![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > evls1var | Structured version Visualization version GIF version |
Description: Univariate polynomial evaluation for subrings maps the variable to the identity function. (Contributed by AV, 13-Sep-2019.) |
Ref | Expression |
---|---|
evls1var.q | ⊢ 𝑄 = (𝑆 evalSub1 𝑅) |
evls1var.x | ⊢ 𝑋 = (var1‘𝑈) |
evls1var.u | ⊢ 𝑈 = (𝑆 ↾s 𝑅) |
evls1var.b | ⊢ 𝐵 = (Base‘𝑆) |
evls1var.s | ⊢ (𝜑 → 𝑆 ∈ CRing) |
evls1var.r | ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) |
Ref | Expression |
---|---|
evls1var | ⊢ (𝜑 → (𝑄‘𝑋) = ( I ↾ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evls1var.x | . . . 4 ⊢ 𝑋 = (var1‘𝑈) | |
2 | eqid 2735 | . . . . 5 ⊢ (var1‘𝑆) = (var1‘𝑆) | |
3 | evls1var.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) | |
4 | evls1var.u | . . . . 5 ⊢ 𝑈 = (𝑆 ↾s 𝑅) | |
5 | 2, 3, 4 | subrgvr1 22280 | . . . 4 ⊢ (𝜑 → (var1‘𝑆) = (var1‘𝑈)) |
6 | 1, 5 | eqtr4id 2794 | . . 3 ⊢ (𝜑 → 𝑋 = (var1‘𝑆)) |
7 | 6 | fveq2d 6911 | . 2 ⊢ (𝜑 → (𝑄‘𝑋) = (𝑄‘(var1‘𝑆))) |
8 | eqid 2735 | . . . . . 6 ⊢ ((1o evalSub 𝑆)‘𝑅) = ((1o evalSub 𝑆)‘𝑅) | |
9 | eqid 2735 | . . . . . 6 ⊢ (1o eval 𝑆) = (1o eval 𝑆) | |
10 | eqid 2735 | . . . . . 6 ⊢ (1o mVar 𝑈) = (1o mVar 𝑈) | |
11 | evls1var.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑆) | |
12 | 1on 8517 | . . . . . . 7 ⊢ 1o ∈ On | |
13 | 12 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 1o ∈ On) |
14 | evls1var.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ CRing) | |
15 | 0lt1o 8541 | . . . . . . 7 ⊢ ∅ ∈ 1o | |
16 | 15 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ∅ ∈ 1o) |
17 | 8, 9, 10, 4, 11, 13, 14, 3, 16 | evlsvarsrng 22141 | . . . . 5 ⊢ (𝜑 → (((1o evalSub 𝑆)‘𝑅)‘((1o mVar 𝑈)‘∅)) = ((1o eval 𝑆)‘((1o mVar 𝑈)‘∅))) |
18 | 2 | vr1val 22209 | . . . . . . 7 ⊢ (var1‘𝑆) = ((1o mVar 𝑆)‘∅) |
19 | eqid 2735 | . . . . . . . . 9 ⊢ (1o mVar 𝑆) = (1o mVar 𝑆) | |
20 | 19, 13, 3, 4 | subrgmvr 22069 | . . . . . . . 8 ⊢ (𝜑 → (1o mVar 𝑆) = (1o mVar 𝑈)) |
21 | 20 | fveq1d 6909 | . . . . . . 7 ⊢ (𝜑 → ((1o mVar 𝑆)‘∅) = ((1o mVar 𝑈)‘∅)) |
22 | 18, 21 | eqtrid 2787 | . . . . . 6 ⊢ (𝜑 → (var1‘𝑆) = ((1o mVar 𝑈)‘∅)) |
23 | 22 | fveq2d 6911 | . . . . 5 ⊢ (𝜑 → (((1o evalSub 𝑆)‘𝑅)‘(var1‘𝑆)) = (((1o evalSub 𝑆)‘𝑅)‘((1o mVar 𝑈)‘∅))) |
24 | 22 | fveq2d 6911 | . . . . 5 ⊢ (𝜑 → ((1o eval 𝑆)‘(var1‘𝑆)) = ((1o eval 𝑆)‘((1o mVar 𝑈)‘∅))) |
25 | 17, 23, 24 | 3eqtr4d 2785 | . . . 4 ⊢ (𝜑 → (((1o evalSub 𝑆)‘𝑅)‘(var1‘𝑆)) = ((1o eval 𝑆)‘(var1‘𝑆))) |
26 | 25 | coeq1d 5875 | . . 3 ⊢ (𝜑 → ((((1o evalSub 𝑆)‘𝑅)‘(var1‘𝑆)) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))) = (((1o eval 𝑆)‘(var1‘𝑆)) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) |
27 | eqid 2735 | . . . . 5 ⊢ (Poly1‘𝑈) = (Poly1‘𝑈) | |
28 | eqid 2735 | . . . . . . 7 ⊢ (Poly1‘(𝑆 ↾s 𝑅)) = (Poly1‘(𝑆 ↾s 𝑅)) | |
29 | 4 | fveq2i 6910 | . . . . . . . 8 ⊢ (Poly1‘𝑈) = (Poly1‘(𝑆 ↾s 𝑅)) |
30 | 29 | fveq2i 6910 | . . . . . . 7 ⊢ (Base‘(Poly1‘𝑈)) = (Base‘(Poly1‘(𝑆 ↾s 𝑅))) |
31 | 28, 30 | ply1bas 22212 | . . . . . 6 ⊢ (Base‘(Poly1‘𝑈)) = (Base‘(1o mPoly (𝑆 ↾s 𝑅))) |
32 | 31 | eqcomi 2744 | . . . . 5 ⊢ (Base‘(1o mPoly (𝑆 ↾s 𝑅))) = (Base‘(Poly1‘𝑈)) |
33 | 2, 3, 4, 27, 32 | subrgvr1cl 22281 | . . . 4 ⊢ (𝜑 → (var1‘𝑆) ∈ (Base‘(1o mPoly (𝑆 ↾s 𝑅)))) |
34 | evls1var.q | . . . . 5 ⊢ 𝑄 = (𝑆 evalSub1 𝑅) | |
35 | eqid 2735 | . . . . 5 ⊢ (1o evalSub 𝑆) = (1o evalSub 𝑆) | |
36 | eqid 2735 | . . . . 5 ⊢ (1o mPoly (𝑆 ↾s 𝑅)) = (1o mPoly (𝑆 ↾s 𝑅)) | |
37 | eqid 2735 | . . . . 5 ⊢ (Base‘(1o mPoly (𝑆 ↾s 𝑅))) = (Base‘(1o mPoly (𝑆 ↾s 𝑅))) | |
38 | 34, 35, 11, 36, 37 | evls1val 22340 | . . . 4 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ (var1‘𝑆) ∈ (Base‘(1o mPoly (𝑆 ↾s 𝑅)))) → (𝑄‘(var1‘𝑆)) = ((((1o evalSub 𝑆)‘𝑅)‘(var1‘𝑆)) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) |
39 | 14, 3, 33, 38 | syl3anc 1370 | . . 3 ⊢ (𝜑 → (𝑄‘(var1‘𝑆)) = ((((1o evalSub 𝑆)‘𝑅)‘(var1‘𝑆)) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) |
40 | crngring 20263 | . . . . 5 ⊢ (𝑆 ∈ CRing → 𝑆 ∈ Ring) | |
41 | eqid 2735 | . . . . . 6 ⊢ (Poly1‘𝑆) = (Poly1‘𝑆) | |
42 | eqid 2735 | . . . . . . . 8 ⊢ (Base‘(Poly1‘𝑆)) = (Base‘(Poly1‘𝑆)) | |
43 | 41, 42 | ply1bas 22212 | . . . . . . 7 ⊢ (Base‘(Poly1‘𝑆)) = (Base‘(1o mPoly 𝑆)) |
44 | 43 | eqcomi 2744 | . . . . . 6 ⊢ (Base‘(1o mPoly 𝑆)) = (Base‘(Poly1‘𝑆)) |
45 | 2, 41, 44 | vr1cl 22235 | . . . . 5 ⊢ (𝑆 ∈ Ring → (var1‘𝑆) ∈ (Base‘(1o mPoly 𝑆))) |
46 | 14, 40, 45 | 3syl 18 | . . . 4 ⊢ (𝜑 → (var1‘𝑆) ∈ (Base‘(1o mPoly 𝑆))) |
47 | eqid 2735 | . . . . 5 ⊢ (eval1‘𝑆) = (eval1‘𝑆) | |
48 | eqid 2735 | . . . . 5 ⊢ (1o mPoly 𝑆) = (1o mPoly 𝑆) | |
49 | eqid 2735 | . . . . 5 ⊢ (Base‘(1o mPoly 𝑆)) = (Base‘(1o mPoly 𝑆)) | |
50 | 47, 9, 11, 48, 49 | evl1val 22349 | . . . 4 ⊢ ((𝑆 ∈ CRing ∧ (var1‘𝑆) ∈ (Base‘(1o mPoly 𝑆))) → ((eval1‘𝑆)‘(var1‘𝑆)) = (((1o eval 𝑆)‘(var1‘𝑆)) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) |
51 | 14, 46, 50 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((eval1‘𝑆)‘(var1‘𝑆)) = (((1o eval 𝑆)‘(var1‘𝑆)) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) |
52 | 26, 39, 51 | 3eqtr4d 2785 | . 2 ⊢ (𝜑 → (𝑄‘(var1‘𝑆)) = ((eval1‘𝑆)‘(var1‘𝑆))) |
53 | 47, 2, 11 | evl1var 22356 | . . 3 ⊢ (𝑆 ∈ CRing → ((eval1‘𝑆)‘(var1‘𝑆)) = ( I ↾ 𝐵)) |
54 | 14, 53 | syl 17 | . 2 ⊢ (𝜑 → ((eval1‘𝑆)‘(var1‘𝑆)) = ( I ↾ 𝐵)) |
55 | 7, 52, 54 | 3eqtrd 2779 | 1 ⊢ (𝜑 → (𝑄‘𝑋) = ( I ↾ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 ∅c0 4339 {csn 4631 ↦ cmpt 5231 I cid 5582 × cxp 5687 ↾ cres 5691 ∘ ccom 5693 Oncon0 6386 ‘cfv 6563 (class class class)co 7431 1oc1o 8498 Basecbs 17245 ↾s cress 17274 Ringcrg 20251 CRingccrg 20252 SubRingcsubrg 20586 mVar cmvr 21943 mPoly cmpl 21944 evalSub ces 22114 eval cevl 22115 var1cv1 22193 Poly1cpl1 22194 evalSub1 ces1 22333 eval1ce1 22334 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-ofr 7698 df-om 7888 df-1st 8013 df-2nd 8014 df-supp 8185 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-er 8744 df-map 8867 df-pm 8868 df-ixp 8937 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fsupp 9400 df-sup 9480 df-oi 9548 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-fz 13545 df-fzo 13692 df-seq 14040 df-hash 14367 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-hom 17322 df-cco 17323 df-0g 17488 df-gsum 17489 df-prds 17494 df-pws 17496 df-mre 17631 df-mrc 17632 df-acs 17634 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-mhm 18809 df-submnd 18810 df-grp 18967 df-minusg 18968 df-sbg 18969 df-mulg 19099 df-subg 19154 df-ghm 19244 df-cntz 19348 df-cmn 19815 df-abl 19816 df-mgp 20153 df-rng 20171 df-ur 20200 df-srg 20205 df-ring 20253 df-cring 20254 df-rhm 20489 df-subrng 20563 df-subrg 20587 df-lmod 20877 df-lss 20948 df-lsp 20988 df-assa 21891 df-asp 21892 df-ascl 21893 df-psr 21947 df-mvr 21948 df-mpl 21949 df-opsr 21951 df-evls 22116 df-evl 22117 df-psr1 22197 df-vr1 22198 df-ply1 22199 df-evls1 22335 df-evl1 22336 |
This theorem is referenced by: evls1varsrng 22360 evls1varpwval 22388 algextdeglem4 33726 2sqr3minply 33753 |
Copyright terms: Public domain | W3C validator |