| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > evls1var | Structured version Visualization version GIF version | ||
| Description: Univariate polynomial evaluation for subrings maps the variable to the identity function. (Contributed by AV, 13-Sep-2019.) |
| Ref | Expression |
|---|---|
| evls1var.q | ⊢ 𝑄 = (𝑆 evalSub1 𝑅) |
| evls1var.x | ⊢ 𝑋 = (var1‘𝑈) |
| evls1var.u | ⊢ 𝑈 = (𝑆 ↾s 𝑅) |
| evls1var.b | ⊢ 𝐵 = (Base‘𝑆) |
| evls1var.s | ⊢ (𝜑 → 𝑆 ∈ CRing) |
| evls1var.r | ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) |
| Ref | Expression |
|---|---|
| evls1var | ⊢ (𝜑 → (𝑄‘𝑋) = ( I ↾ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evls1var.x | . . . 4 ⊢ 𝑋 = (var1‘𝑈) | |
| 2 | eqid 2731 | . . . . 5 ⊢ (var1‘𝑆) = (var1‘𝑆) | |
| 3 | evls1var.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) | |
| 4 | evls1var.u | . . . . 5 ⊢ 𝑈 = (𝑆 ↾s 𝑅) | |
| 5 | 2, 3, 4 | subrgvr1 22176 | . . . 4 ⊢ (𝜑 → (var1‘𝑆) = (var1‘𝑈)) |
| 6 | 1, 5 | eqtr4id 2785 | . . 3 ⊢ (𝜑 → 𝑋 = (var1‘𝑆)) |
| 7 | 6 | fveq2d 6826 | . 2 ⊢ (𝜑 → (𝑄‘𝑋) = (𝑄‘(var1‘𝑆))) |
| 8 | eqid 2731 | . . . . . 6 ⊢ ((1o evalSub 𝑆)‘𝑅) = ((1o evalSub 𝑆)‘𝑅) | |
| 9 | eqid 2731 | . . . . . 6 ⊢ (1o eval 𝑆) = (1o eval 𝑆) | |
| 10 | eqid 2731 | . . . . . 6 ⊢ (1o mVar 𝑈) = (1o mVar 𝑈) | |
| 11 | evls1var.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑆) | |
| 12 | 1on 8397 | . . . . . . 7 ⊢ 1o ∈ On | |
| 13 | 12 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 1o ∈ On) |
| 14 | evls1var.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ CRing) | |
| 15 | 0lt1o 8419 | . . . . . . 7 ⊢ ∅ ∈ 1o | |
| 16 | 15 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ∅ ∈ 1o) |
| 17 | 8, 9, 10, 4, 11, 13, 14, 3, 16 | evlsvarsrng 22035 | . . . . 5 ⊢ (𝜑 → (((1o evalSub 𝑆)‘𝑅)‘((1o mVar 𝑈)‘∅)) = ((1o eval 𝑆)‘((1o mVar 𝑈)‘∅))) |
| 18 | 2 | vr1val 22105 | . . . . . . 7 ⊢ (var1‘𝑆) = ((1o mVar 𝑆)‘∅) |
| 19 | eqid 2731 | . . . . . . . . 9 ⊢ (1o mVar 𝑆) = (1o mVar 𝑆) | |
| 20 | 19, 13, 3, 4 | subrgmvr 21969 | . . . . . . . 8 ⊢ (𝜑 → (1o mVar 𝑆) = (1o mVar 𝑈)) |
| 21 | 20 | fveq1d 6824 | . . . . . . 7 ⊢ (𝜑 → ((1o mVar 𝑆)‘∅) = ((1o mVar 𝑈)‘∅)) |
| 22 | 18, 21 | eqtrid 2778 | . . . . . 6 ⊢ (𝜑 → (var1‘𝑆) = ((1o mVar 𝑈)‘∅)) |
| 23 | 22 | fveq2d 6826 | . . . . 5 ⊢ (𝜑 → (((1o evalSub 𝑆)‘𝑅)‘(var1‘𝑆)) = (((1o evalSub 𝑆)‘𝑅)‘((1o mVar 𝑈)‘∅))) |
| 24 | 22 | fveq2d 6826 | . . . . 5 ⊢ (𝜑 → ((1o eval 𝑆)‘(var1‘𝑆)) = ((1o eval 𝑆)‘((1o mVar 𝑈)‘∅))) |
| 25 | 17, 23, 24 | 3eqtr4d 2776 | . . . 4 ⊢ (𝜑 → (((1o evalSub 𝑆)‘𝑅)‘(var1‘𝑆)) = ((1o eval 𝑆)‘(var1‘𝑆))) |
| 26 | 25 | coeq1d 5801 | . . 3 ⊢ (𝜑 → ((((1o evalSub 𝑆)‘𝑅)‘(var1‘𝑆)) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))) = (((1o eval 𝑆)‘(var1‘𝑆)) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) |
| 27 | eqid 2731 | . . . . 5 ⊢ (Poly1‘𝑈) = (Poly1‘𝑈) | |
| 28 | eqid 2731 | . . . . . . 7 ⊢ (Poly1‘(𝑆 ↾s 𝑅)) = (Poly1‘(𝑆 ↾s 𝑅)) | |
| 29 | 4 | fveq2i 6825 | . . . . . . . 8 ⊢ (Poly1‘𝑈) = (Poly1‘(𝑆 ↾s 𝑅)) |
| 30 | 29 | fveq2i 6825 | . . . . . . 7 ⊢ (Base‘(Poly1‘𝑈)) = (Base‘(Poly1‘(𝑆 ↾s 𝑅))) |
| 31 | 28, 30 | ply1bas 22108 | . . . . . 6 ⊢ (Base‘(Poly1‘𝑈)) = (Base‘(1o mPoly (𝑆 ↾s 𝑅))) |
| 32 | 31 | eqcomi 2740 | . . . . 5 ⊢ (Base‘(1o mPoly (𝑆 ↾s 𝑅))) = (Base‘(Poly1‘𝑈)) |
| 33 | 2, 3, 4, 27, 32 | subrgvr1cl 22177 | . . . 4 ⊢ (𝜑 → (var1‘𝑆) ∈ (Base‘(1o mPoly (𝑆 ↾s 𝑅)))) |
| 34 | evls1var.q | . . . . 5 ⊢ 𝑄 = (𝑆 evalSub1 𝑅) | |
| 35 | eqid 2731 | . . . . 5 ⊢ (1o evalSub 𝑆) = (1o evalSub 𝑆) | |
| 36 | eqid 2731 | . . . . 5 ⊢ (1o mPoly (𝑆 ↾s 𝑅)) = (1o mPoly (𝑆 ↾s 𝑅)) | |
| 37 | eqid 2731 | . . . . 5 ⊢ (Base‘(1o mPoly (𝑆 ↾s 𝑅))) = (Base‘(1o mPoly (𝑆 ↾s 𝑅))) | |
| 38 | 34, 35, 11, 36, 37 | evls1val 22236 | . . . 4 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ (var1‘𝑆) ∈ (Base‘(1o mPoly (𝑆 ↾s 𝑅)))) → (𝑄‘(var1‘𝑆)) = ((((1o evalSub 𝑆)‘𝑅)‘(var1‘𝑆)) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) |
| 39 | 14, 3, 33, 38 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝑄‘(var1‘𝑆)) = ((((1o evalSub 𝑆)‘𝑅)‘(var1‘𝑆)) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) |
| 40 | crngring 20164 | . . . . 5 ⊢ (𝑆 ∈ CRing → 𝑆 ∈ Ring) | |
| 41 | eqid 2731 | . . . . . 6 ⊢ (Poly1‘𝑆) = (Poly1‘𝑆) | |
| 42 | eqid 2731 | . . . . . . . 8 ⊢ (Base‘(Poly1‘𝑆)) = (Base‘(Poly1‘𝑆)) | |
| 43 | 41, 42 | ply1bas 22108 | . . . . . . 7 ⊢ (Base‘(Poly1‘𝑆)) = (Base‘(1o mPoly 𝑆)) |
| 44 | 43 | eqcomi 2740 | . . . . . 6 ⊢ (Base‘(1o mPoly 𝑆)) = (Base‘(Poly1‘𝑆)) |
| 45 | 2, 41, 44 | vr1cl 22131 | . . . . 5 ⊢ (𝑆 ∈ Ring → (var1‘𝑆) ∈ (Base‘(1o mPoly 𝑆))) |
| 46 | 14, 40, 45 | 3syl 18 | . . . 4 ⊢ (𝜑 → (var1‘𝑆) ∈ (Base‘(1o mPoly 𝑆))) |
| 47 | eqid 2731 | . . . . 5 ⊢ (eval1‘𝑆) = (eval1‘𝑆) | |
| 48 | eqid 2731 | . . . . 5 ⊢ (1o mPoly 𝑆) = (1o mPoly 𝑆) | |
| 49 | eqid 2731 | . . . . 5 ⊢ (Base‘(1o mPoly 𝑆)) = (Base‘(1o mPoly 𝑆)) | |
| 50 | 47, 9, 11, 48, 49 | evl1val 22245 | . . . 4 ⊢ ((𝑆 ∈ CRing ∧ (var1‘𝑆) ∈ (Base‘(1o mPoly 𝑆))) → ((eval1‘𝑆)‘(var1‘𝑆)) = (((1o eval 𝑆)‘(var1‘𝑆)) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) |
| 51 | 14, 46, 50 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((eval1‘𝑆)‘(var1‘𝑆)) = (((1o eval 𝑆)‘(var1‘𝑆)) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) |
| 52 | 26, 39, 51 | 3eqtr4d 2776 | . 2 ⊢ (𝜑 → (𝑄‘(var1‘𝑆)) = ((eval1‘𝑆)‘(var1‘𝑆))) |
| 53 | 47, 2, 11 | evl1var 22252 | . . 3 ⊢ (𝑆 ∈ CRing → ((eval1‘𝑆)‘(var1‘𝑆)) = ( I ↾ 𝐵)) |
| 54 | 14, 53 | syl 17 | . 2 ⊢ (𝜑 → ((eval1‘𝑆)‘(var1‘𝑆)) = ( I ↾ 𝐵)) |
| 55 | 7, 52, 54 | 3eqtrd 2770 | 1 ⊢ (𝜑 → (𝑄‘𝑋) = ( I ↾ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∅c0 4283 {csn 4576 ↦ cmpt 5172 I cid 5510 × cxp 5614 ↾ cres 5618 ∘ ccom 5620 Oncon0 6306 ‘cfv 6481 (class class class)co 7346 1oc1o 8378 Basecbs 17120 ↾s cress 17141 Ringcrg 20152 CRingccrg 20153 SubRingcsubrg 20485 mVar cmvr 21843 mPoly cmpl 21844 evalSub ces 22008 eval cevl 22009 var1cv1 22089 Poly1cpl1 22090 evalSub1 ces1 22229 eval1ce1 22230 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-ofr 7611 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-sup 9326 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-fz 13408 df-fzo 13555 df-seq 13909 df-hash 14238 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-hom 17185 df-cco 17186 df-0g 17345 df-gsum 17346 df-prds 17351 df-pws 17353 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-mhm 18691 df-submnd 18692 df-grp 18849 df-minusg 18850 df-sbg 18851 df-mulg 18981 df-subg 19036 df-ghm 19126 df-cntz 19230 df-cmn 19695 df-abl 19696 df-mgp 20060 df-rng 20072 df-ur 20101 df-srg 20106 df-ring 20154 df-cring 20155 df-rhm 20391 df-subrng 20462 df-subrg 20486 df-lmod 20796 df-lss 20866 df-lsp 20906 df-assa 21791 df-asp 21792 df-ascl 21793 df-psr 21847 df-mvr 21848 df-mpl 21849 df-opsr 21851 df-evls 22010 df-evl 22011 df-psr1 22093 df-vr1 22094 df-ply1 22095 df-evls1 22231 df-evl1 22232 |
| This theorem is referenced by: evls1varsrng 22256 evls1varpwval 22284 vr1nz 33552 algextdeglem4 33731 2sqr3minply 33791 cos9thpiminplylem6 33798 |
| Copyright terms: Public domain | W3C validator |