![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hashf2 | Structured version Visualization version GIF version |
Description: Lemma for hasheuni 33379. (Contributed by Thierry Arnoux, 19-Nov-2016.) |
Ref | Expression |
---|---|
hashf2 | ⊢ ♯:V⟶(0[,]+∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hashf 14304 | . 2 ⊢ ♯:V⟶(ℕ0 ∪ {+∞}) | |
2 | nn0z 12589 | . . . . . 6 ⊢ (𝑥 ∈ ℕ0 → 𝑥 ∈ ℤ) | |
3 | zre 12568 | . . . . . 6 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℝ) | |
4 | rexr 11266 | . . . . . 6 ⊢ (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*) | |
5 | 2, 3, 4 | 3syl 18 | . . . . 5 ⊢ (𝑥 ∈ ℕ0 → 𝑥 ∈ ℝ*) |
6 | nn0ge0 12503 | . . . . 5 ⊢ (𝑥 ∈ ℕ0 → 0 ≤ 𝑥) | |
7 | elxrge0 13440 | . . . . 5 ⊢ (𝑥 ∈ (0[,]+∞) ↔ (𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥)) | |
8 | 5, 6, 7 | sylanbrc 581 | . . . 4 ⊢ (𝑥 ∈ ℕ0 → 𝑥 ∈ (0[,]+∞)) |
9 | 8 | ssriv 3987 | . . 3 ⊢ ℕ0 ⊆ (0[,]+∞) |
10 | 0xr 11267 | . . . . 5 ⊢ 0 ∈ ℝ* | |
11 | pnfxr 11274 | . . . . 5 ⊢ +∞ ∈ ℝ* | |
12 | 0lepnf 13118 | . . . . 5 ⊢ 0 ≤ +∞ | |
13 | ubicc2 13448 | . . . . 5 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 ≤ +∞) → +∞ ∈ (0[,]+∞)) | |
14 | 10, 11, 12, 13 | mp3an 1459 | . . . 4 ⊢ +∞ ∈ (0[,]+∞) |
15 | snssi 4812 | . . . 4 ⊢ (+∞ ∈ (0[,]+∞) → {+∞} ⊆ (0[,]+∞)) | |
16 | 14, 15 | ax-mp 5 | . . 3 ⊢ {+∞} ⊆ (0[,]+∞) |
17 | 9, 16 | unssi 4186 | . 2 ⊢ (ℕ0 ∪ {+∞}) ⊆ (0[,]+∞) |
18 | fss 6735 | . 2 ⊢ ((♯:V⟶(ℕ0 ∪ {+∞}) ∧ (ℕ0 ∪ {+∞}) ⊆ (0[,]+∞)) → ♯:V⟶(0[,]+∞)) | |
19 | 1, 17, 18 | mp2an 688 | 1 ⊢ ♯:V⟶(0[,]+∞) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2104 Vcvv 3472 ∪ cun 3947 ⊆ wss 3949 {csn 4629 class class class wbr 5149 ⟶wf 6540 (class class class)co 7413 ℝcr 11113 0cc0 11114 +∞cpnf 11251 ℝ*cxr 11253 ≤ cle 11255 ℕ0cn0 12478 ℤcz 12564 [,]cicc 13333 ♯chash 14296 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7860 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-card 9938 df-pnf 11256 df-mnf 11257 df-xr 11258 df-ltxr 11259 df-le 11260 df-sub 11452 df-neg 11453 df-nn 12219 df-n0 12479 df-xnn0 12551 df-z 12565 df-uz 12829 df-icc 13337 df-hash 14297 |
This theorem is referenced by: hasheuni 33379 cntmeas 33520 |
Copyright terms: Public domain | W3C validator |