Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hashf2 Structured version   Visualization version   GIF version

Theorem hashf2 31764
Description: Lemma for hasheuni 31765. (Contributed by Thierry Arnoux, 19-Nov-2016.)
Assertion
Ref Expression
hashf2 ♯:V⟶(0[,]+∞)

Proof of Theorem hashf2
StepHypRef Expression
1 hashf 13904 . 2 ♯:V⟶(ℕ0 ∪ {+∞})
2 nn0z 12200 . . . . . 6 (𝑥 ∈ ℕ0𝑥 ∈ ℤ)
3 zre 12180 . . . . . 6 (𝑥 ∈ ℤ → 𝑥 ∈ ℝ)
4 rexr 10879 . . . . . 6 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
52, 3, 43syl 18 . . . . 5 (𝑥 ∈ ℕ0𝑥 ∈ ℝ*)
6 nn0ge0 12115 . . . . 5 (𝑥 ∈ ℕ0 → 0 ≤ 𝑥)
7 elxrge0 13045 . . . . 5 (𝑥 ∈ (0[,]+∞) ↔ (𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥))
85, 6, 7sylanbrc 586 . . . 4 (𝑥 ∈ ℕ0𝑥 ∈ (0[,]+∞))
98ssriv 3905 . . 3 0 ⊆ (0[,]+∞)
10 0xr 10880 . . . . 5 0 ∈ ℝ*
11 pnfxr 10887 . . . . 5 +∞ ∈ ℝ*
12 0lepnf 12724 . . . . 5 0 ≤ +∞
13 ubicc2 13053 . . . . 5 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 ≤ +∞) → +∞ ∈ (0[,]+∞))
1410, 11, 12, 13mp3an 1463 . . . 4 +∞ ∈ (0[,]+∞)
15 snssi 4721 . . . 4 (+∞ ∈ (0[,]+∞) → {+∞} ⊆ (0[,]+∞))
1614, 15ax-mp 5 . . 3 {+∞} ⊆ (0[,]+∞)
179, 16unssi 4099 . 2 (ℕ0 ∪ {+∞}) ⊆ (0[,]+∞)
18 fss 6562 . 2 ((♯:V⟶(ℕ0 ∪ {+∞}) ∧ (ℕ0 ∪ {+∞}) ⊆ (0[,]+∞)) → ♯:V⟶(0[,]+∞))
191, 17, 18mp2an 692 1 ♯:V⟶(0[,]+∞)
Colors of variables: wff setvar class
Syntax hints:  wcel 2110  Vcvv 3408  cun 3864  wss 3866  {csn 4541   class class class wbr 5053  wf 6376  (class class class)co 7213  cr 10728  0cc0 10729  +∞cpnf 10864  *cxr 10866  cle 10868  0cn0 12090  cz 12176  [,]cicc 12938  chash 13896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-n0 12091  df-xnn0 12163  df-z 12177  df-uz 12439  df-icc 12942  df-hash 13897
This theorem is referenced by:  hasheuni  31765  cntmeas  31906
  Copyright terms: Public domain W3C validator