![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vr1cl | Structured version Visualization version GIF version |
Description: The generator of a univariate polynomial algebra is contained in the base set. (Contributed by Stefan O'Rear, 19-Mar-2015.) |
Ref | Expression |
---|---|
vr1cl.x | ⊢ 𝑋 = (var1‘𝑅) |
vr1cl.p | ⊢ 𝑃 = (Poly1‘𝑅) |
vr1cl.b | ⊢ 𝐵 = (Base‘𝑃) |
Ref | Expression |
---|---|
vr1cl | ⊢ (𝑅 ∈ Ring → 𝑋 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vr1cl.x | . . 3 ⊢ 𝑋 = (var1‘𝑅) | |
2 | 1 | vr1val 22209 | . 2 ⊢ 𝑋 = ((1o mVar 𝑅)‘∅) |
3 | eqid 2735 | . . 3 ⊢ (1o mPoly 𝑅) = (1o mPoly 𝑅) | |
4 | eqid 2735 | . . 3 ⊢ (1o mVar 𝑅) = (1o mVar 𝑅) | |
5 | vr1cl.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
6 | vr1cl.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
7 | 5, 6 | ply1bas 22212 | . . 3 ⊢ 𝐵 = (Base‘(1o mPoly 𝑅)) |
8 | 1onn 8677 | . . . 4 ⊢ 1o ∈ ω | |
9 | 8 | a1i 11 | . . 3 ⊢ (𝑅 ∈ Ring → 1o ∈ ω) |
10 | id 22 | . . 3 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Ring) | |
11 | 0lt1o 8541 | . . . 4 ⊢ ∅ ∈ 1o | |
12 | 11 | a1i 11 | . . 3 ⊢ (𝑅 ∈ Ring → ∅ ∈ 1o) |
13 | 3, 4, 7, 9, 10, 12 | mvrcl 22030 | . 2 ⊢ (𝑅 ∈ Ring → ((1o mVar 𝑅)‘∅) ∈ 𝐵) |
14 | 2, 13 | eqeltrid 2843 | 1 ⊢ (𝑅 ∈ Ring → 𝑋 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 ∅c0 4339 ‘cfv 6563 (class class class)co 7431 ωcom 7887 1oc1o 8498 Basecbs 17245 Ringcrg 20251 mVar cmvr 21943 mPoly cmpl 21944 var1cv1 22193 Poly1cpl1 22194 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8013 df-2nd 8014 df-supp 8185 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fsupp 9400 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-fz 13545 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-sca 17314 df-vsca 17315 df-tset 17317 df-ple 17318 df-0g 17488 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-grp 18967 df-mgp 20153 df-ur 20200 df-ring 20253 df-psr 21947 df-mvr 21948 df-mpl 21949 df-opsr 21951 df-psr1 22197 df-vr1 22198 df-ply1 22199 |
This theorem is referenced by: ply1moncl 22290 coe1pwmul 22298 ply1scltm 22300 ply1idvr1 22314 ply1coefsupp 22317 ply1coe 22318 gsummoncoe1 22328 lply1binom 22330 ply1fermltlchr 22332 evls1varpw 22347 evl1var 22356 evl1vard 22357 evls1var 22358 pf1id 22367 evl1scvarpw 22383 evl1scvarpwval 22384 evl1gsummon 22385 evls1varpwval 22388 evls1fpws 22389 rhmply1vr1 22407 rhmply1mon 22409 pmatcollpwscmatlem1 22811 mply1topmatcllem 22825 mply1topmatcl 22827 pm2mpghm 22838 monmat2matmon 22846 pm2mp 22847 chmatcl 22850 chmatval 22851 chpmat0d 22856 chpmat1dlem 22857 chpmat1d 22858 chpdmatlem0 22859 chpdmatlem2 22861 chpdmatlem3 22862 chpscmat 22864 chpscmatgsumbin 22866 chpscmatgsummon 22867 chp0mat 22868 chpidmat 22869 chfacfscmulcl 22879 chfacfscmul0 22880 chfacfscmulgsum 22882 cpmadugsumlemB 22896 cpmadugsumlemC 22897 cpmadugsumlemF 22898 cpmadugsumfi 22899 cpmidgsum2 22901 deg1pw 26175 ply1remlem 26219 fta1blem 26225 idomrootle 26227 plypf1 26266 lgsqrlem2 27406 lgsqrlem3 27407 lgsqrlem4 27408 coe1vr1 33593 deg1vr 33594 gsummoncoe1fzo 33598 ply1degltdimlem 33650 ply1degltdim 33651 algextdeglem4 33726 rtelextdg2lem 33732 2sqr3minply 33753 aks6d1c1p2 42091 aks6d1c1p3 42092 aks6d1c1p7 42095 aks6d1c1 42098 aks6d1c2lem4 42109 aks6d1c5lem0 42117 aks6d1c5lem3 42119 aks6d1c5 42121 aks6d1c6lem1 42152 aks5lem2 42169 aks5lem3a 42171 aks5lem5a 42173 hbtlem4 43115 ply1vr1smo 48228 ply1mulgsumlem4 48235 ply1mulgsum 48236 linply1 48239 |
Copyright terms: Public domain | W3C validator |