MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvcoe1 Structured version   Visualization version   GIF version

Theorem fvcoe1 19899
Description: Value of a multivariate coefficient in terms of the coefficient vector. (Contributed by Stefan O'Rear, 21-Mar-2015.)
Hypothesis
Ref Expression
coe1fval.a 𝐴 = (coe1𝐹)
Assertion
Ref Expression
fvcoe1 ((𝐹𝑉𝑋 ∈ (ℕ0𝑚 1𝑜)) → (𝐹𝑋) = (𝐴‘(𝑋‘∅)))

Proof of Theorem fvcoe1
StepHypRef Expression
1 df1o2 7812 . . . . 5 1𝑜 = {∅}
2 nn0ex 11587 . . . . 5 0 ∈ V
3 0ex 4984 . . . . 5 ∅ ∈ V
41, 2, 3mapsnconst 8143 . . . 4 (𝑋 ∈ (ℕ0𝑚 1𝑜) → 𝑋 = (1𝑜 × {(𝑋‘∅)}))
54adantl 474 . . 3 ((𝐹𝑉𝑋 ∈ (ℕ0𝑚 1𝑜)) → 𝑋 = (1𝑜 × {(𝑋‘∅)}))
65fveq2d 6415 . 2 ((𝐹𝑉𝑋 ∈ (ℕ0𝑚 1𝑜)) → (𝐹𝑋) = (𝐹‘(1𝑜 × {(𝑋‘∅)})))
7 elmapi 8117 . . . 4 (𝑋 ∈ (ℕ0𝑚 1𝑜) → 𝑋:1𝑜⟶ℕ0)
8 0lt1o 7824 . . . 4 ∅ ∈ 1𝑜
9 ffvelrn 6583 . . . 4 ((𝑋:1𝑜⟶ℕ0 ∧ ∅ ∈ 1𝑜) → (𝑋‘∅) ∈ ℕ0)
107, 8, 9sylancl 581 . . 3 (𝑋 ∈ (ℕ0𝑚 1𝑜) → (𝑋‘∅) ∈ ℕ0)
11 coe1fval.a . . . 4 𝐴 = (coe1𝐹)
1211coe1fv 19898 . . 3 ((𝐹𝑉 ∧ (𝑋‘∅) ∈ ℕ0) → (𝐴‘(𝑋‘∅)) = (𝐹‘(1𝑜 × {(𝑋‘∅)})))
1310, 12sylan2 587 . 2 ((𝐹𝑉𝑋 ∈ (ℕ0𝑚 1𝑜)) → (𝐴‘(𝑋‘∅)) = (𝐹‘(1𝑜 × {(𝑋‘∅)})))
146, 13eqtr4d 2836 1 ((𝐹𝑉𝑋 ∈ (ℕ0𝑚 1𝑜)) → (𝐹𝑋) = (𝐴‘(𝑋‘∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385   = wceq 1653  wcel 2157  c0 4115  {csn 4368   × cxp 5310  wf 6097  cfv 6101  (class class class)co 6878  1𝑜c1o 7792  𝑚 cmap 8095  0cn0 11580  coe1cco1 19870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-cnex 10280  ax-1cn 10282  ax-addcl 10284
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-1st 7401  df-2nd 7402  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-map 8097  df-nn 11313  df-n0 11581  df-coe1 19875
This theorem is referenced by:  coe1mul2  19961  ply1coe  19988  deg1ldg  24193  deg1leb  24196
  Copyright terms: Public domain W3C validator