Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks4d1p1p6 Structured version   Visualization version   GIF version

Theorem aks4d1p1p6 40009
Description: Inequality lift to differentiable functions for a term in AKS inequality lemma. (Contributed by metakunt, 19-Aug-2024.)
Hypotheses
Ref Expression
aks4d1p1p6.1 (𝜑𝐴 ∈ ℝ)
aks4d1p1p6.2 (𝜑𝐵 ∈ ℝ)
aks4d1p1p6.3 (𝜑 → 3 ≤ 𝐴)
aks4d1p1p6.4 (𝜑𝐴𝐵)
Assertion
Ref Expression
aks4d1p1p6 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2)))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((2 · ((1 / ((((2 logb 𝑥)↑5) + 1) · (log‘2))) · (((5 · ((2 logb 𝑥)↑4)) · (1 / (𝑥 · (log‘2)))) + 0))) + ((2 / ((log‘2)↑2)) · (((log‘𝑥)↑(2 − 1)) / 𝑥)))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥

Proof of Theorem aks4d1p1p6
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reelprrecn 10894 . . 3 ℝ ∈ {ℝ, ℂ}
21a1i 11 . 2 (𝜑 → ℝ ∈ {ℝ, ℂ})
3 2cnd 11981 . . 3 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 2 ∈ ℂ)
4 2re 11977 . . . . . 6 2 ∈ ℝ
54a1i 11 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 2 ∈ ℝ)
6 2pos 12006 . . . . . 6 0 < 2
76a1i 11 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 0 < 2)
8 elioore 13038 . . . . . . . . 9 (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 ∈ ℝ)
98adantl 481 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ ℝ)
10 0red 10909 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 0 ∈ ℝ)
11 aks4d1p1p6.1 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
1211adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ)
13 3re 11983 . . . . . . . . . . 11 3 ∈ ℝ
1413a1i 11 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 3 ∈ ℝ)
15 3pos 12008 . . . . . . . . . . 11 0 < 3
1615a1i 11 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 0 < 3)
17 aks4d1p1p6.3 . . . . . . . . . . 11 (𝜑 → 3 ≤ 𝐴)
1817adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 3 ≤ 𝐴)
1910, 14, 12, 16, 18ltletrd 11065 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 0 < 𝐴)
20 simpr 484 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ (𝐴(,)𝐵))
2111rexrd 10956 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℝ*)
2221adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ*)
23 aks4d1p1p6.2 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ ℝ)
2423rexrd 10956 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℝ*)
2524adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ*)
269rexrd 10956 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ ℝ*)
27 elioo5 13065 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ ℝ*) → (𝑥 ∈ (𝐴(,)𝐵) ↔ (𝐴 < 𝑥𝑥 < 𝐵)))
2822, 25, 26, 27syl3anc 1369 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑥 ∈ (𝐴(,)𝐵) ↔ (𝐴 < 𝑥𝑥 < 𝐵)))
2920, 28mpbid 231 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐴 < 𝑥𝑥 < 𝐵))
3029simpld 494 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑥)
3110, 12, 9, 19, 30lttrd 11066 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 0 < 𝑥)
32 1red 10907 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 1 ∈ ℝ)
33 1lt2 12074 . . . . . . . . . . 11 1 < 2
3433a1i 11 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 1 < 2)
3532, 34ltned 11041 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 1 ≠ 2)
3635necomd 2998 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 2 ≠ 1)
375, 7, 9, 31, 36relogbcld 39908 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (2 logb 𝑥) ∈ ℝ)
38 5nn0 12183 . . . . . . . 8 5 ∈ ℕ0
3938a1i 11 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 5 ∈ ℕ0)
4037, 39reexpcld 13809 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((2 logb 𝑥)↑5) ∈ ℝ)
4140, 32readdcld 10935 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((2 logb 𝑥)↑5) + 1) ∈ ℝ)
4210, 32readdcld 10935 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (0 + 1) ∈ ℝ)
4310ltp1d 11835 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 0 < (0 + 1))
4439nn0zd 12353 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 5 ∈ ℤ)
45 2cnd 11981 . . . . . . . . . . 11 (⊤ → 2 ∈ ℂ)
46 0red 10909 . . . . . . . . . . . . 13 (⊤ → 0 ∈ ℝ)
476a1i 11 . . . . . . . . . . . . 13 (⊤ → 0 < 2)
4846, 47ltned 11041 . . . . . . . . . . . 12 (⊤ → 0 ≠ 2)
4948necomd 2998 . . . . . . . . . . 11 (⊤ → 2 ≠ 0)
50 1red 10907 . . . . . . . . . . . . 13 (⊤ → 1 ∈ ℝ)
5133a1i 11 . . . . . . . . . . . . 13 (⊤ → 1 < 2)
5250, 51ltned 11041 . . . . . . . . . . . 12 (⊤ → 1 ≠ 2)
5352necomd 2998 . . . . . . . . . . 11 (⊤ → 2 ≠ 1)
54 logb1 25824 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1) → (2 logb 1) = 0)
5545, 49, 53, 54syl3anc 1369 . . . . . . . . . 10 (⊤ → (2 logb 1) = 0)
5655mptru 1546 . . . . . . . . 9 (2 logb 1) = 0
57 2lt3 12075 . . . . . . . . . . . . . 14 2 < 3
5857a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 2 < 3)
5932, 5, 14, 34, 58lttrd 11066 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 1 < 3)
6032, 14, 12, 59, 18ltletrd 11065 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 1 < 𝐴)
6132, 12, 9, 60, 30lttrd 11066 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 1 < 𝑥)
62 2z 12282 . . . . . . . . . . . . 13 2 ∈ ℤ
6362a1i 11 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 2 ∈ ℤ)
6463uzidd 12527 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 2 ∈ (ℤ‘2))
65 1rp 12663 . . . . . . . . . . . 12 1 ∈ ℝ+
6665a1i 11 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 1 ∈ ℝ+)
679, 31elrpd 12698 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ ℝ+)
68 logblt 25839 . . . . . . . . . . 11 ((2 ∈ (ℤ‘2) ∧ 1 ∈ ℝ+𝑥 ∈ ℝ+) → (1 < 𝑥 ↔ (2 logb 1) < (2 logb 𝑥)))
6964, 66, 67, 68syl3anc 1369 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (1 < 𝑥 ↔ (2 logb 1) < (2 logb 𝑥)))
7061, 69mpbid 231 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (2 logb 1) < (2 logb 𝑥))
7156, 70eqbrtrrid 5106 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 0 < (2 logb 𝑥))
72 expgt0 13744 . . . . . . . 8 (((2 logb 𝑥) ∈ ℝ ∧ 5 ∈ ℤ ∧ 0 < (2 logb 𝑥)) → 0 < ((2 logb 𝑥)↑5))
7337, 44, 71, 72syl3anc 1369 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 0 < ((2 logb 𝑥)↑5))
7410, 40, 32, 73ltadd1dd 11516 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (0 + 1) < (((2 logb 𝑥)↑5) + 1))
7510, 42, 41, 43, 74lttrd 11066 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 0 < (((2 logb 𝑥)↑5) + 1))
765, 7, 41, 75, 36relogbcld 39908 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (2 logb (((2 logb 𝑥)↑5) + 1)) ∈ ℝ)
77 recn 10892 . . . 4 ((2 logb (((2 logb 𝑥)↑5) + 1)) ∈ ℝ → (2 logb (((2 logb 𝑥)↑5) + 1)) ∈ ℂ)
7876, 77syl 17 . . 3 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (2 logb (((2 logb 𝑥)↑5) + 1)) ∈ ℂ)
793, 78mulcld 10926 . 2 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (2 · (2 logb (((2 logb 𝑥)↑5) + 1))) ∈ ℂ)
80 2rp 12664 . . . . . . . 8 2 ∈ ℝ+
8180a1i 11 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 2 ∈ ℝ+)
8281relogcld 25683 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (log‘2) ∈ ℝ)
8341, 82remulcld 10936 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((((2 logb 𝑥)↑5) + 1) · (log‘2)) ∈ ℝ)
8440recnd 10934 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((2 logb 𝑥)↑5) ∈ ℂ)
85 1cnd 10901 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 1 ∈ ℂ)
8684, 85addcld 10925 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((2 logb 𝑥)↑5) + 1) ∈ ℂ)
877gt0ne0d 11469 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 2 ≠ 0)
883, 87logcld 25631 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (log‘2) ∈ ℂ)
8975gt0ne0d 11469 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((2 logb 𝑥)↑5) + 1) ≠ 0)
90 0red 10909 . . . . . . . . 9 (𝜑 → 0 ∈ ℝ)
91 loggt0b 25692 . . . . . . . . . . . 12 (2 ∈ ℝ+ → (0 < (log‘2) ↔ 1 < 2))
9280, 91ax-mp 5 . . . . . . . . . . 11 (0 < (log‘2) ↔ 1 < 2)
9333, 92mpbir 230 . . . . . . . . . 10 0 < (log‘2)
9493a1i 11 . . . . . . . . 9 (𝜑 → 0 < (log‘2))
9590, 94ltned 11041 . . . . . . . 8 (𝜑 → 0 ≠ (log‘2))
9695necomd 2998 . . . . . . 7 (𝜑 → (log‘2) ≠ 0)
9796adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (log‘2) ≠ 0)
9886, 88, 89, 97mulne0d 11557 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((((2 logb 𝑥)↑5) + 1) · (log‘2)) ≠ 0)
9932, 83, 98redivcld 11733 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (1 / ((((2 logb 𝑥)↑5) + 1) · (log‘2))) ∈ ℝ)
100 5re 11990 . . . . . . . 8 5 ∈ ℝ
101100a1i 11 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 5 ∈ ℝ)
102 4nn0 12182 . . . . . . . . 9 4 ∈ ℕ0
103102a1i 11 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 4 ∈ ℕ0)
10437, 103reexpcld 13809 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((2 logb 𝑥)↑4) ∈ ℝ)
105101, 104remulcld 10936 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (5 · ((2 logb 𝑥)↑4)) ∈ ℝ)
1069, 82remulcld 10936 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑥 · (log‘2)) ∈ ℝ)
1079recnd 10934 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ ℂ)
10810, 31gtned 11040 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ≠ 0)
109107, 88, 108, 97mulne0d 11557 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑥 · (log‘2)) ≠ 0)
11032, 106, 109redivcld 11733 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (1 / (𝑥 · (log‘2))) ∈ ℝ)
111105, 110remulcld 10936 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((5 · ((2 logb 𝑥)↑4)) · (1 / (𝑥 · (log‘2)))) ∈ ℝ)
112111, 10readdcld 10935 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((5 · ((2 logb 𝑥)↑4)) · (1 / (𝑥 · (log‘2)))) + 0) ∈ ℝ)
11399, 112remulcld 10936 . . 3 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((1 / ((((2 logb 𝑥)↑5) + 1) · (log‘2))) · (((5 · ((2 logb 𝑥)↑4)) · (1 / (𝑥 · (log‘2)))) + 0)) ∈ ℝ)
1145, 113remulcld 10936 . 2 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (2 · ((1 / ((((2 logb 𝑥)↑5) + 1) · (log‘2))) · (((5 · ((2 logb 𝑥)↑4)) · (1 / (𝑥 · (log‘2)))) + 0))) ∈ ℝ)
11541, 75elrpd 12698 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((2 logb 𝑥)↑5) + 1) ∈ ℝ+)
1164a1i 11 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → 2 ∈ ℝ)
1176a1i 11 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → 0 < 2)
118 rpre 12667 . . . . . . 7 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
119118adantl 481 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ)
120 rpgt0 12671 . . . . . . 7 (𝑦 ∈ ℝ+ → 0 < 𝑦)
121120adantl 481 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → 0 < 𝑦)
122 1red 10907 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ+) → 1 ∈ ℝ)
12333a1i 11 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ+) → 1 < 2)
124122, 123ltned 11041 . . . . . . 7 ((𝜑𝑦 ∈ ℝ+) → 1 ≠ 2)
125124necomd 2998 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → 2 ≠ 1)
126116, 117, 119, 121, 125relogbcld 39908 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → (2 logb 𝑦) ∈ ℝ)
127126recnd 10934 . . . 4 ((𝜑𝑦 ∈ ℝ+) → (2 logb 𝑦) ∈ ℂ)
12880a1i 11 . . . . . . 7 ((𝜑𝑦 ∈ ℝ+) → 2 ∈ ℝ+)
129128relogcld 25683 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → (log‘2) ∈ ℝ)
130119, 129remulcld 10936 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → (𝑦 · (log‘2)) ∈ ℝ)
131119recnd 10934 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → 𝑦 ∈ ℂ)
132 2cnd 11981 . . . . . . 7 ((𝜑𝑦 ∈ ℝ+) → 2 ∈ ℂ)
133128rpne0d 12706 . . . . . . 7 ((𝜑𝑦 ∈ ℝ+) → 2 ≠ 0)
134132, 133logcld 25631 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → (log‘2) ∈ ℂ)
135 rpne0 12675 . . . . . . 7 (𝑦 ∈ ℝ+𝑦 ≠ 0)
136135adantl 481 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → 𝑦 ≠ 0)
13796necomd 2998 . . . . . . . 8 (𝜑 → 0 ≠ (log‘2))
138137adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ ℝ+) → 0 ≠ (log‘2))
139138necomd 2998 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → (log‘2) ≠ 0)
140131, 134, 136, 139mulne0d 11557 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → (𝑦 · (log‘2)) ≠ 0)
141122, 130, 140redivcld 11733 . . . 4 ((𝜑𝑦 ∈ ℝ+) → (1 / (𝑦 · (log‘2))) ∈ ℝ)
142 cnelprrecn 10895 . . . . . . 7 ℂ ∈ {ℝ, ℂ}
143142a1i 11 . . . . . 6 (𝜑 → ℂ ∈ {ℝ, ℂ})
14437recnd 10934 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (2 logb 𝑥) ∈ ℂ)
145 simpr 484 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → 𝑧 ∈ ℂ)
14638a1i 11 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → 5 ∈ ℕ0)
147145, 146expcld 13792 . . . . . 6 ((𝜑𝑧 ∈ ℂ) → (𝑧↑5) ∈ ℂ)
148 5cn 11991 . . . . . . . 8 5 ∈ ℂ
149148a1i 11 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → 5 ∈ ℂ)
150102a1i 11 . . . . . . . 8 ((𝜑𝑧 ∈ ℂ) → 4 ∈ ℕ0)
151145, 150expcld 13792 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → (𝑧↑4) ∈ ℂ)
152149, 151mulcld 10926 . . . . . 6 ((𝜑𝑧 ∈ ℂ) → (5 · (𝑧↑4)) ∈ ℂ)
15313a1i 11 . . . . . . . . 9 (𝜑 → 3 ∈ ℝ)
15415a1i 11 . . . . . . . . 9 (𝜑 → 0 < 3)
15590, 153, 11, 154, 17ltletrd 11065 . . . . . . . 8 (𝜑 → 0 < 𝐴)
15690, 11, 155ltled 11053 . . . . . . 7 (𝜑 → 0 ≤ 𝐴)
157 aks4d1p1p6.4 . . . . . . 7 (𝜑𝐴𝐵)
158 eqid 2738 . . . . . . 7 (𝑥 ∈ (𝐴(,)𝐵) ↦ (2 logb 𝑥)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (2 logb 𝑥))
159 eqid 2738 . . . . . . 7 (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / (𝑥 · (log‘2)))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / (𝑥 · (log‘2))))
16021, 24, 156, 157, 158, 159dvrelog2b 40002 . . . . . 6 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ (2 logb 𝑥))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (1 / (𝑥 · (log‘2)))))
161 5nn 11989 . . . . . . . 8 5 ∈ ℕ
162 dvexp 25022 . . . . . . . 8 (5 ∈ ℕ → (ℂ D (𝑧 ∈ ℂ ↦ (𝑧↑5))) = (𝑧 ∈ ℂ ↦ (5 · (𝑧↑(5 − 1)))))
163161, 162ax-mp 5 . . . . . . 7 (ℂ D (𝑧 ∈ ℂ ↦ (𝑧↑5))) = (𝑧 ∈ ℂ ↦ (5 · (𝑧↑(5 − 1))))
164 5m1e4 12033 . . . . . . . . . . 11 (5 − 1) = 4
165164a1i 11 . . . . . . . . . 10 ((𝜑𝑧 ∈ ℂ) → (5 − 1) = 4)
166165oveq2d 7271 . . . . . . . . 9 ((𝜑𝑧 ∈ ℂ) → (𝑧↑(5 − 1)) = (𝑧↑4))
167166oveq2d 7271 . . . . . . . 8 ((𝜑𝑧 ∈ ℂ) → (5 · (𝑧↑(5 − 1))) = (5 · (𝑧↑4)))
168167mpteq2dva 5170 . . . . . . 7 (𝜑 → (𝑧 ∈ ℂ ↦ (5 · (𝑧↑(5 − 1)))) = (𝑧 ∈ ℂ ↦ (5 · (𝑧↑4))))
169163, 168syl5eq 2791 . . . . . 6 (𝜑 → (ℂ D (𝑧 ∈ ℂ ↦ (𝑧↑5))) = (𝑧 ∈ ℂ ↦ (5 · (𝑧↑4))))
170 oveq1 7262 . . . . . 6 (𝑧 = (2 logb 𝑥) → (𝑧↑5) = ((2 logb 𝑥)↑5))
171 oveq1 7262 . . . . . . 7 (𝑧 = (2 logb 𝑥) → (𝑧↑4) = ((2 logb 𝑥)↑4))
172171oveq2d 7271 . . . . . 6 (𝑧 = (2 logb 𝑥) → (5 · (𝑧↑4)) = (5 · ((2 logb 𝑥)↑4)))
1732, 143, 144, 110, 147, 152, 160, 169, 170, 172dvmptco 25041 . . . . 5 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ ((2 logb 𝑥)↑5))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((5 · ((2 logb 𝑥)↑4)) · (1 / (𝑥 · (log‘2))))))
174 1cnd 10901 . . . . . . 7 (𝜑 → 1 ∈ ℂ)
175174adantr 480 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → 1 ∈ ℂ)
176 0red 10909 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → 0 ∈ ℝ)
1772, 174dvmptc 25027 . . . . . 6 (𝜑 → (ℝ D (𝑥 ∈ ℝ ↦ 1)) = (𝑥 ∈ ℝ ↦ 0))
178 ioossre 13069 . . . . . . 7 (𝐴(,)𝐵) ⊆ ℝ
179178a1i 11 . . . . . 6 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
180 eqid 2738 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
181180tgioo2 23872 . . . . . 6 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
182 iooretop 23835 . . . . . . 7 (𝐴(,)𝐵) ∈ (topGen‘ran (,))
183182a1i 11 . . . . . 6 (𝜑 → (𝐴(,)𝐵) ∈ (topGen‘ran (,)))
1842, 175, 176, 177, 179, 181, 180, 183dvmptres 25032 . . . . 5 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ 1)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ 0))
1852, 84, 111, 173, 85, 10, 184dvmptadd 25029 . . . 4 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ (((2 logb 𝑥)↑5) + 1))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (((5 · ((2 logb 𝑥)↑4)) · (1 / (𝑥 · (log‘2)))) + 0)))
186 dfrp2 13057 . . . . . . . 8 + = (0(,)+∞)
187186a1i 11 . . . . . . 7 (𝜑 → ℝ+ = (0(,)+∞))
188187mpteq1d 5165 . . . . . 6 (𝜑 → (𝑦 ∈ ℝ+ ↦ (2 logb 𝑦)) = (𝑦 ∈ (0(,)+∞) ↦ (2 logb 𝑦)))
189188oveq2d 7271 . . . . 5 (𝜑 → (ℝ D (𝑦 ∈ ℝ+ ↦ (2 logb 𝑦))) = (ℝ D (𝑦 ∈ (0(,)+∞) ↦ (2 logb 𝑦))))
19090rexrd 10956 . . . . . . 7 (𝜑 → 0 ∈ ℝ*)
191 pnfxr 10960 . . . . . . . 8 +∞ ∈ ℝ*
192191a1i 11 . . . . . . 7 (𝜑 → +∞ ∈ ℝ*)
19390leidd 11471 . . . . . . 7 (𝜑 → 0 ≤ 0)
194 0lepnf 12797 . . . . . . . 8 0 ≤ +∞
195194a1i 11 . . . . . . 7 (𝜑 → 0 ≤ +∞)
196 eqid 2738 . . . . . . 7 (𝑦 ∈ (0(,)+∞) ↦ (2 logb 𝑦)) = (𝑦 ∈ (0(,)+∞) ↦ (2 logb 𝑦))
197 eqid 2738 . . . . . . 7 (𝑦 ∈ (0(,)+∞) ↦ (1 / (𝑦 · (log‘2)))) = (𝑦 ∈ (0(,)+∞) ↦ (1 / (𝑦 · (log‘2))))
198190, 192, 193, 195, 196, 197dvrelog2b 40002 . . . . . 6 (𝜑 → (ℝ D (𝑦 ∈ (0(,)+∞) ↦ (2 logb 𝑦))) = (𝑦 ∈ (0(,)+∞) ↦ (1 / (𝑦 · (log‘2)))))
199187eqcomd 2744 . . . . . . 7 (𝜑 → (0(,)+∞) = ℝ+)
200199mpteq1d 5165 . . . . . 6 (𝜑 → (𝑦 ∈ (0(,)+∞) ↦ (1 / (𝑦 · (log‘2)))) = (𝑦 ∈ ℝ+ ↦ (1 / (𝑦 · (log‘2)))))
201198, 200eqtrd 2778 . . . . 5 (𝜑 → (ℝ D (𝑦 ∈ (0(,)+∞) ↦ (2 logb 𝑦))) = (𝑦 ∈ ℝ+ ↦ (1 / (𝑦 · (log‘2)))))
202189, 201eqtrd 2778 . . . 4 (𝜑 → (ℝ D (𝑦 ∈ ℝ+ ↦ (2 logb 𝑦))) = (𝑦 ∈ ℝ+ ↦ (1 / (𝑦 · (log‘2)))))
203 oveq2 7263 . . . 4 (𝑦 = (((2 logb 𝑥)↑5) + 1) → (2 logb 𝑦) = (2 logb (((2 logb 𝑥)↑5) + 1)))
204 oveq1 7262 . . . . 5 (𝑦 = (((2 logb 𝑥)↑5) + 1) → (𝑦 · (log‘2)) = ((((2 logb 𝑥)↑5) + 1) · (log‘2)))
205204oveq2d 7271 . . . 4 (𝑦 = (((2 logb 𝑥)↑5) + 1) → (1 / (𝑦 · (log‘2))) = (1 / ((((2 logb 𝑥)↑5) + 1) · (log‘2))))
2062, 2, 115, 112, 127, 141, 185, 202, 203, 205dvmptco 25041 . . 3 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ (2 logb (((2 logb 𝑥)↑5) + 1)))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((1 / ((((2 logb 𝑥)↑5) + 1) · (log‘2))) · (((5 · ((2 logb 𝑥)↑4)) · (1 / (𝑥 · (log‘2)))) + 0))))
2074a1i 11 . . . 4 (𝜑 → 2 ∈ ℝ)
208207recnd 10934 . . 3 (𝜑 → 2 ∈ ℂ)
2092, 78, 113, 206, 208dvmptcmul 25033 . 2 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ (2 · (2 logb (((2 logb 𝑥)↑5) + 1))))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (2 · ((1 / ((((2 logb 𝑥)↑5) + 1) · (log‘2))) · (((5 · ((2 logb 𝑥)↑4)) · (1 / (𝑥 · (log‘2)))) + 0)))))
210144sqcld 13790 . 2 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((2 logb 𝑥)↑2) ∈ ℂ)
21182resqcld 13893 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((log‘2)↑2) ∈ ℝ)
21281rpne0d 12706 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 2 ≠ 0)
2133, 212logcld 25631 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (log‘2) ∈ ℂ)
214213, 97, 63expne0d 13798 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((log‘2)↑2) ≠ 0)
2155, 211, 214redivcld 11733 . . 3 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (2 / ((log‘2)↑2)) ∈ ℝ)
21667relogcld 25683 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (log‘𝑥) ∈ ℝ)
217 2m1e1 12029 . . . . . . 7 (2 − 1) = 1
218 1nn0 12179 . . . . . . 7 1 ∈ ℕ0
219217, 218eqeltri 2835 . . . . . 6 (2 − 1) ∈ ℕ0
220219a1i 11 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (2 − 1) ∈ ℕ0)
221216, 220reexpcld 13809 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((log‘𝑥)↑(2 − 1)) ∈ ℝ)
22267rpne0d 12706 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ≠ 0)
223221, 9, 222redivcld 11733 . . 3 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((log‘𝑥)↑(2 − 1)) / 𝑥) ∈ ℝ)
224215, 223remulcld 10936 . 2 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((2 / ((log‘2)↑2)) · (((log‘𝑥)↑(2 − 1)) / 𝑥)) ∈ ℝ)
225 eqid 2738 . . 3 (𝑥 ∈ (𝐴(,)𝐵) ↦ ((2 logb 𝑥)↑2)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((2 logb 𝑥)↑2))
226 eqid 2738 . . 3 (𝑥 ∈ (𝐴(,)𝐵) ↦ ((2 / ((log‘2)↑2)) · (((log‘𝑥)↑(2 − 1)) / 𝑥))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((2 / ((log‘2)↑2)) · (((log‘𝑥)↑(2 − 1)) / 𝑥)))
227 eqid 2738 . . 3 (2 / ((log‘2)↑2)) = (2 / ((log‘2)↑2))
228 2nn 11976 . . . 4 2 ∈ ℕ
229228a1i 11 . . 3 (𝜑 → 2 ∈ ℕ)
23011, 23, 155, 157, 225, 226, 227, 229dvrelogpow2b 40004 . 2 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ ((2 logb 𝑥)↑2))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((2 / ((log‘2)↑2)) · (((log‘𝑥)↑(2 − 1)) / 𝑥))))
2312, 79, 114, 209, 210, 224, 230dvmptadd 25029 1 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ ((2 · (2 logb (((2 logb 𝑥)↑5) + 1))) + ((2 logb 𝑥)↑2)))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((2 · ((1 / ((((2 logb 𝑥)↑5) + 1) · (log‘2))) · (((5 · ((2 logb 𝑥)↑4)) · (1 / (𝑥 · (log‘2)))) + 0))) + ((2 / ((log‘2)↑2)) · (((log‘𝑥)↑(2 − 1)) / 𝑥)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wtru 1540  wcel 2108  wne 2942  wss 3883  {cpr 4560   class class class wbr 5070  cmpt 5153  ran crn 5581  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  +∞cpnf 10937  *cxr 10939   < clt 10940  cle 10941  cmin 11135   / cdiv 11562  cn 11903  2c2 11958  3c3 11959  4c4 11960  5c5 11961  0cn0 12163  cz 12249  cuz 12511  +crp 12659  (,)cioo 13008  cexp 13710  TopOpenctopn 17049  topGenctg 17065  fldccnfld 20510   D cdv 24932  logclog 25615   logb clogb 25819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-ef 15705  df-sin 15707  df-cos 15708  df-pi 15710  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-cmp 22446  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-limc 24935  df-dv 24936  df-log 25617  df-logb 25820
This theorem is referenced by:  aks4d1p1p5  40011
  Copyright terms: Public domain W3C validator