Step | Hyp | Ref
| Expression |
1 | | evls1var.x |
. . . 4
β’ π = (var1βπ) |
2 | | eqid 2725 |
. . . . 5
β’
(var1βπ) = (var1βπ) |
3 | | evls1var.r |
. . . . 5
β’ (π β π
β (SubRingβπ)) |
4 | | evls1var.u |
. . . . 5
β’ π = (π βΎs π
) |
5 | 2, 3, 4 | subrgvr1 22187 |
. . . 4
β’ (π β
(var1βπ) =
(var1βπ)) |
6 | 1, 5 | eqtr4id 2784 |
. . 3
β’ (π β π = (var1βπ)) |
7 | 6 | fveq2d 6894 |
. 2
β’ (π β (πβπ) = (πβ(var1βπ))) |
8 | | eqid 2725 |
. . . . . 6
β’
((1o evalSub π)βπ
) = ((1o evalSub π)βπ
) |
9 | | eqid 2725 |
. . . . . 6
β’
(1o eval π) = (1o eval π) |
10 | | eqid 2725 |
. . . . . 6
β’
(1o mVar π) = (1o mVar π) |
11 | | evls1var.b |
. . . . . 6
β’ π΅ = (Baseβπ) |
12 | | 1on 8495 |
. . . . . . 7
β’
1o β On |
13 | 12 | a1i 11 |
. . . . . 6
β’ (π β 1o β
On) |
14 | | evls1var.s |
. . . . . 6
β’ (π β π β CRing) |
15 | | 0lt1o 8521 |
. . . . . . 7
β’ β
β 1o |
16 | 15 | a1i 11 |
. . . . . 6
β’ (π β β
β
1o) |
17 | 8, 9, 10, 4, 11, 13, 14, 3, 16 | evlsvarsrng 22050 |
. . . . 5
β’ (π β (((1o evalSub
π)βπ
)β((1o mVar π)ββ
)) =
((1o eval π)β((1o mVar π)ββ
))) |
18 | 2 | vr1val 22117 |
. . . . . . 7
β’
(var1βπ) = ((1o mVar π)ββ
) |
19 | | eqid 2725 |
. . . . . . . . 9
β’
(1o mVar π) = (1o mVar π) |
20 | 19, 13, 3, 4 | subrgmvr 21976 |
. . . . . . . 8
β’ (π β (1o mVar π) = (1o mVar π)) |
21 | 20 | fveq1d 6892 |
. . . . . . 7
β’ (π β ((1o mVar π)ββ
) =
((1o mVar π)ββ
)) |
22 | 18, 21 | eqtrid 2777 |
. . . . . 6
β’ (π β
(var1βπ) =
((1o mVar π)ββ
)) |
23 | 22 | fveq2d 6894 |
. . . . 5
β’ (π β (((1o evalSub
π)βπ
)β(var1βπ)) = (((1o evalSub
π)βπ
)β((1o mVar π)ββ
))) |
24 | 22 | fveq2d 6894 |
. . . . 5
β’ (π β ((1o eval π)β(var1βπ)) = ((1o eval π)β((1o mVar
π)ββ
))) |
25 | 17, 23, 24 | 3eqtr4d 2775 |
. . . 4
β’ (π β (((1o evalSub
π)βπ
)β(var1βπ)) = ((1o eval π)β(var1βπ))) |
26 | 25 | coeq1d 5856 |
. . 3
β’ (π β ((((1o evalSub
π)βπ
)β(var1βπ)) β (π¦ β π΅ β¦ (1o Γ {π¦}))) = (((1o eval
π)β(var1βπ)) β (π¦ β π΅ β¦ (1o Γ {π¦})))) |
27 | | eqid 2725 |
. . . . 5
β’
(Poly1βπ) = (Poly1βπ) |
28 | | eqid 2725 |
. . . . . . 7
β’
(Poly1β(π βΎs π
)) = (Poly1β(π βΎs π
)) |
29 | 4 | fveq2i 6893 |
. . . . . . . 8
β’
(Poly1βπ) = (Poly1β(π βΎs π
)) |
30 | 29 | fveq2i 6893 |
. . . . . . 7
β’
(Baseβ(Poly1βπ)) =
(Baseβ(Poly1β(π βΎs π
))) |
31 | 28, 30 | ply1bas 22120 |
. . . . . 6
β’
(Baseβ(Poly1βπ)) = (Baseβ(1o mPoly (π βΎs π
))) |
32 | 31 | eqcomi 2734 |
. . . . 5
β’
(Baseβ(1o mPoly (π βΎs π
))) =
(Baseβ(Poly1βπ)) |
33 | 2, 3, 4, 27, 32 | subrgvr1cl 22188 |
. . . 4
β’ (π β
(var1βπ)
β (Baseβ(1o mPoly (π βΎs π
)))) |
34 | | evls1var.q |
. . . . 5
β’ π = (π evalSub1 π
) |
35 | | eqid 2725 |
. . . . 5
β’
(1o evalSub π) = (1o evalSub π) |
36 | | eqid 2725 |
. . . . 5
β’
(1o mPoly (π βΎs π
)) = (1o mPoly (π βΎs π
)) |
37 | | eqid 2725 |
. . . . 5
β’
(Baseβ(1o mPoly (π βΎs π
))) = (Baseβ(1o mPoly
(π βΎs
π
))) |
38 | 34, 35, 11, 36, 37 | evls1val 22246 |
. . . 4
β’ ((π β CRing β§ π
β (SubRingβπ) β§
(var1βπ)
β (Baseβ(1o mPoly (π βΎs π
)))) β (πβ(var1βπ)) = ((((1o evalSub
π)βπ
)β(var1βπ)) β (π¦ β π΅ β¦ (1o Γ {π¦})))) |
39 | 14, 3, 33, 38 | syl3anc 1368 |
. . 3
β’ (π β (πβ(var1βπ)) = ((((1o evalSub
π)βπ
)β(var1βπ)) β (π¦ β π΅ β¦ (1o Γ {π¦})))) |
40 | | crngring 20187 |
. . . . 5
β’ (π β CRing β π β Ring) |
41 | | eqid 2725 |
. . . . . 6
β’
(Poly1βπ) = (Poly1βπ) |
42 | | eqid 2725 |
. . . . . . . 8
β’
(Baseβ(Poly1βπ)) =
(Baseβ(Poly1βπ)) |
43 | 41, 42 | ply1bas 22120 |
. . . . . . 7
β’
(Baseβ(Poly1βπ)) = (Baseβ(1o mPoly π)) |
44 | 43 | eqcomi 2734 |
. . . . . 6
β’
(Baseβ(1o mPoly π)) =
(Baseβ(Poly1βπ)) |
45 | 2, 41, 44 | vr1cl 22143 |
. . . . 5
β’ (π β Ring β
(var1βπ)
β (Baseβ(1o mPoly π))) |
46 | 14, 40, 45 | 3syl 18 |
. . . 4
β’ (π β
(var1βπ)
β (Baseβ(1o mPoly π))) |
47 | | eqid 2725 |
. . . . 5
β’
(eval1βπ) = (eval1βπ) |
48 | | eqid 2725 |
. . . . 5
β’
(1o mPoly π) = (1o mPoly π) |
49 | | eqid 2725 |
. . . . 5
β’
(Baseβ(1o mPoly π)) = (Baseβ(1o mPoly π)) |
50 | 47, 9, 11, 48, 49 | evl1val 22255 |
. . . 4
β’ ((π β CRing β§
(var1βπ)
β (Baseβ(1o mPoly π))) β ((eval1βπ)β(var1βπ)) = (((1o eval π)β(var1βπ)) β (π¦ β π΅ β¦ (1o Γ {π¦})))) |
51 | 14, 46, 50 | syl2anc 582 |
. . 3
β’ (π β
((eval1βπ)β(var1βπ)) = (((1o eval π)β(var1βπ)) β (π¦ β π΅ β¦ (1o Γ {π¦})))) |
52 | 26, 39, 51 | 3eqtr4d 2775 |
. 2
β’ (π β (πβ(var1βπ)) =
((eval1βπ)β(var1βπ))) |
53 | 47, 2, 11 | evl1var 22262 |
. . 3
β’ (π β CRing β
((eval1βπ)β(var1βπ)) = ( I βΎ π΅)) |
54 | 14, 53 | syl 17 |
. 2
β’ (π β
((eval1βπ)β(var1βπ)) = ( I βΎ π΅)) |
55 | 7, 52, 54 | 3eqtrd 2769 |
1
β’ (π β (πβπ) = ( I βΎ π΅)) |