Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hashf2 | Structured version Visualization version GIF version |
Description: Lemma for hasheuni 31765. (Contributed by Thierry Arnoux, 19-Nov-2016.) |
Ref | Expression |
---|---|
hashf2 | ⊢ ♯:V⟶(0[,]+∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hashf 13904 | . 2 ⊢ ♯:V⟶(ℕ0 ∪ {+∞}) | |
2 | nn0z 12200 | . . . . . 6 ⊢ (𝑥 ∈ ℕ0 → 𝑥 ∈ ℤ) | |
3 | zre 12180 | . . . . . 6 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℝ) | |
4 | rexr 10879 | . . . . . 6 ⊢ (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*) | |
5 | 2, 3, 4 | 3syl 18 | . . . . 5 ⊢ (𝑥 ∈ ℕ0 → 𝑥 ∈ ℝ*) |
6 | nn0ge0 12115 | . . . . 5 ⊢ (𝑥 ∈ ℕ0 → 0 ≤ 𝑥) | |
7 | elxrge0 13045 | . . . . 5 ⊢ (𝑥 ∈ (0[,]+∞) ↔ (𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥)) | |
8 | 5, 6, 7 | sylanbrc 586 | . . . 4 ⊢ (𝑥 ∈ ℕ0 → 𝑥 ∈ (0[,]+∞)) |
9 | 8 | ssriv 3905 | . . 3 ⊢ ℕ0 ⊆ (0[,]+∞) |
10 | 0xr 10880 | . . . . 5 ⊢ 0 ∈ ℝ* | |
11 | pnfxr 10887 | . . . . 5 ⊢ +∞ ∈ ℝ* | |
12 | 0lepnf 12724 | . . . . 5 ⊢ 0 ≤ +∞ | |
13 | ubicc2 13053 | . . . . 5 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 ≤ +∞) → +∞ ∈ (0[,]+∞)) | |
14 | 10, 11, 12, 13 | mp3an 1463 | . . . 4 ⊢ +∞ ∈ (0[,]+∞) |
15 | snssi 4721 | . . . 4 ⊢ (+∞ ∈ (0[,]+∞) → {+∞} ⊆ (0[,]+∞)) | |
16 | 14, 15 | ax-mp 5 | . . 3 ⊢ {+∞} ⊆ (0[,]+∞) |
17 | 9, 16 | unssi 4099 | . 2 ⊢ (ℕ0 ∪ {+∞}) ⊆ (0[,]+∞) |
18 | fss 6562 | . 2 ⊢ ((♯:V⟶(ℕ0 ∪ {+∞}) ∧ (ℕ0 ∪ {+∞}) ⊆ (0[,]+∞)) → ♯:V⟶(0[,]+∞)) | |
19 | 1, 17, 18 | mp2an 692 | 1 ⊢ ♯:V⟶(0[,]+∞) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2110 Vcvv 3408 ∪ cun 3864 ⊆ wss 3866 {csn 4541 class class class wbr 5053 ⟶wf 6376 (class class class)co 7213 ℝcr 10728 0cc0 10729 +∞cpnf 10864 ℝ*cxr 10866 ≤ cle 10868 ℕ0cn0 12090 ℤcz 12176 [,]cicc 12938 ♯chash 13896 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-card 9555 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-n0 12091 df-xnn0 12163 df-z 12177 df-uz 12439 df-icc 12942 df-hash 13897 |
This theorem is referenced by: hasheuni 31765 cntmeas 31906 |
Copyright terms: Public domain | W3C validator |