MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvcoe1 Structured version   Visualization version   GIF version

Theorem fvcoe1 22120
Description: Value of a multivariate coefficient in terms of the coefficient vector. (Contributed by Stefan O'Rear, 21-Mar-2015.)
Hypothesis
Ref Expression
coe1fval.a 𝐴 = (coe1𝐹)
Assertion
Ref Expression
fvcoe1 ((𝐹𝑉𝑋 ∈ (ℕ0m 1o)) → (𝐹𝑋) = (𝐴‘(𝑋‘∅)))

Proof of Theorem fvcoe1
StepHypRef Expression
1 df1o2 8392 . . . . 5 1o = {∅}
2 nn0ex 12387 . . . . 5 0 ∈ V
3 0ex 5243 . . . . 5 ∅ ∈ V
41, 2, 3mapsnconst 8816 . . . 4 (𝑋 ∈ (ℕ0m 1o) → 𝑋 = (1o × {(𝑋‘∅)}))
54adantl 481 . . 3 ((𝐹𝑉𝑋 ∈ (ℕ0m 1o)) → 𝑋 = (1o × {(𝑋‘∅)}))
65fveq2d 6826 . 2 ((𝐹𝑉𝑋 ∈ (ℕ0m 1o)) → (𝐹𝑋) = (𝐹‘(1o × {(𝑋‘∅)})))
7 elmapi 8773 . . . 4 (𝑋 ∈ (ℕ0m 1o) → 𝑋:1o⟶ℕ0)
8 0lt1o 8419 . . . 4 ∅ ∈ 1o
9 ffvelcdm 7014 . . . 4 ((𝑋:1o⟶ℕ0 ∧ ∅ ∈ 1o) → (𝑋‘∅) ∈ ℕ0)
107, 8, 9sylancl 586 . . 3 (𝑋 ∈ (ℕ0m 1o) → (𝑋‘∅) ∈ ℕ0)
11 coe1fval.a . . . 4 𝐴 = (coe1𝐹)
1211coe1fv 22119 . . 3 ((𝐹𝑉 ∧ (𝑋‘∅) ∈ ℕ0) → (𝐴‘(𝑋‘∅)) = (𝐹‘(1o × {(𝑋‘∅)})))
1310, 12sylan2 593 . 2 ((𝐹𝑉𝑋 ∈ (ℕ0m 1o)) → (𝐴‘(𝑋‘∅)) = (𝐹‘(1o × {(𝑋‘∅)})))
146, 13eqtr4d 2769 1 ((𝐹𝑉𝑋 ∈ (ℕ0m 1o)) → (𝐹𝑋) = (𝐴‘(𝑋‘∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  c0 4280  {csn 4573   × cxp 5612  wf 6477  cfv 6481  (class class class)co 7346  1oc1o 8378  m cmap 8750  0cn0 12381  coe1cco1 22090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-1cn 11064  ax-addcl 11066
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-map 8752  df-nn 12126  df-n0 12382  df-coe1 22095
This theorem is referenced by:  coe1mul2  22183  ply1coe  22213  deg1ldg  26024  deg1leb  26027
  Copyright terms: Public domain W3C validator