Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks4d1p1p6 Structured version   Visualization version   GIF version

Theorem aks4d1p1p6 42056
Description: Inequality lift to differentiable functions for a term in AKS inequality lemma. (Contributed by metakunt, 19-Aug-2024.)
Hypotheses
Ref Expression
aks4d1p1p6.1 (𝜑𝐴 ∈ ℝ)
aks4d1p1p6.2 (𝜑𝐵 ∈ ℝ)
aks4d1p1p6.3 (𝜑 → 3 ≤ 𝐴)
aks4d1p1p6.4 (𝜑𝐴𝐵)
Assertion
Ref Expression
aks4d1p1p6 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2)))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((2 · ((1 / ((((2 logb 𝑥)↑5) + 1) · (log‘2))) · (((5 · ((2 logb 𝑥)↑4)) · (1 / (𝑥 · (log‘2)))) + 0))) + ((2 / ((log‘2)↑2)) · (((log‘𝑥)↑(2 − 1)) / 𝑥)))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥

Proof of Theorem aks4d1p1p6
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reelprrecn 11139 . . 3 ℝ ∈ {ℝ, ℂ}
21a1i 11 . 2 (𝜑 → ℝ ∈ {ℝ, ℂ})
3 2cnd 12243 . . 3 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 2 ∈ ℂ)
4 2re 12239 . . . . . 6 2 ∈ ℝ
54a1i 11 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 2 ∈ ℝ)
6 2pos 12268 . . . . . 6 0 < 2
76a1i 11 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 0 < 2)
8 elioore 13315 . . . . . . . . 9 (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 ∈ ℝ)
98adantl 481 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ ℝ)
10 0red 11156 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 0 ∈ ℝ)
11 aks4d1p1p6.1 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
1211adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ)
13 3re 12245 . . . . . . . . . . 11 3 ∈ ℝ
1413a1i 11 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 3 ∈ ℝ)
15 3pos 12270 . . . . . . . . . . 11 0 < 3
1615a1i 11 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 0 < 3)
17 aks4d1p1p6.3 . . . . . . . . . . 11 (𝜑 → 3 ≤ 𝐴)
1817adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 3 ≤ 𝐴)
1910, 14, 12, 16, 18ltletrd 11313 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 0 < 𝐴)
20 simpr 484 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ (𝐴(,)𝐵))
2111rexrd 11203 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℝ*)
2221adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ*)
23 aks4d1p1p6.2 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ ℝ)
2423rexrd 11203 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℝ*)
2524adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ*)
269rexrd 11203 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ ℝ*)
27 elioo5 13343 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ ℝ*) → (𝑥 ∈ (𝐴(,)𝐵) ↔ (𝐴 < 𝑥𝑥 < 𝐵)))
2822, 25, 26, 27syl3anc 1373 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑥 ∈ (𝐴(,)𝐵) ↔ (𝐴 < 𝑥𝑥 < 𝐵)))
2920, 28mpbid 232 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐴 < 𝑥𝑥 < 𝐵))
3029simpld 494 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑥)
3110, 12, 9, 19, 30lttrd 11314 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 0 < 𝑥)
32 1red 11154 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 1 ∈ ℝ)
33 1lt2 12331 . . . . . . . . . . 11 1 < 2
3433a1i 11 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 1 < 2)
3532, 34ltned 11289 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 1 ≠ 2)
3635necomd 2980 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 2 ≠ 1)
375, 7, 9, 31, 36relogbcld 41956 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (2 logb 𝑥) ∈ ℝ)
38 5nn0 12441 . . . . . . . 8 5 ∈ ℕ0
3938a1i 11 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 5 ∈ ℕ0)
4037, 39reexpcld 14107 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((2 logb 𝑥)↑5) ∈ ℝ)
4140, 32readdcld 11182 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((2 logb 𝑥)↑5) + 1) ∈ ℝ)
4210, 32readdcld 11182 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (0 + 1) ∈ ℝ)
4310ltp1d 12092 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 0 < (0 + 1))
4439nn0zd 12534 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 5 ∈ ℤ)
45 2cnd 12243 . . . . . . . . . . 11 (⊤ → 2 ∈ ℂ)
46 0red 11156 . . . . . . . . . . . . 13 (⊤ → 0 ∈ ℝ)
476a1i 11 . . . . . . . . . . . . 13 (⊤ → 0 < 2)
4846, 47ltned 11289 . . . . . . . . . . . 12 (⊤ → 0 ≠ 2)
4948necomd 2980 . . . . . . . . . . 11 (⊤ → 2 ≠ 0)
50 1red 11154 . . . . . . . . . . . . 13 (⊤ → 1 ∈ ℝ)
5133a1i 11 . . . . . . . . . . . . 13 (⊤ → 1 < 2)
5250, 51ltned 11289 . . . . . . . . . . . 12 (⊤ → 1 ≠ 2)
5352necomd 2980 . . . . . . . . . . 11 (⊤ → 2 ≠ 1)
54 logb1 26714 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1) → (2 logb 1) = 0)
5545, 49, 53, 54syl3anc 1373 . . . . . . . . . 10 (⊤ → (2 logb 1) = 0)
5655mptru 1547 . . . . . . . . 9 (2 logb 1) = 0
57 2lt3 12332 . . . . . . . . . . . . . 14 2 < 3
5857a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 2 < 3)
5932, 5, 14, 34, 58lttrd 11314 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 1 < 3)
6032, 14, 12, 59, 18ltletrd 11313 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 1 < 𝐴)
6132, 12, 9, 60, 30lttrd 11314 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 1 < 𝑥)
62 2z 12544 . . . . . . . . . . . . 13 2 ∈ ℤ
6362a1i 11 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 2 ∈ ℤ)
6463uzidd 12788 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 2 ∈ (ℤ‘2))
65 1rp 12934 . . . . . . . . . . . 12 1 ∈ ℝ+
6665a1i 11 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 1 ∈ ℝ+)
679, 31elrpd 12971 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ ℝ+)
68 logblt 26729 . . . . . . . . . . 11 ((2 ∈ (ℤ‘2) ∧ 1 ∈ ℝ+𝑥 ∈ ℝ+) → (1 < 𝑥 ↔ (2 logb 1) < (2 logb 𝑥)))
6964, 66, 67, 68syl3anc 1373 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (1 < 𝑥 ↔ (2 logb 1) < (2 logb 𝑥)))
7061, 69mpbid 232 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (2 logb 1) < (2 logb 𝑥))
7156, 70eqbrtrrid 5138 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 0 < (2 logb 𝑥))
72 expgt0 14039 . . . . . . . 8 (((2 logb 𝑥) ∈ ℝ ∧ 5 ∈ ℤ ∧ 0 < (2 logb 𝑥)) → 0 < ((2 logb 𝑥)↑5))
7337, 44, 71, 72syl3anc 1373 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 0 < ((2 logb 𝑥)↑5))
7410, 40, 32, 73ltadd1dd 11768 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (0 + 1) < (((2 logb 𝑥)↑5) + 1))
7510, 42, 41, 43, 74lttrd 11314 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 0 < (((2 logb 𝑥)↑5) + 1))
765, 7, 41, 75, 36relogbcld 41956 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (2 logb (((2 logb 𝑥)↑5) + 1)) ∈ ℝ)
77 recn 11137 . . . 4 ((2 logb (((2 logb 𝑥)↑5) + 1)) ∈ ℝ → (2 logb (((2 logb 𝑥)↑5) + 1)) ∈ ℂ)
7876, 77syl 17 . . 3 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (2 logb (((2 logb 𝑥)↑5) + 1)) ∈ ℂ)
793, 78mulcld 11173 . 2 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (2 · (2 logb (((2 logb 𝑥)↑5) + 1))) ∈ ℂ)
80 2rp 12935 . . . . . . . 8 2 ∈ ℝ+
8180a1i 11 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 2 ∈ ℝ+)
8281relogcld 26567 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (log‘2) ∈ ℝ)
8341, 82remulcld 11183 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((((2 logb 𝑥)↑5) + 1) · (log‘2)) ∈ ℝ)
8440recnd 11181 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((2 logb 𝑥)↑5) ∈ ℂ)
85 1cnd 11148 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 1 ∈ ℂ)
8684, 85addcld 11172 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((2 logb 𝑥)↑5) + 1) ∈ ℂ)
877gt0ne0d 11721 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 2 ≠ 0)
883, 87logcld 26514 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (log‘2) ∈ ℂ)
8975gt0ne0d 11721 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((2 logb 𝑥)↑5) + 1) ≠ 0)
90 0red 11156 . . . . . . . . 9 (𝜑 → 0 ∈ ℝ)
91 loggt0b 26576 . . . . . . . . . . . 12 (2 ∈ ℝ+ → (0 < (log‘2) ↔ 1 < 2))
9280, 91ax-mp 5 . . . . . . . . . . 11 (0 < (log‘2) ↔ 1 < 2)
9333, 92mpbir 231 . . . . . . . . . 10 0 < (log‘2)
9493a1i 11 . . . . . . . . 9 (𝜑 → 0 < (log‘2))
9590, 94ltned 11289 . . . . . . . 8 (𝜑 → 0 ≠ (log‘2))
9695necomd 2980 . . . . . . 7 (𝜑 → (log‘2) ≠ 0)
9796adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (log‘2) ≠ 0)
9886, 88, 89, 97mulne0d 11809 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((((2 logb 𝑥)↑5) + 1) · (log‘2)) ≠ 0)
9932, 83, 98redivcld 11989 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (1 / ((((2 logb 𝑥)↑5) + 1) · (log‘2))) ∈ ℝ)
100 5re 12252 . . . . . . . 8 5 ∈ ℝ
101100a1i 11 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 5 ∈ ℝ)
102 4nn0 12440 . . . . . . . . 9 4 ∈ ℕ0
103102a1i 11 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 4 ∈ ℕ0)
10437, 103reexpcld 14107 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((2 logb 𝑥)↑4) ∈ ℝ)
105101, 104remulcld 11183 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (5 · ((2 logb 𝑥)↑4)) ∈ ℝ)
1069, 82remulcld 11183 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑥 · (log‘2)) ∈ ℝ)
1079recnd 11181 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ ℂ)
10810, 31gtned 11288 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ≠ 0)
109107, 88, 108, 97mulne0d 11809 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑥 · (log‘2)) ≠ 0)
11032, 106, 109redivcld 11989 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (1 / (𝑥 · (log‘2))) ∈ ℝ)
111105, 110remulcld 11183 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((5 · ((2 logb 𝑥)↑4)) · (1 / (𝑥 · (log‘2)))) ∈ ℝ)
112111, 10readdcld 11182 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((5 · ((2 logb 𝑥)↑4)) · (1 / (𝑥 · (log‘2)))) + 0) ∈ ℝ)
11399, 112remulcld 11183 . . 3 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((1 / ((((2 logb 𝑥)↑5) + 1) · (log‘2))) · (((5 · ((2 logb 𝑥)↑4)) · (1 / (𝑥 · (log‘2)))) + 0)) ∈ ℝ)
1145, 113remulcld 11183 . 2 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (2 · ((1 / ((((2 logb 𝑥)↑5) + 1) · (log‘2))) · (((5 · ((2 logb 𝑥)↑4)) · (1 / (𝑥 · (log‘2)))) + 0))) ∈ ℝ)
11541, 75elrpd 12971 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((2 logb 𝑥)↑5) + 1) ∈ ℝ+)
1164a1i 11 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → 2 ∈ ℝ)
1176a1i 11 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → 0 < 2)
118 rpre 12939 . . . . . . 7 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
119118adantl 481 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ)
120 rpgt0 12943 . . . . . . 7 (𝑦 ∈ ℝ+ → 0 < 𝑦)
121120adantl 481 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → 0 < 𝑦)
122 1red 11154 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ+) → 1 ∈ ℝ)
12333a1i 11 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ+) → 1 < 2)
124122, 123ltned 11289 . . . . . . 7 ((𝜑𝑦 ∈ ℝ+) → 1 ≠ 2)
125124necomd 2980 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → 2 ≠ 1)
126116, 117, 119, 121, 125relogbcld 41956 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → (2 logb 𝑦) ∈ ℝ)
127126recnd 11181 . . . 4 ((𝜑𝑦 ∈ ℝ+) → (2 logb 𝑦) ∈ ℂ)
12880a1i 11 . . . . . . 7 ((𝜑𝑦 ∈ ℝ+) → 2 ∈ ℝ+)
129128relogcld 26567 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → (log‘2) ∈ ℝ)
130119, 129remulcld 11183 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → (𝑦 · (log‘2)) ∈ ℝ)
131119recnd 11181 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → 𝑦 ∈ ℂ)
132 2cnd 12243 . . . . . . 7 ((𝜑𝑦 ∈ ℝ+) → 2 ∈ ℂ)
133128rpne0d 12979 . . . . . . 7 ((𝜑𝑦 ∈ ℝ+) → 2 ≠ 0)
134132, 133logcld 26514 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → (log‘2) ∈ ℂ)
135 rpne0 12947 . . . . . . 7 (𝑦 ∈ ℝ+𝑦 ≠ 0)
136135adantl 481 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → 𝑦 ≠ 0)
13796necomd 2980 . . . . . . . 8 (𝜑 → 0 ≠ (log‘2))
138137adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ ℝ+) → 0 ≠ (log‘2))
139138necomd 2980 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → (log‘2) ≠ 0)
140131, 134, 136, 139mulne0d 11809 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → (𝑦 · (log‘2)) ≠ 0)
141122, 130, 140redivcld 11989 . . . 4 ((𝜑𝑦 ∈ ℝ+) → (1 / (𝑦 · (log‘2))) ∈ ℝ)
142 cnelprrecn 11140 . . . . . . 7 ℂ ∈ {ℝ, ℂ}
143142a1i 11 . . . . . 6 (𝜑 → ℂ ∈ {ℝ, ℂ})
14437recnd 11181 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (2 logb 𝑥) ∈ ℂ)
145 simpr 484 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → 𝑧 ∈ ℂ)
14638a1i 11 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → 5 ∈ ℕ0)
147145, 146expcld 14090 . . . . . 6 ((𝜑𝑧 ∈ ℂ) → (𝑧↑5) ∈ ℂ)
148 5cn 12253 . . . . . . . 8 5 ∈ ℂ
149148a1i 11 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → 5 ∈ ℂ)
150102a1i 11 . . . . . . . 8 ((𝜑𝑧 ∈ ℂ) → 4 ∈ ℕ0)
151145, 150expcld 14090 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → (𝑧↑4) ∈ ℂ)
152149, 151mulcld 11173 . . . . . 6 ((𝜑𝑧 ∈ ℂ) → (5 · (𝑧↑4)) ∈ ℂ)
15313a1i 11 . . . . . . . . 9 (𝜑 → 3 ∈ ℝ)
15415a1i 11 . . . . . . . . 9 (𝜑 → 0 < 3)
15590, 153, 11, 154, 17ltletrd 11313 . . . . . . . 8 (𝜑 → 0 < 𝐴)
15690, 11, 155ltled 11301 . . . . . . 7 (𝜑 → 0 ≤ 𝐴)
157 aks4d1p1p6.4 . . . . . . 7 (𝜑𝐴𝐵)
158 eqid 2729 . . . . . . 7 (𝑥 ∈ (𝐴(,)𝐵) ↦ (2 logb 𝑥)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (2 logb 𝑥))
159 eqid 2729 . . . . . . 7 (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / (𝑥 · (log‘2)))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / (𝑥 · (log‘2))))
16021, 24, 156, 157, 158, 159dvrelog2b 42049 . . . . . 6 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ (2 logb 𝑥))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / (𝑥 · (log‘2)))))
161 5nn 12251 . . . . . . . 8 5 ∈ ℕ
162 dvexp 25892 . . . . . . . 8 (5 ∈ ℕ → (ℂ D (𝑧 ∈ ℂ ↦ (𝑧↑5))) = (𝑧 ∈ ℂ ↦ (5 · (𝑧↑(5 − 1)))))
163161, 162ax-mp 5 . . . . . . 7 (ℂ D (𝑧 ∈ ℂ ↦ (𝑧↑5))) = (𝑧 ∈ ℂ ↦ (5 · (𝑧↑(5 − 1))))
164 5m1e4 12290 . . . . . . . . . . 11 (5 − 1) = 4
165164a1i 11 . . . . . . . . . 10 ((𝜑𝑧 ∈ ℂ) → (5 − 1) = 4)
166165oveq2d 7386 . . . . . . . . 9 ((𝜑𝑧 ∈ ℂ) → (𝑧↑(5 − 1)) = (𝑧↑4))
167166oveq2d 7386 . . . . . . . 8 ((𝜑𝑧 ∈ ℂ) → (5 · (𝑧↑(5 − 1))) = (5 · (𝑧↑4)))
168167mpteq2dva 5195 . . . . . . 7 (𝜑 → (𝑧 ∈ ℂ ↦ (5 · (𝑧↑(5 − 1)))) = (𝑧 ∈ ℂ ↦ (5 · (𝑧↑4))))
169163, 168eqtrid 2776 . . . . . 6 (𝜑 → (ℂ D (𝑧 ∈ ℂ ↦ (𝑧↑5))) = (𝑧 ∈ ℂ ↦ (5 · (𝑧↑4))))
170 oveq1 7377 . . . . . 6 (𝑧 = (2 logb 𝑥) → (𝑧↑5) = ((2 logb 𝑥)↑5))
171 oveq1 7377 . . . . . . 7 (𝑧 = (2 logb 𝑥) → (𝑧↑4) = ((2 logb 𝑥)↑4))
172171oveq2d 7386 . . . . . 6 (𝑧 = (2 logb 𝑥) → (5 · (𝑧↑4)) = (5 · ((2 logb 𝑥)↑4)))
1732, 143, 144, 110, 147, 152, 160, 169, 170, 172dvmptco 25911 . . . . 5 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ ((2 logb 𝑥)↑5))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((5 · ((2 logb 𝑥)↑4)) · (1 / (𝑥 · (log‘2))))))
174 1cnd 11148 . . . . . . 7 (𝜑 → 1 ∈ ℂ)
175174adantr 480 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → 1 ∈ ℂ)
176 0red 11156 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → 0 ∈ ℝ)
1772, 174dvmptc 25897 . . . . . 6 (𝜑 → (ℝ D (𝑥 ∈ ℝ ↦ 1)) = (𝑥 ∈ ℝ ↦ 0))
178 ioossre 13347 . . . . . . 7 (𝐴(,)𝐵) ⊆ ℝ
179178a1i 11 . . . . . 6 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
180 tgioo4 24728 . . . . . 6 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
181 eqid 2729 . . . . . 6 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
182 iooretop 24688 . . . . . . 7 (𝐴(,)𝐵) ∈ (topGen‘ran (,))
183182a1i 11 . . . . . 6 (𝜑 → (𝐴(,)𝐵) ∈ (topGen‘ran (,)))
1842, 175, 176, 177, 179, 180, 181, 183dvmptres 25902 . . . . 5 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ 1)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ 0))
1852, 84, 111, 173, 85, 10, 184dvmptadd 25899 . . . 4 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ (((2 logb 𝑥)↑5) + 1))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (((5 · ((2 logb 𝑥)↑4)) · (1 / (𝑥 · (log‘2)))) + 0)))
186 dfrp2 13334 . . . . . . . 8 + = (0(,)+∞)
187186a1i 11 . . . . . . 7 (𝜑 → ℝ+ = (0(,)+∞))
188187mpteq1d 5192 . . . . . 6 (𝜑 → (𝑦 ∈ ℝ+ ↦ (2 logb 𝑦)) = (𝑦 ∈ (0(,)+∞) ↦ (2 logb 𝑦)))
189188oveq2d 7386 . . . . 5 (𝜑 → (ℝ D (𝑦 ∈ ℝ+ ↦ (2 logb 𝑦))) = (ℝ D (𝑦 ∈ (0(,)+∞) ↦ (2 logb 𝑦))))
19090rexrd 11203 . . . . . . 7 (𝜑 → 0 ∈ ℝ*)
191 pnfxr 11207 . . . . . . . 8 +∞ ∈ ℝ*
192191a1i 11 . . . . . . 7 (𝜑 → +∞ ∈ ℝ*)
19390leidd 11723 . . . . . . 7 (𝜑 → 0 ≤ 0)
194 0lepnf 13072 . . . . . . . 8 0 ≤ +∞
195194a1i 11 . . . . . . 7 (𝜑 → 0 ≤ +∞)
196 eqid 2729 . . . . . . 7 (𝑦 ∈ (0(,)+∞) ↦ (2 logb 𝑦)) = (𝑦 ∈ (0(,)+∞) ↦ (2 logb 𝑦))
197 eqid 2729 . . . . . . 7 (𝑦 ∈ (0(,)+∞) ↦ (1 / (𝑦 · (log‘2)))) = (𝑦 ∈ (0(,)+∞) ↦ (1 / (𝑦 · (log‘2))))
198190, 192, 193, 195, 196, 197dvrelog2b 42049 . . . . . 6 (𝜑 → (ℝ D (𝑦 ∈ (0(,)+∞) ↦ (2 logb 𝑦))) = (𝑦 ∈ (0(,)+∞) ↦ (1 / (𝑦 · (log‘2)))))
199187eqcomd 2735 . . . . . . 7 (𝜑 → (0(,)+∞) = ℝ+)
200199mpteq1d 5192 . . . . . 6 (𝜑 → (𝑦 ∈ (0(,)+∞) ↦ (1 / (𝑦 · (log‘2)))) = (𝑦 ∈ ℝ+ ↦ (1 / (𝑦 · (log‘2)))))
201198, 200eqtrd 2764 . . . . 5 (𝜑 → (ℝ D (𝑦 ∈ (0(,)+∞) ↦ (2 logb 𝑦))) = (𝑦 ∈ ℝ+ ↦ (1 / (𝑦 · (log‘2)))))
202189, 201eqtrd 2764 . . . 4 (𝜑 → (ℝ D (𝑦 ∈ ℝ+ ↦ (2 logb 𝑦))) = (𝑦 ∈ ℝ+ ↦ (1 / (𝑦 · (log‘2)))))
203 oveq2 7378 . . . 4 (𝑦 = (((2 logb 𝑥)↑5) + 1) → (2 logb 𝑦) = (2 logb (((2 logb 𝑥)↑5) + 1)))
204 oveq1 7377 . . . . 5 (𝑦 = (((2 logb 𝑥)↑5) + 1) → (𝑦 · (log‘2)) = ((((2 logb 𝑥)↑5) + 1) · (log‘2)))
205204oveq2d 7386 . . . 4 (𝑦 = (((2 logb 𝑥)↑5) + 1) → (1 / (𝑦 · (log‘2))) = (1 / ((((2 logb 𝑥)↑5) + 1) · (log‘2))))
2062, 2, 115, 112, 127, 141, 185, 202, 203, 205dvmptco 25911 . . 3 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ (2 logb (((2 logb 𝑥)↑5) + 1)))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((1 / ((((2 logb 𝑥)↑5) + 1) · (log‘2))) · (((5 · ((2 logb 𝑥)↑4)) · (1 / (𝑥 · (log‘2)))) + 0))))
2074a1i 11 . . . 4 (𝜑 → 2 ∈ ℝ)
208207recnd 11181 . . 3 (𝜑 → 2 ∈ ℂ)
2092, 78, 113, 206, 208dvmptcmul 25903 . 2 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ (2 · (2 logb (((2 logb 𝑥)↑5) + 1))))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (2 · ((1 / ((((2 logb 𝑥)↑5) + 1) · (log‘2))) · (((5 · ((2 logb 𝑥)↑4)) · (1 / (𝑥 · (log‘2)))) + 0)))))
210144sqcld 14088 . 2 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((2 logb 𝑥)↑2) ∈ ℂ)
21182resqcld 14069 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((log‘2)↑2) ∈ ℝ)
21281rpne0d 12979 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 2 ≠ 0)
2133, 212logcld 26514 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (log‘2) ∈ ℂ)
214213, 97, 63expne0d 14096 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((log‘2)↑2) ≠ 0)
2155, 211, 214redivcld 11989 . . 3 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (2 / ((log‘2)↑2)) ∈ ℝ)
21667relogcld 26567 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (log‘𝑥) ∈ ℝ)
217 2m1e1 12286 . . . . . . 7 (2 − 1) = 1
218 1nn0 12437 . . . . . . 7 1 ∈ ℕ0
219217, 218eqeltri 2824 . . . . . 6 (2 − 1) ∈ ℕ0
220219a1i 11 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (2 − 1) ∈ ℕ0)
221216, 220reexpcld 14107 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((log‘𝑥)↑(2 − 1)) ∈ ℝ)
22267rpne0d 12979 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ≠ 0)
223221, 9, 222redivcld 11989 . . 3 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((log‘𝑥)↑(2 − 1)) / 𝑥) ∈ ℝ)
224215, 223remulcld 11183 . 2 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((2 / ((log‘2)↑2)) · (((log‘𝑥)↑(2 − 1)) / 𝑥)) ∈ ℝ)
225 eqid 2729 . . 3 (𝑥 ∈ (𝐴(,)𝐵) ↦ ((2 logb 𝑥)↑2)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((2 logb 𝑥)↑2))
226 eqid 2729 . . 3 (𝑥 ∈ (𝐴(,)𝐵) ↦ ((2 / ((log‘2)↑2)) · (((log‘𝑥)↑(2 − 1)) / 𝑥))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((2 / ((log‘2)↑2)) · (((log‘𝑥)↑(2 − 1)) / 𝑥)))
227 eqid 2729 . . 3 (2 / ((log‘2)↑2)) = (2 / ((log‘2)↑2))
228 2nn 12238 . . . 4 2 ∈ ℕ
229228a1i 11 . . 3 (𝜑 → 2 ∈ ℕ)
23011, 23, 155, 157, 225, 226, 227, 229dvrelogpow2b 42051 . 2 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ ((2 logb 𝑥)↑2))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((2 / ((log‘2)↑2)) · (((log‘𝑥)↑(2 − 1)) / 𝑥))))
2312, 79, 114, 209, 210, 224, 230dvmptadd 25899 1 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2)))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((2 · ((1 / ((((2 logb 𝑥)↑5) + 1) · (log‘2))) · (((5 · ((2 logb 𝑥)↑4)) · (1 / (𝑥 · (log‘2)))) + 0))) + ((2 / ((log‘2)↑2)) · (((log‘𝑥)↑(2 − 1)) / 𝑥)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wtru 1541  wcel 2109  wne 2925  wss 3911  {cpr 4587   class class class wbr 5102  cmpt 5183  ran crn 5632  cfv 6500  (class class class)co 7370  cc 11045  cr 11046  0cc0 11047  1c1 11048   + caddc 11050   · cmul 11052  +∞cpnf 11184  *cxr 11186   < clt 11187  cle 11188  cmin 11384   / cdiv 11814  cn 12165  2c2 12220  3c3 12221  4c4 12222  5c5 12223  0cn0 12421  cz 12508  cuz 12772  +crp 12930  (,)cioo 13285  cexp 14005  TopOpenctopn 17362  topGenctg 17378  fldccnfld 21298   D cdv 25799  logclog 26498   logb clogb 26709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7692  ax-inf2 9573  ax-cnex 11103  ax-resscn 11104  ax-1cn 11105  ax-icn 11106  ax-addcl 11107  ax-addrcl 11108  ax-mulcl 11109  ax-mulrcl 11110  ax-mulcom 11111  ax-addass 11112  ax-mulass 11113  ax-distr 11114  ax-i2m1 11115  ax-1ne0 11116  ax-1rid 11117  ax-rnegex 11118  ax-rrecex 11119  ax-cnre 11120  ax-pre-lttri 11121  ax-pre-lttrn 11122  ax-pre-ltadd 11123  ax-pre-mulgt0 11124  ax-pre-sup 11125  ax-addf 11126
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6263  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6453  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-isom 6509  df-riota 7327  df-ov 7373  df-oprab 7374  df-mpo 7375  df-of 7634  df-om 7824  df-1st 7948  df-2nd 7949  df-supp 8118  df-frecs 8238  df-wrecs 8269  df-recs 8318  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8649  df-map 8779  df-pm 8780  df-ixp 8849  df-en 8897  df-dom 8898  df-sdom 8899  df-fin 8900  df-fsupp 9290  df-fi 9339  df-sup 9370  df-inf 9371  df-oi 9440  df-card 9871  df-pnf 11189  df-mnf 11190  df-xr 11191  df-ltxr 11192  df-le 11193  df-sub 11386  df-neg 11387  df-div 11815  df-nn 12166  df-2 12228  df-3 12229  df-4 12230  df-5 12231  df-6 12232  df-7 12233  df-8 12234  df-9 12235  df-n0 12422  df-z 12509  df-dec 12629  df-uz 12773  df-q 12887  df-rp 12931  df-xneg 13051  df-xadd 13052  df-xmul 13053  df-ioo 13289  df-ioc 13290  df-ico 13291  df-icc 13292  df-fz 13448  df-fzo 13595  df-fl 13733  df-mod 13811  df-seq 13946  df-exp 14006  df-fac 14218  df-bc 14247  df-hash 14275  df-shft 15011  df-cj 15043  df-re 15044  df-im 15045  df-sqrt 15179  df-abs 15180  df-limsup 15415  df-clim 15432  df-rlim 15433  df-sum 15631  df-ef 16011  df-sin 16013  df-cos 16014  df-pi 16016  df-struct 17095  df-sets 17112  df-slot 17130  df-ndx 17142  df-base 17158  df-ress 17179  df-plusg 17211  df-mulr 17212  df-starv 17213  df-sca 17214  df-vsca 17215  df-ip 17216  df-tset 17217  df-ple 17218  df-ds 17220  df-unif 17221  df-hom 17222  df-cco 17223  df-rest 17363  df-topn 17364  df-0g 17382  df-gsum 17383  df-topgen 17384  df-pt 17385  df-prds 17388  df-xrs 17443  df-qtop 17448  df-imas 17449  df-xps 17451  df-mre 17525  df-mrc 17526  df-acs 17528  df-mgm 18551  df-sgrp 18630  df-mnd 18646  df-submnd 18695  df-mulg 18984  df-cntz 19233  df-cmn 19698  df-psmet 21290  df-xmet 21291  df-met 21292  df-bl 21293  df-mopn 21294  df-fbas 21295  df-fg 21296  df-cnfld 21299  df-top 22816  df-topon 22833  df-topsp 22855  df-bases 22868  df-cld 22941  df-ntr 22942  df-cls 22943  df-nei 23020  df-lp 23058  df-perf 23059  df-cn 23149  df-cnp 23150  df-haus 23237  df-cmp 23309  df-tx 23484  df-hmeo 23677  df-fil 23768  df-fm 23860  df-flim 23861  df-flf 23862  df-xms 24243  df-ms 24244  df-tms 24245  df-cncf 24806  df-limc 25802  df-dv 25803  df-log 26500  df-logb 26710
This theorem is referenced by:  aks4d1p1p5  42058
  Copyright terms: Public domain W3C validator