| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > evls1var | Structured version Visualization version GIF version | ||
| Description: Univariate polynomial evaluation for subrings maps the variable to the identity function. (Contributed by AV, 13-Sep-2019.) |
| Ref | Expression |
|---|---|
| evls1var.q | ⊢ 𝑄 = (𝑆 evalSub1 𝑅) |
| evls1var.x | ⊢ 𝑋 = (var1‘𝑈) |
| evls1var.u | ⊢ 𝑈 = (𝑆 ↾s 𝑅) |
| evls1var.b | ⊢ 𝐵 = (Base‘𝑆) |
| evls1var.s | ⊢ (𝜑 → 𝑆 ∈ CRing) |
| evls1var.r | ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) |
| Ref | Expression |
|---|---|
| evls1var | ⊢ (𝜑 → (𝑄‘𝑋) = ( I ↾ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evls1var.x | . . . 4 ⊢ 𝑋 = (var1‘𝑈) | |
| 2 | eqid 2730 | . . . . 5 ⊢ (var1‘𝑆) = (var1‘𝑆) | |
| 3 | evls1var.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) | |
| 4 | evls1var.u | . . . . 5 ⊢ 𝑈 = (𝑆 ↾s 𝑅) | |
| 5 | 2, 3, 4 | subrgvr1 22154 | . . . 4 ⊢ (𝜑 → (var1‘𝑆) = (var1‘𝑈)) |
| 6 | 1, 5 | eqtr4id 2784 | . . 3 ⊢ (𝜑 → 𝑋 = (var1‘𝑆)) |
| 7 | 6 | fveq2d 6865 | . 2 ⊢ (𝜑 → (𝑄‘𝑋) = (𝑄‘(var1‘𝑆))) |
| 8 | eqid 2730 | . . . . . 6 ⊢ ((1o evalSub 𝑆)‘𝑅) = ((1o evalSub 𝑆)‘𝑅) | |
| 9 | eqid 2730 | . . . . . 6 ⊢ (1o eval 𝑆) = (1o eval 𝑆) | |
| 10 | eqid 2730 | . . . . . 6 ⊢ (1o mVar 𝑈) = (1o mVar 𝑈) | |
| 11 | evls1var.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑆) | |
| 12 | 1on 8449 | . . . . . . 7 ⊢ 1o ∈ On | |
| 13 | 12 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 1o ∈ On) |
| 14 | evls1var.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ CRing) | |
| 15 | 0lt1o 8471 | . . . . . . 7 ⊢ ∅ ∈ 1o | |
| 16 | 15 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ∅ ∈ 1o) |
| 17 | 8, 9, 10, 4, 11, 13, 14, 3, 16 | evlsvarsrng 22013 | . . . . 5 ⊢ (𝜑 → (((1o evalSub 𝑆)‘𝑅)‘((1o mVar 𝑈)‘∅)) = ((1o eval 𝑆)‘((1o mVar 𝑈)‘∅))) |
| 18 | 2 | vr1val 22083 | . . . . . . 7 ⊢ (var1‘𝑆) = ((1o mVar 𝑆)‘∅) |
| 19 | eqid 2730 | . . . . . . . . 9 ⊢ (1o mVar 𝑆) = (1o mVar 𝑆) | |
| 20 | 19, 13, 3, 4 | subrgmvr 21947 | . . . . . . . 8 ⊢ (𝜑 → (1o mVar 𝑆) = (1o mVar 𝑈)) |
| 21 | 20 | fveq1d 6863 | . . . . . . 7 ⊢ (𝜑 → ((1o mVar 𝑆)‘∅) = ((1o mVar 𝑈)‘∅)) |
| 22 | 18, 21 | eqtrid 2777 | . . . . . 6 ⊢ (𝜑 → (var1‘𝑆) = ((1o mVar 𝑈)‘∅)) |
| 23 | 22 | fveq2d 6865 | . . . . 5 ⊢ (𝜑 → (((1o evalSub 𝑆)‘𝑅)‘(var1‘𝑆)) = (((1o evalSub 𝑆)‘𝑅)‘((1o mVar 𝑈)‘∅))) |
| 24 | 22 | fveq2d 6865 | . . . . 5 ⊢ (𝜑 → ((1o eval 𝑆)‘(var1‘𝑆)) = ((1o eval 𝑆)‘((1o mVar 𝑈)‘∅))) |
| 25 | 17, 23, 24 | 3eqtr4d 2775 | . . . 4 ⊢ (𝜑 → (((1o evalSub 𝑆)‘𝑅)‘(var1‘𝑆)) = ((1o eval 𝑆)‘(var1‘𝑆))) |
| 26 | 25 | coeq1d 5828 | . . 3 ⊢ (𝜑 → ((((1o evalSub 𝑆)‘𝑅)‘(var1‘𝑆)) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))) = (((1o eval 𝑆)‘(var1‘𝑆)) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) |
| 27 | eqid 2730 | . . . . 5 ⊢ (Poly1‘𝑈) = (Poly1‘𝑈) | |
| 28 | eqid 2730 | . . . . . . 7 ⊢ (Poly1‘(𝑆 ↾s 𝑅)) = (Poly1‘(𝑆 ↾s 𝑅)) | |
| 29 | 4 | fveq2i 6864 | . . . . . . . 8 ⊢ (Poly1‘𝑈) = (Poly1‘(𝑆 ↾s 𝑅)) |
| 30 | 29 | fveq2i 6864 | . . . . . . 7 ⊢ (Base‘(Poly1‘𝑈)) = (Base‘(Poly1‘(𝑆 ↾s 𝑅))) |
| 31 | 28, 30 | ply1bas 22086 | . . . . . 6 ⊢ (Base‘(Poly1‘𝑈)) = (Base‘(1o mPoly (𝑆 ↾s 𝑅))) |
| 32 | 31 | eqcomi 2739 | . . . . 5 ⊢ (Base‘(1o mPoly (𝑆 ↾s 𝑅))) = (Base‘(Poly1‘𝑈)) |
| 33 | 2, 3, 4, 27, 32 | subrgvr1cl 22155 | . . . 4 ⊢ (𝜑 → (var1‘𝑆) ∈ (Base‘(1o mPoly (𝑆 ↾s 𝑅)))) |
| 34 | evls1var.q | . . . . 5 ⊢ 𝑄 = (𝑆 evalSub1 𝑅) | |
| 35 | eqid 2730 | . . . . 5 ⊢ (1o evalSub 𝑆) = (1o evalSub 𝑆) | |
| 36 | eqid 2730 | . . . . 5 ⊢ (1o mPoly (𝑆 ↾s 𝑅)) = (1o mPoly (𝑆 ↾s 𝑅)) | |
| 37 | eqid 2730 | . . . . 5 ⊢ (Base‘(1o mPoly (𝑆 ↾s 𝑅))) = (Base‘(1o mPoly (𝑆 ↾s 𝑅))) | |
| 38 | 34, 35, 11, 36, 37 | evls1val 22214 | . . . 4 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ (var1‘𝑆) ∈ (Base‘(1o mPoly (𝑆 ↾s 𝑅)))) → (𝑄‘(var1‘𝑆)) = ((((1o evalSub 𝑆)‘𝑅)‘(var1‘𝑆)) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) |
| 39 | 14, 3, 33, 38 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝑄‘(var1‘𝑆)) = ((((1o evalSub 𝑆)‘𝑅)‘(var1‘𝑆)) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) |
| 40 | crngring 20161 | . . . . 5 ⊢ (𝑆 ∈ CRing → 𝑆 ∈ Ring) | |
| 41 | eqid 2730 | . . . . . 6 ⊢ (Poly1‘𝑆) = (Poly1‘𝑆) | |
| 42 | eqid 2730 | . . . . . . . 8 ⊢ (Base‘(Poly1‘𝑆)) = (Base‘(Poly1‘𝑆)) | |
| 43 | 41, 42 | ply1bas 22086 | . . . . . . 7 ⊢ (Base‘(Poly1‘𝑆)) = (Base‘(1o mPoly 𝑆)) |
| 44 | 43 | eqcomi 2739 | . . . . . 6 ⊢ (Base‘(1o mPoly 𝑆)) = (Base‘(Poly1‘𝑆)) |
| 45 | 2, 41, 44 | vr1cl 22109 | . . . . 5 ⊢ (𝑆 ∈ Ring → (var1‘𝑆) ∈ (Base‘(1o mPoly 𝑆))) |
| 46 | 14, 40, 45 | 3syl 18 | . . . 4 ⊢ (𝜑 → (var1‘𝑆) ∈ (Base‘(1o mPoly 𝑆))) |
| 47 | eqid 2730 | . . . . 5 ⊢ (eval1‘𝑆) = (eval1‘𝑆) | |
| 48 | eqid 2730 | . . . . 5 ⊢ (1o mPoly 𝑆) = (1o mPoly 𝑆) | |
| 49 | eqid 2730 | . . . . 5 ⊢ (Base‘(1o mPoly 𝑆)) = (Base‘(1o mPoly 𝑆)) | |
| 50 | 47, 9, 11, 48, 49 | evl1val 22223 | . . . 4 ⊢ ((𝑆 ∈ CRing ∧ (var1‘𝑆) ∈ (Base‘(1o mPoly 𝑆))) → ((eval1‘𝑆)‘(var1‘𝑆)) = (((1o eval 𝑆)‘(var1‘𝑆)) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) |
| 51 | 14, 46, 50 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((eval1‘𝑆)‘(var1‘𝑆)) = (((1o eval 𝑆)‘(var1‘𝑆)) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) |
| 52 | 26, 39, 51 | 3eqtr4d 2775 | . 2 ⊢ (𝜑 → (𝑄‘(var1‘𝑆)) = ((eval1‘𝑆)‘(var1‘𝑆))) |
| 53 | 47, 2, 11 | evl1var 22230 | . . 3 ⊢ (𝑆 ∈ CRing → ((eval1‘𝑆)‘(var1‘𝑆)) = ( I ↾ 𝐵)) |
| 54 | 14, 53 | syl 17 | . 2 ⊢ (𝜑 → ((eval1‘𝑆)‘(var1‘𝑆)) = ( I ↾ 𝐵)) |
| 55 | 7, 52, 54 | 3eqtrd 2769 | 1 ⊢ (𝜑 → (𝑄‘𝑋) = ( I ↾ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∅c0 4299 {csn 4592 ↦ cmpt 5191 I cid 5535 × cxp 5639 ↾ cres 5643 ∘ ccom 5645 Oncon0 6335 ‘cfv 6514 (class class class)co 7390 1oc1o 8430 Basecbs 17186 ↾s cress 17207 Ringcrg 20149 CRingccrg 20150 SubRingcsubrg 20485 mVar cmvr 21821 mPoly cmpl 21822 evalSub ces 21986 eval cevl 21987 var1cv1 22067 Poly1cpl1 22068 evalSub1 ces1 22207 eval1ce1 22208 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-ofr 7657 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-map 8804 df-pm 8805 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-sup 9400 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-fz 13476 df-fzo 13623 df-seq 13974 df-hash 14303 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-hom 17251 df-cco 17252 df-0g 17411 df-gsum 17412 df-prds 17417 df-pws 17419 df-mre 17554 df-mrc 17555 df-acs 17557 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-mhm 18717 df-submnd 18718 df-grp 18875 df-minusg 18876 df-sbg 18877 df-mulg 19007 df-subg 19062 df-ghm 19152 df-cntz 19256 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-srg 20103 df-ring 20151 df-cring 20152 df-rhm 20388 df-subrng 20462 df-subrg 20486 df-lmod 20775 df-lss 20845 df-lsp 20885 df-assa 21769 df-asp 21770 df-ascl 21771 df-psr 21825 df-mvr 21826 df-mpl 21827 df-opsr 21829 df-evls 21988 df-evl 21989 df-psr1 22071 df-vr1 22072 df-ply1 22073 df-evls1 22209 df-evl1 22210 |
| This theorem is referenced by: evls1varsrng 22234 evls1varpwval 22262 vr1nz 33566 algextdeglem4 33717 2sqr3minply 33777 cos9thpiminplylem6 33784 |
| Copyright terms: Public domain | W3C validator |