| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvcoe1 | Structured version Visualization version GIF version | ||
| Description: Value of a multivariate coefficient in terms of the coefficient vector. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
| Ref | Expression |
|---|---|
| coe1fval.a | ⊢ 𝐴 = (coe1‘𝐹) |
| Ref | Expression |
|---|---|
| fvcoe1 | ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) → (𝐹‘𝑋) = (𝐴‘(𝑋‘∅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df1o2 8392 | . . . . 5 ⊢ 1o = {∅} | |
| 2 | nn0ex 12387 | . . . . 5 ⊢ ℕ0 ∈ V | |
| 3 | 0ex 5243 | . . . . 5 ⊢ ∅ ∈ V | |
| 4 | 1, 2, 3 | mapsnconst 8816 | . . . 4 ⊢ (𝑋 ∈ (ℕ0 ↑m 1o) → 𝑋 = (1o × {(𝑋‘∅)})) |
| 5 | 4 | adantl 481 | . . 3 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) → 𝑋 = (1o × {(𝑋‘∅)})) |
| 6 | 5 | fveq2d 6826 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) → (𝐹‘𝑋) = (𝐹‘(1o × {(𝑋‘∅)}))) |
| 7 | elmapi 8773 | . . . 4 ⊢ (𝑋 ∈ (ℕ0 ↑m 1o) → 𝑋:1o⟶ℕ0) | |
| 8 | 0lt1o 8419 | . . . 4 ⊢ ∅ ∈ 1o | |
| 9 | ffvelcdm 7014 | . . . 4 ⊢ ((𝑋:1o⟶ℕ0 ∧ ∅ ∈ 1o) → (𝑋‘∅) ∈ ℕ0) | |
| 10 | 7, 8, 9 | sylancl 586 | . . 3 ⊢ (𝑋 ∈ (ℕ0 ↑m 1o) → (𝑋‘∅) ∈ ℕ0) |
| 11 | coe1fval.a | . . . 4 ⊢ 𝐴 = (coe1‘𝐹) | |
| 12 | 11 | coe1fv 22119 | . . 3 ⊢ ((𝐹 ∈ 𝑉 ∧ (𝑋‘∅) ∈ ℕ0) → (𝐴‘(𝑋‘∅)) = (𝐹‘(1o × {(𝑋‘∅)}))) |
| 13 | 10, 12 | sylan2 593 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) → (𝐴‘(𝑋‘∅)) = (𝐹‘(1o × {(𝑋‘∅)}))) |
| 14 | 6, 13 | eqtr4d 2769 | 1 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) → (𝐹‘𝑋) = (𝐴‘(𝑋‘∅))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∅c0 4280 {csn 4573 × cxp 5612 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 1oc1o 8378 ↑m cmap 8750 ℕ0cn0 12381 coe1cco1 22090 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-1cn 11064 ax-addcl 11066 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-map 8752 df-nn 12126 df-n0 12382 df-coe1 22095 |
| This theorem is referenced by: coe1mul2 22183 ply1coe 22213 deg1ldg 26024 deg1leb 26027 |
| Copyright terms: Public domain | W3C validator |