| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvcoe1 | Structured version Visualization version GIF version | ||
| Description: Value of a multivariate coefficient in terms of the coefficient vector. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
| Ref | Expression |
|---|---|
| coe1fval.a | ⊢ 𝐴 = (coe1‘𝐹) |
| Ref | Expression |
|---|---|
| fvcoe1 | ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) → (𝐹‘𝑋) = (𝐴‘(𝑋‘∅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df1o2 8487 | . . . . 5 ⊢ 1o = {∅} | |
| 2 | nn0ex 12507 | . . . . 5 ⊢ ℕ0 ∈ V | |
| 3 | 0ex 5277 | . . . . 5 ⊢ ∅ ∈ V | |
| 4 | 1, 2, 3 | mapsnconst 8906 | . . . 4 ⊢ (𝑋 ∈ (ℕ0 ↑m 1o) → 𝑋 = (1o × {(𝑋‘∅)})) |
| 5 | 4 | adantl 481 | . . 3 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) → 𝑋 = (1o × {(𝑋‘∅)})) |
| 6 | 5 | fveq2d 6880 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) → (𝐹‘𝑋) = (𝐹‘(1o × {(𝑋‘∅)}))) |
| 7 | elmapi 8863 | . . . 4 ⊢ (𝑋 ∈ (ℕ0 ↑m 1o) → 𝑋:1o⟶ℕ0) | |
| 8 | 0lt1o 8516 | . . . 4 ⊢ ∅ ∈ 1o | |
| 9 | ffvelcdm 7071 | . . . 4 ⊢ ((𝑋:1o⟶ℕ0 ∧ ∅ ∈ 1o) → (𝑋‘∅) ∈ ℕ0) | |
| 10 | 7, 8, 9 | sylancl 586 | . . 3 ⊢ (𝑋 ∈ (ℕ0 ↑m 1o) → (𝑋‘∅) ∈ ℕ0) |
| 11 | coe1fval.a | . . . 4 ⊢ 𝐴 = (coe1‘𝐹) | |
| 12 | 11 | coe1fv 22142 | . . 3 ⊢ ((𝐹 ∈ 𝑉 ∧ (𝑋‘∅) ∈ ℕ0) → (𝐴‘(𝑋‘∅)) = (𝐹‘(1o × {(𝑋‘∅)}))) |
| 13 | 10, 12 | sylan2 593 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) → (𝐴‘(𝑋‘∅)) = (𝐹‘(1o × {(𝑋‘∅)}))) |
| 14 | 6, 13 | eqtr4d 2773 | 1 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) → (𝐹‘𝑋) = (𝐴‘(𝑋‘∅))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∅c0 4308 {csn 4601 × cxp 5652 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 1oc1o 8473 ↑m cmap 8840 ℕ0cn0 12501 coe1cco1 22113 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-1cn 11187 ax-addcl 11189 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-map 8842 df-nn 12241 df-n0 12502 df-coe1 22118 |
| This theorem is referenced by: coe1mul2 22206 ply1coe 22236 deg1ldg 26049 deg1leb 26052 |
| Copyright terms: Public domain | W3C validator |