Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > vr1cl | Structured version Visualization version GIF version |
Description: The generator of a univariate polynomial algebra is contained in the base set. (Contributed by Stefan O'Rear, 19-Mar-2015.) |
Ref | Expression |
---|---|
vr1cl.x | ⊢ 𝑋 = (var1‘𝑅) |
vr1cl.p | ⊢ 𝑃 = (Poly1‘𝑅) |
vr1cl.b | ⊢ 𝐵 = (Base‘𝑃) |
Ref | Expression |
---|---|
vr1cl | ⊢ (𝑅 ∈ Ring → 𝑋 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vr1cl.x | . . 3 ⊢ 𝑋 = (var1‘𝑅) | |
2 | 1 | vr1val 21372 | . 2 ⊢ 𝑋 = ((1o mVar 𝑅)‘∅) |
3 | eqid 2739 | . . 3 ⊢ (1o mPoly 𝑅) = (1o mPoly 𝑅) | |
4 | eqid 2739 | . . 3 ⊢ (1o mVar 𝑅) = (1o mVar 𝑅) | |
5 | vr1cl.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
6 | eqid 2739 | . . . 4 ⊢ (PwSer1‘𝑅) = (PwSer1‘𝑅) | |
7 | vr1cl.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
8 | 5, 6, 7 | ply1bas 21375 | . . 3 ⊢ 𝐵 = (Base‘(1o mPoly 𝑅)) |
9 | 1onn 8479 | . . . 4 ⊢ 1o ∈ ω | |
10 | 9 | a1i 11 | . . 3 ⊢ (𝑅 ∈ Ring → 1o ∈ ω) |
11 | id 22 | . . 3 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Ring) | |
12 | 0lt1o 8343 | . . . 4 ⊢ ∅ ∈ 1o | |
13 | 12 | a1i 11 | . . 3 ⊢ (𝑅 ∈ Ring → ∅ ∈ 1o) |
14 | 3, 4, 8, 10, 11, 13 | mvrcl 21230 | . 2 ⊢ (𝑅 ∈ Ring → ((1o mVar 𝑅)‘∅) ∈ 𝐵) |
15 | 2, 14 | eqeltrid 2844 | 1 ⊢ (𝑅 ∈ Ring → 𝑋 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ∅c0 4257 ‘cfv 6437 (class class class)co 7284 ωcom 7721 1oc1o 8299 Basecbs 16921 Ringcrg 19792 mVar cmvr 21117 mPoly cmpl 21118 PwSer1cps1 21355 var1cv1 21356 Poly1cpl1 21357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-rep 5210 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 ax-cnex 10936 ax-resscn 10937 ax-1cn 10938 ax-icn 10939 ax-addcl 10940 ax-addrcl 10941 ax-mulcl 10942 ax-mulrcl 10943 ax-mulcom 10944 ax-addass 10945 ax-mulass 10946 ax-distr 10947 ax-i2m1 10948 ax-1ne0 10949 ax-1rid 10950 ax-rnegex 10951 ax-rrecex 10952 ax-cnre 10953 ax-pre-lttri 10954 ax-pre-lttrn 10955 ax-pre-ltadd 10956 ax-pre-mulgt0 10957 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-rmo 3072 df-reu 3073 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-tp 4567 df-op 4569 df-uni 4841 df-iun 4927 df-br 5076 df-opab 5138 df-mpt 5159 df-tr 5193 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-riota 7241 df-ov 7287 df-oprab 7288 df-mpo 7289 df-of 7542 df-om 7722 df-1st 7840 df-2nd 7841 df-supp 7987 df-frecs 8106 df-wrecs 8137 df-recs 8211 df-rdg 8250 df-1o 8306 df-er 8507 df-map 8626 df-en 8743 df-dom 8744 df-sdom 8745 df-fin 8746 df-fsupp 9138 df-pnf 11020 df-mnf 11021 df-xr 11022 df-ltxr 11023 df-le 11024 df-sub 11216 df-neg 11217 df-nn 11983 df-2 12045 df-3 12046 df-4 12047 df-5 12048 df-6 12049 df-7 12050 df-8 12051 df-9 12052 df-n0 12243 df-z 12329 df-dec 12447 df-uz 12592 df-fz 13249 df-struct 16857 df-sets 16874 df-slot 16892 df-ndx 16904 df-base 16922 df-ress 16951 df-plusg 16984 df-mulr 16985 df-sca 16987 df-vsca 16988 df-tset 16990 df-ple 16991 df-0g 17161 df-mgm 18335 df-sgrp 18384 df-mnd 18395 df-grp 18589 df-mgp 19730 df-ur 19747 df-ring 19794 df-psr 21121 df-mvr 21122 df-mpl 21123 df-opsr 21125 df-psr1 21360 df-vr1 21361 df-ply1 21362 |
This theorem is referenced by: ply1moncl 21451 coe1pwmul 21459 ply1scltm 21461 ply1coefsupp 21475 ply1coe 21476 gsummoncoe1 21484 lply1binom 21486 evls1varpw 21502 evl1var 21511 evl1vard 21512 evls1var 21513 pf1id 21522 evl1scvarpw 21538 evl1scvarpwval 21539 evl1gsummon 21540 pmatcollpwscmatlem1 21947 mply1topmatcllem 21961 mply1topmatcl 21963 pm2mpghm 21974 monmat2matmon 21982 pm2mp 21983 chmatcl 21986 chmatval 21987 chpmat0d 21992 chpmat1dlem 21993 chpmat1d 21994 chpdmatlem0 21995 chpdmatlem2 21997 chpdmatlem3 21998 chpscmat 22000 chpscmatgsumbin 22002 chpscmatgsummon 22003 chp0mat 22004 chpidmat 22005 chfacfscmulcl 22015 chfacfscmul0 22016 chfacfscmulgsum 22018 cpmadugsumlemB 22032 cpmadugsumlemC 22033 cpmadugsumlemF 22034 cpmadugsumfi 22035 cpmidgsum2 22037 deg1pw 25294 ply1remlem 25336 fta1blem 25342 plypf1 25382 lgsqrlem2 26504 lgsqrlem3 26505 lgsqrlem4 26506 ply1fermltl 31679 hbtlem4 40958 idomrootle 41027 ply1vr1smo 45733 ply1mulgsumlem4 45741 ply1mulgsum 45742 linply1 45745 |
Copyright terms: Public domain | W3C validator |