![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vr1cl2 | Structured version Visualization version GIF version |
Description: The variable 𝑋 is a member of the power series algebra 𝑅[[𝑋]]. (Contributed by Mario Carneiro, 8-Feb-2015.) |
Ref | Expression |
---|---|
vr1val.1 | ⊢ 𝑋 = (var1‘𝑅) |
vr1cl2.2 | ⊢ 𝑆 = (PwSer1‘𝑅) |
vr1cl2.3 | ⊢ 𝐵 = (Base‘𝑆) |
Ref | Expression |
---|---|
vr1cl2 | ⊢ (𝑅 ∈ Ring → 𝑋 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vr1val.1 | . . 3 ⊢ 𝑋 = (var1‘𝑅) | |
2 | 1 | vr1val 21716 | . 2 ⊢ 𝑋 = ((1o mVar 𝑅)‘∅) |
3 | eqid 2733 | . . . 4 ⊢ (1o mPwSer 𝑅) = (1o mPwSer 𝑅) | |
4 | eqid 2733 | . . . 4 ⊢ (1o mVar 𝑅) = (1o mVar 𝑅) | |
5 | eqid 2733 | . . . 4 ⊢ (Base‘(1o mPwSer 𝑅)) = (Base‘(1o mPwSer 𝑅)) | |
6 | 1on 8478 | . . . . 5 ⊢ 1o ∈ On | |
7 | 6 | a1i 11 | . . . 4 ⊢ (𝑅 ∈ Ring → 1o ∈ On) |
8 | id 22 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Ring) | |
9 | 0lt1o 8504 | . . . . 5 ⊢ ∅ ∈ 1o | |
10 | 9 | a1i 11 | . . . 4 ⊢ (𝑅 ∈ Ring → ∅ ∈ 1o) |
11 | 3, 4, 5, 7, 8, 10 | mvrcl2 21546 | . . 3 ⊢ (𝑅 ∈ Ring → ((1o mVar 𝑅)‘∅) ∈ (Base‘(1o mPwSer 𝑅))) |
12 | vr1cl2.2 | . . . . . 6 ⊢ 𝑆 = (PwSer1‘𝑅) | |
13 | 12 | psr1val 21710 | . . . . 5 ⊢ 𝑆 = ((1o ordPwSer 𝑅)‘∅) |
14 | 0ss 4397 | . . . . . 6 ⊢ ∅ ⊆ (1o × 1o) | |
15 | 14 | a1i 11 | . . . . 5 ⊢ (𝑅 ∈ Ring → ∅ ⊆ (1o × 1o)) |
16 | 3, 13, 15 | opsrbas 21606 | . . . 4 ⊢ (𝑅 ∈ Ring → (Base‘(1o mPwSer 𝑅)) = (Base‘𝑆)) |
17 | vr1cl2.3 | . . . 4 ⊢ 𝐵 = (Base‘𝑆) | |
18 | 16, 17 | eqtr4di 2791 | . . 3 ⊢ (𝑅 ∈ Ring → (Base‘(1o mPwSer 𝑅)) = 𝐵) |
19 | 11, 18 | eleqtrd 2836 | . 2 ⊢ (𝑅 ∈ Ring → ((1o mVar 𝑅)‘∅) ∈ 𝐵) |
20 | 2, 19 | eqeltrid 2838 | 1 ⊢ (𝑅 ∈ Ring → 𝑋 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 ⊆ wss 3949 ∅c0 4323 × cxp 5675 Oncon0 6365 ‘cfv 6544 (class class class)co 7409 1oc1o 8459 Basecbs 17144 Ringcrg 20056 mPwSer cmps 21457 mVar cmvr 21458 PwSer1cps1 21699 var1cv1 21700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-of 7670 df-om 7856 df-1st 7975 df-2nd 7976 df-supp 8147 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-er 8703 df-map 8822 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-fsupp 9362 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-7 12280 df-8 12281 df-9 12282 df-n0 12473 df-z 12559 df-dec 12678 df-uz 12823 df-fz 13485 df-struct 17080 df-sets 17097 df-slot 17115 df-ndx 17127 df-base 17145 df-plusg 17210 df-mulr 17211 df-sca 17213 df-vsca 17214 df-tset 17216 df-ple 17217 df-0g 17387 df-mgm 18561 df-sgrp 18610 df-mnd 18626 df-grp 18822 df-mgp 19988 df-ur 20005 df-ring 20058 df-psr 21462 df-mvr 21463 df-opsr 21466 df-psr1 21704 df-vr1 21705 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |