![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvcoe1 | Structured version Visualization version GIF version |
Description: Value of a multivariate coefficient in terms of the coefficient vector. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
Ref | Expression |
---|---|
coe1fval.a | β’ π΄ = (coe1βπΉ) |
Ref | Expression |
---|---|
fvcoe1 | β’ ((πΉ β π β§ π β (β0 βm 1o)) β (πΉβπ) = (π΄β(πββ ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df1o2 8475 | . . . . 5 β’ 1o = {β } | |
2 | nn0ex 12482 | . . . . 5 β’ β0 β V | |
3 | 0ex 5306 | . . . . 5 β’ β β V | |
4 | 1, 2, 3 | mapsnconst 8888 | . . . 4 β’ (π β (β0 βm 1o) β π = (1o Γ {(πββ )})) |
5 | 4 | adantl 480 | . . 3 β’ ((πΉ β π β§ π β (β0 βm 1o)) β π = (1o Γ {(πββ )})) |
6 | 5 | fveq2d 6894 | . 2 β’ ((πΉ β π β§ π β (β0 βm 1o)) β (πΉβπ) = (πΉβ(1o Γ {(πββ )}))) |
7 | elmapi 8845 | . . . 4 β’ (π β (β0 βm 1o) β π:1oβΆβ0) | |
8 | 0lt1o 8506 | . . . 4 β’ β β 1o | |
9 | ffvelcdm 7082 | . . . 4 β’ ((π:1oβΆβ0 β§ β β 1o) β (πββ ) β β0) | |
10 | 7, 8, 9 | sylancl 584 | . . 3 β’ (π β (β0 βm 1o) β (πββ ) β β0) |
11 | coe1fval.a | . . . 4 β’ π΄ = (coe1βπΉ) | |
12 | 11 | coe1fv 21949 | . . 3 β’ ((πΉ β π β§ (πββ ) β β0) β (π΄β(πββ )) = (πΉβ(1o Γ {(πββ )}))) |
13 | 10, 12 | sylan2 591 | . 2 β’ ((πΉ β π β§ π β (β0 βm 1o)) β (π΄β(πββ )) = (πΉβ(1o Γ {(πββ )}))) |
14 | 6, 13 | eqtr4d 2773 | 1 β’ ((πΉ β π β§ π β (β0 βm 1o)) β (πΉβπ) = (π΄β(πββ ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1539 β wcel 2104 β c0 4321 {csn 4627 Γ cxp 5673 βΆwf 6538 βcfv 6542 (class class class)co 7411 1oc1o 8461 βm cmap 8822 β0cn0 12476 coe1cco1 21921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-1cn 11170 ax-addcl 11172 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-map 8824 df-nn 12217 df-n0 12477 df-coe1 21926 |
This theorem is referenced by: coe1mul2 22011 ply1coe 22040 deg1ldg 25845 deg1leb 25848 |
Copyright terms: Public domain | W3C validator |