| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vr1cl | Structured version Visualization version GIF version | ||
| Description: The generator of a univariate polynomial algebra is contained in the base set. (Contributed by Stefan O'Rear, 19-Mar-2015.) |
| Ref | Expression |
|---|---|
| vr1cl.x | ⊢ 𝑋 = (var1‘𝑅) |
| vr1cl.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| vr1cl.b | ⊢ 𝐵 = (Base‘𝑃) |
| Ref | Expression |
|---|---|
| vr1cl | ⊢ (𝑅 ∈ Ring → 𝑋 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vr1cl.x | . . 3 ⊢ 𝑋 = (var1‘𝑅) | |
| 2 | 1 | vr1val 22076 | . 2 ⊢ 𝑋 = ((1o mVar 𝑅)‘∅) |
| 3 | eqid 2729 | . . 3 ⊢ (1o mPoly 𝑅) = (1o mPoly 𝑅) | |
| 4 | eqid 2729 | . . 3 ⊢ (1o mVar 𝑅) = (1o mVar 𝑅) | |
| 5 | vr1cl.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 6 | vr1cl.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
| 7 | 5, 6 | ply1bas 22079 | . . 3 ⊢ 𝐵 = (Base‘(1o mPoly 𝑅)) |
| 8 | 1onn 8604 | . . . 4 ⊢ 1o ∈ ω | |
| 9 | 8 | a1i 11 | . . 3 ⊢ (𝑅 ∈ Ring → 1o ∈ ω) |
| 10 | id 22 | . . 3 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Ring) | |
| 11 | 0lt1o 8468 | . . . 4 ⊢ ∅ ∈ 1o | |
| 12 | 11 | a1i 11 | . . 3 ⊢ (𝑅 ∈ Ring → ∅ ∈ 1o) |
| 13 | 3, 4, 7, 9, 10, 12 | mvrcl 21901 | . 2 ⊢ (𝑅 ∈ Ring → ((1o mVar 𝑅)‘∅) ∈ 𝐵) |
| 14 | 2, 13 | eqeltrid 2832 | 1 ⊢ (𝑅 ∈ Ring → 𝑋 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∅c0 4296 ‘cfv 6511 (class class class)co 7387 ωcom 7842 1oc1o 8427 Basecbs 17179 Ringcrg 20142 mVar cmvr 21814 mPoly cmpl 21815 var1cv1 22060 Poly1cpl1 22061 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-sca 17236 df-vsca 17237 df-tset 17239 df-ple 17240 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-mgp 20050 df-ur 20091 df-ring 20144 df-psr 21818 df-mvr 21819 df-mpl 21820 df-opsr 21822 df-psr1 22064 df-vr1 22065 df-ply1 22066 |
| This theorem is referenced by: ply1moncl 22157 coe1pwmul 22165 ply1scltm 22167 ply1idvr1 22181 ply1coefsupp 22184 ply1coe 22185 gsummoncoe1 22195 lply1binom 22197 ply1fermltlchr 22199 evls1varpw 22214 evl1var 22223 evl1vard 22224 evls1var 22225 pf1id 22234 evl1scvarpw 22250 evl1scvarpwval 22251 evl1gsummon 22252 evls1varpwval 22255 evls1fpws 22256 rhmply1vr1 22274 rhmply1mon 22276 pmatcollpwscmatlem1 22676 mply1topmatcllem 22690 mply1topmatcl 22692 pm2mpghm 22703 monmat2matmon 22711 pm2mp 22712 chmatcl 22715 chmatval 22716 chpmat0d 22721 chpmat1dlem 22722 chpmat1d 22723 chpdmatlem0 22724 chpdmatlem2 22726 chpdmatlem3 22727 chpscmat 22729 chpscmatgsumbin 22731 chpscmatgsummon 22732 chp0mat 22733 chpidmat 22734 chfacfscmulcl 22744 chfacfscmul0 22745 chfacfscmulgsum 22747 cpmadugsumlemB 22761 cpmadugsumlemC 22762 cpmadugsumlemF 22763 cpmadugsumfi 22764 cpmidgsum2 22766 deg1pw 26026 ply1remlem 26070 fta1blem 26076 idomrootle 26078 plypf1 26117 lgsqrlem2 27258 lgsqrlem3 27259 lgsqrlem4 27260 coe1vr1 33557 deg1vr 33558 gsummoncoe1fzo 33563 ply1degltdimlem 33618 ply1degltdim 33619 algextdeglem4 33710 rtelextdg2lem 33716 2sqr3minply 33770 cos9thpiminplylem6 33777 cos9thpiminply 33778 aks6d1c1p2 42097 aks6d1c1p3 42098 aks6d1c1p7 42101 aks6d1c1 42104 aks6d1c2lem4 42115 aks6d1c5lem0 42123 aks6d1c5lem3 42125 aks6d1c5 42127 aks6d1c6lem1 42158 aks5lem2 42175 aks5lem3a 42177 aks5lem5a 42179 hbtlem4 43115 ply1vr1smo 48371 ply1mulgsumlem4 48378 ply1mulgsum 48379 linply1 48382 |
| Copyright terms: Public domain | W3C validator |