Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hashf2 Structured version   Visualization version   GIF version

Theorem hashf2 33378
Description: Lemma for hasheuni 33379. (Contributed by Thierry Arnoux, 19-Nov-2016.)
Assertion
Ref Expression
hashf2 ♯:V⟶(0[,]+∞)

Proof of Theorem hashf2
StepHypRef Expression
1 hashf 14304 . 2 ♯:V⟶(ℕ0 ∪ {+∞})
2 nn0z 12589 . . . . . 6 (𝑥 ∈ ℕ0𝑥 ∈ ℤ)
3 zre 12568 . . . . . 6 (𝑥 ∈ ℤ → 𝑥 ∈ ℝ)
4 rexr 11266 . . . . . 6 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
52, 3, 43syl 18 . . . . 5 (𝑥 ∈ ℕ0𝑥 ∈ ℝ*)
6 nn0ge0 12503 . . . . 5 (𝑥 ∈ ℕ0 → 0 ≤ 𝑥)
7 elxrge0 13440 . . . . 5 (𝑥 ∈ (0[,]+∞) ↔ (𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥))
85, 6, 7sylanbrc 581 . . . 4 (𝑥 ∈ ℕ0𝑥 ∈ (0[,]+∞))
98ssriv 3987 . . 3 0 ⊆ (0[,]+∞)
10 0xr 11267 . . . . 5 0 ∈ ℝ*
11 pnfxr 11274 . . . . 5 +∞ ∈ ℝ*
12 0lepnf 13118 . . . . 5 0 ≤ +∞
13 ubicc2 13448 . . . . 5 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 ≤ +∞) → +∞ ∈ (0[,]+∞))
1410, 11, 12, 13mp3an 1459 . . . 4 +∞ ∈ (0[,]+∞)
15 snssi 4812 . . . 4 (+∞ ∈ (0[,]+∞) → {+∞} ⊆ (0[,]+∞))
1614, 15ax-mp 5 . . 3 {+∞} ⊆ (0[,]+∞)
179, 16unssi 4186 . 2 (ℕ0 ∪ {+∞}) ⊆ (0[,]+∞)
18 fss 6735 . 2 ((♯:V⟶(ℕ0 ∪ {+∞}) ∧ (ℕ0 ∪ {+∞}) ⊆ (0[,]+∞)) → ♯:V⟶(0[,]+∞))
191, 17, 18mp2an 688 1 ♯:V⟶(0[,]+∞)
Colors of variables: wff setvar class
Syntax hints:  wcel 2104  Vcvv 3472  cun 3947  wss 3949  {csn 4629   class class class wbr 5149  wf 6540  (class class class)co 7413  cr 11113  0cc0 11114  +∞cpnf 11251  *cxr 11253  cle 11255  0cn0 12478  cz 12564  [,]cicc 13333  chash 14296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7729  ax-cnex 11170  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7860  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-1o 8470  df-er 8707  df-en 8944  df-dom 8945  df-sdom 8946  df-fin 8947  df-card 9938  df-pnf 11256  df-mnf 11257  df-xr 11258  df-ltxr 11259  df-le 11260  df-sub 11452  df-neg 11453  df-nn 12219  df-n0 12479  df-xnn0 12551  df-z 12565  df-uz 12829  df-icc 13337  df-hash 14297
This theorem is referenced by:  hasheuni  33379  cntmeas  33520
  Copyright terms: Public domain W3C validator