| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvcoe1 | Structured version Visualization version GIF version | ||
| Description: Value of a multivariate coefficient in terms of the coefficient vector. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
| Ref | Expression |
|---|---|
| coe1fval.a | ⊢ 𝐴 = (coe1‘𝐹) |
| Ref | Expression |
|---|---|
| fvcoe1 | ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) → (𝐹‘𝑋) = (𝐴‘(𝑋‘∅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df1o2 8418 | . . . . 5 ⊢ 1o = {∅} | |
| 2 | nn0ex 12424 | . . . . 5 ⊢ ℕ0 ∈ V | |
| 3 | 0ex 5257 | . . . . 5 ⊢ ∅ ∈ V | |
| 4 | 1, 2, 3 | mapsnconst 8842 | . . . 4 ⊢ (𝑋 ∈ (ℕ0 ↑m 1o) → 𝑋 = (1o × {(𝑋‘∅)})) |
| 5 | 4 | adantl 481 | . . 3 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) → 𝑋 = (1o × {(𝑋‘∅)})) |
| 6 | 5 | fveq2d 6844 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) → (𝐹‘𝑋) = (𝐹‘(1o × {(𝑋‘∅)}))) |
| 7 | elmapi 8799 | . . . 4 ⊢ (𝑋 ∈ (ℕ0 ↑m 1o) → 𝑋:1o⟶ℕ0) | |
| 8 | 0lt1o 8445 | . . . 4 ⊢ ∅ ∈ 1o | |
| 9 | ffvelcdm 7035 | . . . 4 ⊢ ((𝑋:1o⟶ℕ0 ∧ ∅ ∈ 1o) → (𝑋‘∅) ∈ ℕ0) | |
| 10 | 7, 8, 9 | sylancl 586 | . . 3 ⊢ (𝑋 ∈ (ℕ0 ↑m 1o) → (𝑋‘∅) ∈ ℕ0) |
| 11 | coe1fval.a | . . . 4 ⊢ 𝐴 = (coe1‘𝐹) | |
| 12 | 11 | coe1fv 22067 | . . 3 ⊢ ((𝐹 ∈ 𝑉 ∧ (𝑋‘∅) ∈ ℕ0) → (𝐴‘(𝑋‘∅)) = (𝐹‘(1o × {(𝑋‘∅)}))) |
| 13 | 10, 12 | sylan2 593 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) → (𝐴‘(𝑋‘∅)) = (𝐹‘(1o × {(𝑋‘∅)}))) |
| 14 | 6, 13 | eqtr4d 2767 | 1 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) → (𝐹‘𝑋) = (𝐴‘(𝑋‘∅))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∅c0 4292 {csn 4585 × cxp 5629 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 1oc1o 8404 ↑m cmap 8776 ℕ0cn0 12418 coe1cco1 22038 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-1cn 11102 ax-addcl 11104 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-map 8778 df-nn 12163 df-n0 12419 df-coe1 22043 |
| This theorem is referenced by: coe1mul2 22131 ply1coe 22161 deg1ldg 25973 deg1leb 25976 |
| Copyright terms: Public domain | W3C validator |