| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vr1cl | Structured version Visualization version GIF version | ||
| Description: The generator of a univariate polynomial algebra is contained in the base set. (Contributed by Stefan O'Rear, 19-Mar-2015.) |
| Ref | Expression |
|---|---|
| vr1cl.x | ⊢ 𝑋 = (var1‘𝑅) |
| vr1cl.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| vr1cl.b | ⊢ 𝐵 = (Base‘𝑃) |
| Ref | Expression |
|---|---|
| vr1cl | ⊢ (𝑅 ∈ Ring → 𝑋 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vr1cl.x | . . 3 ⊢ 𝑋 = (var1‘𝑅) | |
| 2 | 1 | vr1val 22083 | . 2 ⊢ 𝑋 = ((1o mVar 𝑅)‘∅) |
| 3 | eqid 2730 | . . 3 ⊢ (1o mPoly 𝑅) = (1o mPoly 𝑅) | |
| 4 | eqid 2730 | . . 3 ⊢ (1o mVar 𝑅) = (1o mVar 𝑅) | |
| 5 | vr1cl.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 6 | vr1cl.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
| 7 | 5, 6 | ply1bas 22086 | . . 3 ⊢ 𝐵 = (Base‘(1o mPoly 𝑅)) |
| 8 | 1onn 8607 | . . . 4 ⊢ 1o ∈ ω | |
| 9 | 8 | a1i 11 | . . 3 ⊢ (𝑅 ∈ Ring → 1o ∈ ω) |
| 10 | id 22 | . . 3 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Ring) | |
| 11 | 0lt1o 8471 | . . . 4 ⊢ ∅ ∈ 1o | |
| 12 | 11 | a1i 11 | . . 3 ⊢ (𝑅 ∈ Ring → ∅ ∈ 1o) |
| 13 | 3, 4, 7, 9, 10, 12 | mvrcl 21908 | . 2 ⊢ (𝑅 ∈ Ring → ((1o mVar 𝑅)‘∅) ∈ 𝐵) |
| 14 | 2, 13 | eqeltrid 2833 | 1 ⊢ (𝑅 ∈ Ring → 𝑋 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∅c0 4299 ‘cfv 6514 (class class class)co 7390 ωcom 7845 1oc1o 8430 Basecbs 17186 Ringcrg 20149 mVar cmvr 21821 mPoly cmpl 21822 var1cv1 22067 Poly1cpl1 22068 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-fz 13476 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-sca 17243 df-vsca 17244 df-tset 17246 df-ple 17247 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-grp 18875 df-mgp 20057 df-ur 20098 df-ring 20151 df-psr 21825 df-mvr 21826 df-mpl 21827 df-opsr 21829 df-psr1 22071 df-vr1 22072 df-ply1 22073 |
| This theorem is referenced by: ply1moncl 22164 coe1pwmul 22172 ply1scltm 22174 ply1idvr1 22188 ply1coefsupp 22191 ply1coe 22192 gsummoncoe1 22202 lply1binom 22204 ply1fermltlchr 22206 evls1varpw 22221 evl1var 22230 evl1vard 22231 evls1var 22232 pf1id 22241 evl1scvarpw 22257 evl1scvarpwval 22258 evl1gsummon 22259 evls1varpwval 22262 evls1fpws 22263 rhmply1vr1 22281 rhmply1mon 22283 pmatcollpwscmatlem1 22683 mply1topmatcllem 22697 mply1topmatcl 22699 pm2mpghm 22710 monmat2matmon 22718 pm2mp 22719 chmatcl 22722 chmatval 22723 chpmat0d 22728 chpmat1dlem 22729 chpmat1d 22730 chpdmatlem0 22731 chpdmatlem2 22733 chpdmatlem3 22734 chpscmat 22736 chpscmatgsumbin 22738 chpscmatgsummon 22739 chp0mat 22740 chpidmat 22741 chfacfscmulcl 22751 chfacfscmul0 22752 chfacfscmulgsum 22754 cpmadugsumlemB 22768 cpmadugsumlemC 22769 cpmadugsumlemF 22770 cpmadugsumfi 22771 cpmidgsum2 22773 deg1pw 26033 ply1remlem 26077 fta1blem 26083 idomrootle 26085 plypf1 26124 lgsqrlem2 27265 lgsqrlem3 27266 lgsqrlem4 27267 coe1vr1 33564 deg1vr 33565 gsummoncoe1fzo 33570 ply1degltdimlem 33625 ply1degltdim 33626 algextdeglem4 33717 rtelextdg2lem 33723 2sqr3minply 33777 cos9thpiminplylem6 33784 cos9thpiminply 33785 aks6d1c1p2 42104 aks6d1c1p3 42105 aks6d1c1p7 42108 aks6d1c1 42111 aks6d1c2lem4 42122 aks6d1c5lem0 42130 aks6d1c5lem3 42132 aks6d1c5 42134 aks6d1c6lem1 42165 aks5lem2 42182 aks5lem3a 42184 aks5lem5a 42186 hbtlem4 43122 ply1vr1smo 48375 ply1mulgsumlem4 48382 ply1mulgsum 48383 linply1 48386 |
| Copyright terms: Public domain | W3C validator |