 logb1 25919 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1) → (2 logb 1) = 0)
5545, 49, 53, 54syl3anc 1370 . . . . . . . . . 10 (⊤ → (2 logb 1) = 0)
5655mptru 1546 . . . . . . . . 9 (2 logb 1) = 0
57 2lt3 12145 . . . . . . . . . . . . . 14 2 < 3
5857a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 2 < 3)
5932, 5, 14, 34, 58lttrd 11136 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 1 < 3)
6032, 14, 12, 59, 18ltletrd 11135 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 1 < 𝐴)
6132, 12, 9, 60, 30lttrd 11136 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 1 < 𝑥)
62 2z 12352 . . . . . . . . . . . . 13 2 ∈ ℤ
6362a1i 11 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 2 ∈ ℤ)
6463uzidd 12598 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 2 ∈ (ℤ‘2))
65 1rp 12734 . . . . . . . . . . . 12 1 ∈ ℝ+
6665a1i 11 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 1 ∈ ℝ+)
679, 31elrpd 12769 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ ℝ+)
68 logblt 25934 . . . . . . . . . . 11 ((2 ∈ (ℤ‘2) ∧ 1 ∈ ℝ+𝑥 ∈ ℝ+) → (1 < 𝑥 ↔ (2 logb 1) < (2 logb 𝑥)))
6964, 66, 67, 68syl3anc 1370 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (1 < 𝑥 ↔ (2 logb 1) < (2 logb 𝑥)))
7061, 69mpbid 231 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (2 logb 1) < (2 logb 𝑥))
7156, 70eqbrtrrid 5110 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 0 < (2 logb 𝑥))
72 expgt0 13816 . . . . . . . 8 (((2 logb 𝑥) ∈ ℝ ∧ 5 ∈ ℤ ∧ 0 < (2 logb 𝑥)) → 0 < ((2 logb 𝑥)↑5))
7337, 44, 71, 72syl3anc 1370 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 0 < ((2 logb 𝑥)↑5))
7410, 40, 32, 73ltadd1dd 11586 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (0 + 1) < (((2 logb 𝑥)↑5) + 1))
7510, 42, 41, 43, 74lttrd 11136 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 0 < (((2 logb 𝑥)↑5) + 1))
765, 7, 41, 75, 36relogbcld 39981 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (2 logb (((2 logb 𝑥)↑5) + 1)) ∈ ℝ)
77 recn 10961 . . . 4 ((2 logb (((2 logb 𝑥)↑5) + 1)) ∈ ℝ → (2 logb (((2 logb 𝑥)↑5) + 1)) ∈ ℂ)
7876, 77syl 17 . . 3 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (2 logb (((2 logb 𝑥)↑5) + 1)) ∈ ℂ)
793, 78mulcld 10995 . 2 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (2 · (2 logb (((2 logb 𝑥)↑5) + 1))) ∈ ℂ)
80 2rp 12735 . . . . . . . 8 2 ∈ ℝ+
8180a1i 11 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 2 ∈ ℝ+)
8281relogcld 25778 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (log‘2) ∈ ℝ)
8341, 82remulcld 11005 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((((2 logb 𝑥)↑5) + 1) · (log‘2)) ∈ ℝ)
8440recnd 11003 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((2 logb 𝑥)↑5) ∈ ℂ)
85 1cnd 10970 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 1 ∈ ℂ)
8684, 85addcld 10994 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((2 logb 𝑥)↑5) + 1) ∈ ℂ)
877gt0ne0d 11539 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 2 ≠ 0)
883, 87logcld 25726 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (log‘2) ∈ ℂ)
8975gt0ne0d 11539 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((2 logb 𝑥)↑5) + 1) ≠ 0)
90 0red 10978 . . . . . . . . 9 (𝜑 → 0 ∈ ℝ)
91 loggt0b 25787 . . . . . . . . . . . 12 (2 ∈ ℝ+ → (0 < (log‘2) ↔ 1 < 2))
9280, 91ax-mp 5 . . . . . . . . . . 11 (0 < (log‘2) ↔ 1 < 2)
9333, 92mpbir 230 . . . . . . . . . 10 0 < (log‘2)
9493a1i 11 . . . . . . . . 9 (𝜑 → 0 < (log‘2))
9590, 94ltned 11111 . . . . . . . 8 (𝜑 → 0 ≠ (log‘2))
9695necomd 2999 . . . . . . 7 (𝜑 → (log‘2) ≠ 0)
9796adantr 481 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (log‘2) ≠ 0)
9886, 88, 89, 97mulne0d 11627 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((((2 logb 𝑥)↑5) + 1) · (log‘2)) ≠ 0)
9932, 83, 98redivcld 11803 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (1 / ((((2 logb 𝑥)↑5) + 1) · (log‘2))) ∈ ℝ)
100 5re 12060 . . . . . . . 8 5 ∈ ℝ
101100a1i 11 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 5 ∈ ℝ)
102 4nn0 12252 . . . . . . . . 9 4 ∈ ℕ0
103102a1i 11 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 4 ∈ ℕ0)
10437, 103reexpcld 13881 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((2 logb 𝑥)↑4) ∈ ℝ)
105101, 104remulcld 11005 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (5 · ((2 logb 𝑥)↑4)) ∈ ℝ)
1069, 82remulcld 11005 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑥 · (log‘2)) ∈ ℝ)
1079recnd 11003 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ ℂ)
10810, 31gtned 11110 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ≠ 0)
109107, 88, 108, 97mulne0d 11627 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑥 · (log‘2)) ≠ 0)
11032, 106, 109redivcld 11803 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (1 / (𝑥 · (log‘2))) ∈ ℝ)
111105, 110remulcld 11005 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((5 · ((2 logb 𝑥)↑4)) · (1 / (𝑥 · (log‘2)))) ∈ ℝ)
112111, 10readdcld 11004 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((5 · ((2 logb 𝑥)↑4)) · (1 / (𝑥 · (log‘2)))) + 0) ∈ ℝ)
11399, 112remulcld 11005 . . 3 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((1 / ((((2 logb 𝑥)↑5) + 1) · (log‘2))) · (((5 · ((2 logb 𝑥)↑4)) · (1 / (𝑥 · (log‘2)))) + 0)) ∈ ℝ)
1145, 113remulcld 11005 . 2 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (2 · ((1 / ((((2 logb 𝑥)↑5) + 1) · (log‘2))) · (((5 · ((2 logb 𝑥)↑4)) · (1 / (𝑥 · (log‘2)))) + 0))) ∈ ℝ)
11541, 75elrpd 12769 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((2 logb 𝑥)↑5) + 1) ∈ ℝ+)
1164a1i 11 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → 2 ∈ ℝ)
1176a1i 11 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → 0 < 2)
118 rpre 12738 . . . . . . 7 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
119118adantl 482 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ)
120 rpgt0 12742 . . . . . . 7 (𝑦 ∈ ℝ+ → 0 < 𝑦)
121120adantl 482 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → 0 < 𝑦)
122 1red 10976 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ+) → 1 ∈ ℝ)
12333a1i 11 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ+) → 1 < 2)
124122, 123ltned 11111 . . . . . . 7 ((𝜑𝑦 ∈ ℝ+) → 1 ≠ 2)
125124necomd 2999 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → 2 ≠ 1)
126116, 117, 119, 121, 125relogbcld 39981 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → (2 logb 𝑦) ∈ ℝ)
127126recnd 11003 . . . 4 ((𝜑𝑦 ∈ ℝ+) → (2 logb 𝑦) ∈ ℂ)
12880a1i 11 . . . . . . 7 ((𝜑𝑦 ∈ ℝ+) → 2 ∈ ℝ+)
129128relogcld 25778 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → (log‘2) ∈ ℝ)
130119, 129remulcld 11005 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → (𝑦 · (log‘2)) ∈ ℝ)
131119recnd 11003 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → 𝑦 ∈ ℂ)
132 2cnd 12051 . . . . . . 7 ((𝜑𝑦 ∈ ℝ+) → 2 ∈ ℂ)
133128rpne0d 12777 . . . . . . 7 ((𝜑𝑦 ∈ ℝ+) → 2 ≠ 0)
134132, 133logcld 25726 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → (log‘2) ∈ ℂ)
135 rpne0 12746 . . . . . . 7 (𝑦 ∈ ℝ+𝑦 ≠ 0)
136135adantl 482 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → 𝑦 ≠ 0)
13796necomd 2999 . . . . . . . 8 (𝜑 → 0 ≠ (log‘2))
138137adantr 481 . . . . . . 7 ((𝜑𝑦 ∈ ℝ+) → 0 ≠ (log‘2))
139138necomd 2999 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → (log‘2) ≠ 0)
140131, 134, 136, 139mulne0d 11627 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → (𝑦 · (log‘2)) ≠ 0)
141122, 130, 140redivcld 11803 . . . 4 ((𝜑𝑦 ∈ ℝ+) → (1 / (𝑦 · (log‘2))) ∈ ℝ)
142 cnelprrecn 10964 . . . . . . 7 ℂ ∈ {ℝ, ℂ}
143142a1i 11 . . . . . 6 (𝜑 → ℂ ∈ {ℝ, ℂ})
14437recnd 11003 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (2 logb 𝑥) ∈ ℂ)
145 simpr 485 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → 𝑧 ∈ ℂ)
14638a1i 11 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → 5 ∈ ℕ0)
147145, 146expcld 13864 . . . . . 6 ((𝜑𝑧 ∈ ℂ) → (𝑧↑5) ∈ ℂ)
148 5cn 12061 . . . . . . . 8 5 ∈ ℂ
149148a1i 11 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → 5 ∈ ℂ)
150102a1i 11 . . . . . . . 8 ((𝜑𝑧 ∈ ℂ) → 4 ∈ ℕ0)
151145, 150expcld 13864 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → (𝑧↑4) ∈ ℂ)
152149, 151mulcld 10995 . . . . . 6 ((𝜑𝑧 ∈ ℂ) → (5 · (𝑧↑4)) ∈ ℂ)
15313a1i 11 . . . . . . . . 9 (𝜑 → 3 ∈ ℝ)
15415a1i 11 . . . . . . . . 9 (𝜑 → 0 < 3)
15590, 153, 11, 154, 17ltletrd 11135 . . . . . . . 8 (𝜑 → 0 < 𝐴)
15690, 11, 155ltled 11123 . . . . . . 7 (𝜑 → 0 ≤ 𝐴)
157 aks4d1p1p6.4 . . . . . . 7 (𝜑𝐴𝐵)
158 eqid 2738 . . . . . . 7 (𝑥 ∈ (𝐴(,)𝐵) ↦ (2 logb 𝑥)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (2 logb 𝑥))
159 eqid 2738 . . . . . . 7 (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / (𝑥 · (log‘2)))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / (𝑥 · (log‘2))))
16021, 24, 156, 157, 158, 159dvrelog2b 40074 . . . . . 6 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ (2 logb 𝑥))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / (𝑥 · (log‘2)))))
161 5nn 12059 . . . . . . . 8 5 ∈ ℕ
162 dvexp 25117 . . . . . . . 8 (5 ∈ ℕ → (ℂ D (𝑧 ∈ ℂ ↦ (𝑧↑5))) = (𝑧 ∈ ℂ ↦ (5 · (𝑧↑(5 − 1)))))
163161, 162ax-mp 5 . . . . . . 7 (ℂ D (𝑧 ∈ ℂ ↦ (𝑧↑5))) = (𝑧 ∈ ℂ ↦ (5 · (𝑧↑(5 − 1))))
164 5m1e4 12103 . . . . . . . . . . 11 (5 − 1) = 4
165164a1i 11 . . . . . . . . . 10 ((𝜑𝑧 ∈ ℂ) → (5 − 1) = 4)
166165oveq2d 7291 . . . . . . . . 9 ((𝜑𝑧 ∈ ℂ) → (𝑧↑(5 − 1)) = (𝑧↑4))
167166oveq2d 7291 . . . . . . . 8 ((𝜑𝑧 ∈ ℂ) → (5 · (𝑧↑(5 − 1))) = (5 · (𝑧↑4)))
168167mpteq2dva 5174 . . . . . . 7 (𝜑 → (𝑧 ∈ ℂ ↦ (5 · (𝑧↑(5 − 1)))) = (𝑧 ∈ ℂ ↦ (5 · (𝑧↑4))))
169163, 168eqtrid 2790 . . . . . 6 (𝜑 → (ℂ D (𝑧 ∈ ℂ ↦ (𝑧↑5))) = (𝑧 ∈ ℂ ↦ (5 · (𝑧↑4))))
170 oveq1 7282 . . . . . 6 (𝑧 = (2 logb 𝑥) → (𝑧↑5) = ((2 logb 𝑥)↑5))
171 oveq1 7282 . . . . . . 7 (𝑧 = (2 logb 𝑥) → (𝑧↑4) = ((2 logb 𝑥)↑4))
172171oveq2d 7291 . . . . . 6 (𝑧 = (2 logb 𝑥) → (5 · (𝑧↑4)) = (5 · ((2 logb 𝑥)↑4)))
1732, 143, 144, 110, 147, 152, 160, 169, 170, 172dvmptco 25136 . . . . 5 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ ((2 logb 𝑥)↑5))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((5 · ((2 logb 𝑥)↑4)) · (1 / (𝑥 · (log‘2))))))
174 1cnd 10970 . . . . . . 7 (𝜑 → 1 ∈ ℂ)
175174adantr 481 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → 1 ∈ ℂ)
176 0red 10978 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → 0 ∈ ℝ)
1772, 174dvmptc 25122 . . . . . 6 (𝜑 → (ℝ D (𝑥 ∈ ℝ ↦ 1)) = (𝑥 ∈ ℝ ↦ 0))
178 ioossre 13140 . . . . . . 7 (𝐴(,)𝐵) ⊆ ℝ
179178a1i 11 . . . . . 6 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
180 eqid 2738 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
181180tgioo2 23966 . . . . . 6 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
182 iooretop 23929 . . . . . . 7 (𝐴(,)𝐵) ∈ (topGen‘ran (,))
183182a1i 11 . . . . . 6 (𝜑 → (𝐴(,)𝐵) ∈ (topGen‘ran (,)))
1842, 175, 176, 177, 179, 181, 180, 183dvmptres 25127 . . . . 5 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ 1)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ 0))
1852, 84, 111, 173, 85, 10, 184dvmptadd 25124 . . . 4 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ (((2 logb 𝑥)↑5) + 1))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (((5 · ((2 logb 𝑥)↑4)) · (1 / (𝑥 · (log‘2)))) + 0)))
186 dfrp2 13128 . . . . . . . 8 + = (0(,)+∞)
187186a1i 11 . . . . . . 7 (𝜑 → ℝ+ = (0(,)+∞))
188187mpteq1d 5169 . . . . . 6 (𝜑 → (𝑦 ∈ ℝ+ ↦ (2 logb 𝑦)) = (𝑦 ∈ (0(,)+∞) ↦ (2 logb 𝑦)))
189188oveq2d 7291 . . . . 5 (𝜑 → (ℝ D (𝑦 ∈ ℝ+ ↦ (2 logb 𝑦))) = (ℝ D (𝑦 ∈ (0(,)+∞) ↦ (2 logb 𝑦))))
19090rexrd 11025 . . . . . . 7 (𝜑 → 0 ∈ ℝ*)
191 pnfxr 11029 . . . . . . . 8 +∞ ∈ ℝ*
192191a1i 11 . . . . . . 7 (𝜑 → +∞ ∈ ℝ*)
19390leidd 11541 . . . . . . 7 (𝜑 → 0 ≤ 0)
194 0lepnf 12868 . . . . . . . 8 0 ≤ +∞
195194a1i 11 . . . . . . 7 (𝜑 → 0 ≤ +∞)
196 eqid 2738 . . . . . . 7 (𝑦 ∈ (0(,)+∞) ↦ (2 logb 𝑦)) = (𝑦 ∈ (0(,)+∞) ↦ (2 logb 𝑦))
197 eqid 2738 . . . . . . 7 (𝑦 ∈ (0(,)+∞) ↦ (1 / (𝑦 · (log‘2)))) = (𝑦 ∈ (0(,)+∞) ↦ (1 / (𝑦 · (log‘2))))
198190, 192, 193, 195, 196, 197dvrelog2b 40074 . . . . . 6 (𝜑 → (ℝ D (𝑦 ∈ (0(,)+∞) ↦ (2 logb 𝑦))) = (𝑦 ∈ (0(,)+∞) ↦ (1 / (𝑦 · (log‘2)))))
199187eqcomd 2744 . . . . . . 7 (𝜑 → (0(,)+∞) = ℝ+)
200199mpteq1d 5169 . . . . . 6 (𝜑 → (𝑦 ∈ (0(,)+∞) ↦ (1 / (𝑦 · (log‘2)))) = (𝑦 ∈ ℝ+ ↦ (1 / (𝑦 · (log‘2)))))
201198, 200eqtrd 2778 . . . . 5 (𝜑 → (ℝ D (𝑦 ∈ (0(,)+∞) ↦ (2 logb 𝑦))) = (𝑦 ∈ ℝ+ ↦ (1 / (𝑦 · (log‘2)))))
202189, 201eqtrd 2778 . . . 4 (𝜑 → (ℝ D (𝑦 ∈ ℝ+ ↦ (2 logb 𝑦))) = (𝑦 ∈ ℝ+ ↦ (1 / (𝑦 · (log‘2)))))
203 oveq2 7283 . . . 4 (𝑦 = (((2 logb 𝑥)↑5) + 1) → (2 logb 𝑦) = (2 logb (((2 logb 𝑥)↑5) + 1)))
204 oveq1 7282 . . . . 5 (𝑦 = (((2 logb 𝑥)↑5) + 1) → (𝑦 · (log‘2)) = ((((2 logb 𝑥)↑5) + 1) · (log‘2)))
205204oveq2d 7291 . . . 4 (𝑦 = (((2 logb 𝑥)↑5) + 1) → (1 / (𝑦 · (log‘2))) = (1 / ((((2 logb 𝑥)↑5) + 1) · (log‘2))))
2062, 2, 115, 112, 127, 141, 185, 202, 203, 205dvmptco 25136 . . 3 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ (2 logb (((2 logb 𝑥)↑5) + 1)))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((1 / ((((2 logb 𝑥)↑5) + 1) · (log‘2))) · (((5 · ((2 logb 𝑥)↑4)) · (1 / (𝑥 · (log‘2)))) + 0))))
2074a1i 11 . . . 4 (𝜑 → 2 ∈ ℝ)
208207recnd 11003 . . 3 (𝜑 → 2 ∈ ℂ)
2092, 78, 113, 206, 208dvmptcmul 25128 . 2 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ (2 · (2 logb (((2 logb 𝑥)↑5) + 1))))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (2 · ((1 / ((((2 logb 𝑥)↑5) + 1) · (log‘2))) · (((5 · ((2 logb 𝑥)↑4)) · (1 / (𝑥 · (log‘2)))) + 0)))))
210144sqcld 13862 . 2 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((2 logb 𝑥)↑2) ∈ ℂ)
21182resqcld 13965 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((log‘2)↑2) ∈ ℝ)
21281rpne0d 12777 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 2 ≠ 0)
2133, 212logcld 25726 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (log‘2) ∈ ℂ)
214213, 97, 63expne0d 13870 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((log‘2)↑2) ≠ 0)
2155, 211, 214redivcld 11803 . . 3 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (2 / ((log‘2)↑2)) ∈ ℝ)
21667relogcld 25778 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (log‘𝑥) ∈ ℝ)
217 2m1e1 12099 . . . . . . 7 (2 − 1) = 1
218 1nn0 12249 . . . . . . 7 1 ∈ ℕ0
219217, 218eqeltri 2835 . . . . . 6 (2 − 1) ∈ ℕ0
220219a1i 11 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (2 − 1) ∈ ℕ0)
221216, 220reexpcld 13881 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((log‘𝑥)↑(2 − 1)) ∈ ℝ)
22267rpne0d 12777 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ≠ 0)
223221, 9, 222redivcld 11803 . . 3 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((log‘𝑥)↑(2 − 1)) / 𝑥) ∈ ℝ)
224215, 223remulcld 11005 . 2 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((2 / ((log‘2)↑2)) · (((log‘𝑥)↑(2 − 1)) / 𝑥)) ∈ ℝ)
225 eqid 2738 . . 3 (𝑥 ∈ (𝐴(,)𝐵) ↦ ((2 logb 𝑥)↑2)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((2 logb 𝑥)↑2))
226 eqid 2738 . . 3 (𝑥 ∈ (𝐴(,)𝐵) ↦ ((2 / ((log‘2)↑2)) · (((log‘𝑥)↑(2 − 1)) / 𝑥))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((2 / ((log‘2)↑2)) · (((log‘𝑥)↑(2 − 1)) / 𝑥)))
227 eqid 2738 . . 3 (2 / ((log‘2)↑2)) = (2 / ((log‘2)↑2))
228 2nn 12046 . . . 4 2 ∈ ℕ
229228a1i 11 . . 3 (𝜑 → 2 ∈ ℕ)
23011, 23, 155, 157, 225, 226, 227, 229dvrelogpow2b 40076 . 2 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ ((2 logb 𝑥)↑2))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((2 / ((log‘2)↑2)) · (((log‘𝑥)↑(2 − 1)) / 𝑥))))
2312, 79, 114, 209, 210, 224, 230dvmptadd 25124 1 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2)))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((2 · ((1 / ((((2 logb 𝑥)↑5) + 1) · (log‘2))) · (((5 · ((2 logb 𝑥)↑4)) · (1 / (𝑥 · (log‘2)))) + 0))) + ((2 / ((log‘2)↑2)) · (((log‘𝑥)↑(2 − 1)) / 𝑥)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wtru 1540  wcel 2106  wne 2943  wss 3887  {cpr 4563   class class class wbr 5074  cmpt 5157  ran crn 5590  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876  +∞cpnf 11006  *cxr 11008   < clt 11009  cle 11010  cmin 11205   / cdiv 11632  cn 11973  2c2 12028  3c3 12029  4c4 12030  5c5 12031  0cn0 12233  cz 12319  cuz 12582  +crp 12730  (,)cioo 13079  cexp 13782  TopOpenctopn 17132  topGenctg 17148  fldccnfld 20597   D cdv 25027  logclog 25710   logb clogb 25914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-shft 14778  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-sum 15398  df-ef 15777  df-sin 15779  df-cos 15780  df-pi 15782  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-haus 22466  df-cmp 22538  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041  df-limc 25030  df-dv 25031  df-log 25712  df-logb 25915
This theorem is referenced by:  aks4d1p1p5  40083
  Copyright terms: Public domain W3C validator