MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvcoe1 Structured version   Visualization version   GIF version

Theorem fvcoe1 22225
Description: Value of a multivariate coefficient in terms of the coefficient vector. (Contributed by Stefan O'Rear, 21-Mar-2015.)
Hypothesis
Ref Expression
coe1fval.a 𝐴 = (coe1𝐹)
Assertion
Ref Expression
fvcoe1 ((𝐹𝑉𝑋 ∈ (ℕ0m 1o)) → (𝐹𝑋) = (𝐴‘(𝑋‘∅)))

Proof of Theorem fvcoe1
StepHypRef Expression
1 df1o2 8512 . . . . 5 1o = {∅}
2 nn0ex 12530 . . . . 5 0 ∈ V
3 0ex 5313 . . . . 5 ∅ ∈ V
41, 2, 3mapsnconst 8931 . . . 4 (𝑋 ∈ (ℕ0m 1o) → 𝑋 = (1o × {(𝑋‘∅)}))
54adantl 481 . . 3 ((𝐹𝑉𝑋 ∈ (ℕ0m 1o)) → 𝑋 = (1o × {(𝑋‘∅)}))
65fveq2d 6911 . 2 ((𝐹𝑉𝑋 ∈ (ℕ0m 1o)) → (𝐹𝑋) = (𝐹‘(1o × {(𝑋‘∅)})))
7 elmapi 8888 . . . 4 (𝑋 ∈ (ℕ0m 1o) → 𝑋:1o⟶ℕ0)
8 0lt1o 8541 . . . 4 ∅ ∈ 1o
9 ffvelcdm 7101 . . . 4 ((𝑋:1o⟶ℕ0 ∧ ∅ ∈ 1o) → (𝑋‘∅) ∈ ℕ0)
107, 8, 9sylancl 586 . . 3 (𝑋 ∈ (ℕ0m 1o) → (𝑋‘∅) ∈ ℕ0)
11 coe1fval.a . . . 4 𝐴 = (coe1𝐹)
1211coe1fv 22224 . . 3 ((𝐹𝑉 ∧ (𝑋‘∅) ∈ ℕ0) → (𝐴‘(𝑋‘∅)) = (𝐹‘(1o × {(𝑋‘∅)})))
1310, 12sylan2 593 . 2 ((𝐹𝑉𝑋 ∈ (ℕ0m 1o)) → (𝐴‘(𝑋‘∅)) = (𝐹‘(1o × {(𝑋‘∅)})))
146, 13eqtr4d 2778 1 ((𝐹𝑉𝑋 ∈ (ℕ0m 1o)) → (𝐹𝑋) = (𝐴‘(𝑋‘∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  c0 4339  {csn 4631   × cxp 5687  wf 6559  cfv 6563  (class class class)co 7431  1oc1o 8498  m cmap 8865  0cn0 12524  coe1cco1 22195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-1cn 11211  ax-addcl 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-map 8867  df-nn 12265  df-n0 12525  df-coe1 22200
This theorem is referenced by:  coe1mul2  22288  ply1coe  22318  deg1ldg  26146  deg1leb  26149
  Copyright terms: Public domain W3C validator