| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > evls1var | Structured version Visualization version GIF version | ||
| Description: Univariate polynomial evaluation for subrings maps the variable to the identity function. (Contributed by AV, 13-Sep-2019.) |
| Ref | Expression |
|---|---|
| evls1var.q | ⊢ 𝑄 = (𝑆 evalSub1 𝑅) |
| evls1var.x | ⊢ 𝑋 = (var1‘𝑈) |
| evls1var.u | ⊢ 𝑈 = (𝑆 ↾s 𝑅) |
| evls1var.b | ⊢ 𝐵 = (Base‘𝑆) |
| evls1var.s | ⊢ (𝜑 → 𝑆 ∈ CRing) |
| evls1var.r | ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) |
| Ref | Expression |
|---|---|
| evls1var | ⊢ (𝜑 → (𝑄‘𝑋) = ( I ↾ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evls1var.x | . . . 4 ⊢ 𝑋 = (var1‘𝑈) | |
| 2 | eqid 2729 | . . . . 5 ⊢ (var1‘𝑆) = (var1‘𝑆) | |
| 3 | evls1var.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) | |
| 4 | evls1var.u | . . . . 5 ⊢ 𝑈 = (𝑆 ↾s 𝑅) | |
| 5 | 2, 3, 4 | subrgvr1 22123 | . . . 4 ⊢ (𝜑 → (var1‘𝑆) = (var1‘𝑈)) |
| 6 | 1, 5 | eqtr4id 2783 | . . 3 ⊢ (𝜑 → 𝑋 = (var1‘𝑆)) |
| 7 | 6 | fveq2d 6844 | . 2 ⊢ (𝜑 → (𝑄‘𝑋) = (𝑄‘(var1‘𝑆))) |
| 8 | eqid 2729 | . . . . . 6 ⊢ ((1o evalSub 𝑆)‘𝑅) = ((1o evalSub 𝑆)‘𝑅) | |
| 9 | eqid 2729 | . . . . . 6 ⊢ (1o eval 𝑆) = (1o eval 𝑆) | |
| 10 | eqid 2729 | . . . . . 6 ⊢ (1o mVar 𝑈) = (1o mVar 𝑈) | |
| 11 | evls1var.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑆) | |
| 12 | 1on 8423 | . . . . . . 7 ⊢ 1o ∈ On | |
| 13 | 12 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 1o ∈ On) |
| 14 | evls1var.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ CRing) | |
| 15 | 0lt1o 8445 | . . . . . . 7 ⊢ ∅ ∈ 1o | |
| 16 | 15 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ∅ ∈ 1o) |
| 17 | 8, 9, 10, 4, 11, 13, 14, 3, 16 | evlsvarsrng 21982 | . . . . 5 ⊢ (𝜑 → (((1o evalSub 𝑆)‘𝑅)‘((1o mVar 𝑈)‘∅)) = ((1o eval 𝑆)‘((1o mVar 𝑈)‘∅))) |
| 18 | 2 | vr1val 22052 | . . . . . . 7 ⊢ (var1‘𝑆) = ((1o mVar 𝑆)‘∅) |
| 19 | eqid 2729 | . . . . . . . . 9 ⊢ (1o mVar 𝑆) = (1o mVar 𝑆) | |
| 20 | 19, 13, 3, 4 | subrgmvr 21916 | . . . . . . . 8 ⊢ (𝜑 → (1o mVar 𝑆) = (1o mVar 𝑈)) |
| 21 | 20 | fveq1d 6842 | . . . . . . 7 ⊢ (𝜑 → ((1o mVar 𝑆)‘∅) = ((1o mVar 𝑈)‘∅)) |
| 22 | 18, 21 | eqtrid 2776 | . . . . . 6 ⊢ (𝜑 → (var1‘𝑆) = ((1o mVar 𝑈)‘∅)) |
| 23 | 22 | fveq2d 6844 | . . . . 5 ⊢ (𝜑 → (((1o evalSub 𝑆)‘𝑅)‘(var1‘𝑆)) = (((1o evalSub 𝑆)‘𝑅)‘((1o mVar 𝑈)‘∅))) |
| 24 | 22 | fveq2d 6844 | . . . . 5 ⊢ (𝜑 → ((1o eval 𝑆)‘(var1‘𝑆)) = ((1o eval 𝑆)‘((1o mVar 𝑈)‘∅))) |
| 25 | 17, 23, 24 | 3eqtr4d 2774 | . . . 4 ⊢ (𝜑 → (((1o evalSub 𝑆)‘𝑅)‘(var1‘𝑆)) = ((1o eval 𝑆)‘(var1‘𝑆))) |
| 26 | 25 | coeq1d 5815 | . . 3 ⊢ (𝜑 → ((((1o evalSub 𝑆)‘𝑅)‘(var1‘𝑆)) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))) = (((1o eval 𝑆)‘(var1‘𝑆)) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) |
| 27 | eqid 2729 | . . . . 5 ⊢ (Poly1‘𝑈) = (Poly1‘𝑈) | |
| 28 | eqid 2729 | . . . . . . 7 ⊢ (Poly1‘(𝑆 ↾s 𝑅)) = (Poly1‘(𝑆 ↾s 𝑅)) | |
| 29 | 4 | fveq2i 6843 | . . . . . . . 8 ⊢ (Poly1‘𝑈) = (Poly1‘(𝑆 ↾s 𝑅)) |
| 30 | 29 | fveq2i 6843 | . . . . . . 7 ⊢ (Base‘(Poly1‘𝑈)) = (Base‘(Poly1‘(𝑆 ↾s 𝑅))) |
| 31 | 28, 30 | ply1bas 22055 | . . . . . 6 ⊢ (Base‘(Poly1‘𝑈)) = (Base‘(1o mPoly (𝑆 ↾s 𝑅))) |
| 32 | 31 | eqcomi 2738 | . . . . 5 ⊢ (Base‘(1o mPoly (𝑆 ↾s 𝑅))) = (Base‘(Poly1‘𝑈)) |
| 33 | 2, 3, 4, 27, 32 | subrgvr1cl 22124 | . . . 4 ⊢ (𝜑 → (var1‘𝑆) ∈ (Base‘(1o mPoly (𝑆 ↾s 𝑅)))) |
| 34 | evls1var.q | . . . . 5 ⊢ 𝑄 = (𝑆 evalSub1 𝑅) | |
| 35 | eqid 2729 | . . . . 5 ⊢ (1o evalSub 𝑆) = (1o evalSub 𝑆) | |
| 36 | eqid 2729 | . . . . 5 ⊢ (1o mPoly (𝑆 ↾s 𝑅)) = (1o mPoly (𝑆 ↾s 𝑅)) | |
| 37 | eqid 2729 | . . . . 5 ⊢ (Base‘(1o mPoly (𝑆 ↾s 𝑅))) = (Base‘(1o mPoly (𝑆 ↾s 𝑅))) | |
| 38 | 34, 35, 11, 36, 37 | evls1val 22183 | . . . 4 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ (var1‘𝑆) ∈ (Base‘(1o mPoly (𝑆 ↾s 𝑅)))) → (𝑄‘(var1‘𝑆)) = ((((1o evalSub 𝑆)‘𝑅)‘(var1‘𝑆)) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) |
| 39 | 14, 3, 33, 38 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝑄‘(var1‘𝑆)) = ((((1o evalSub 𝑆)‘𝑅)‘(var1‘𝑆)) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) |
| 40 | crngring 20130 | . . . . 5 ⊢ (𝑆 ∈ CRing → 𝑆 ∈ Ring) | |
| 41 | eqid 2729 | . . . . . 6 ⊢ (Poly1‘𝑆) = (Poly1‘𝑆) | |
| 42 | eqid 2729 | . . . . . . . 8 ⊢ (Base‘(Poly1‘𝑆)) = (Base‘(Poly1‘𝑆)) | |
| 43 | 41, 42 | ply1bas 22055 | . . . . . . 7 ⊢ (Base‘(Poly1‘𝑆)) = (Base‘(1o mPoly 𝑆)) |
| 44 | 43 | eqcomi 2738 | . . . . . 6 ⊢ (Base‘(1o mPoly 𝑆)) = (Base‘(Poly1‘𝑆)) |
| 45 | 2, 41, 44 | vr1cl 22078 | . . . . 5 ⊢ (𝑆 ∈ Ring → (var1‘𝑆) ∈ (Base‘(1o mPoly 𝑆))) |
| 46 | 14, 40, 45 | 3syl 18 | . . . 4 ⊢ (𝜑 → (var1‘𝑆) ∈ (Base‘(1o mPoly 𝑆))) |
| 47 | eqid 2729 | . . . . 5 ⊢ (eval1‘𝑆) = (eval1‘𝑆) | |
| 48 | eqid 2729 | . . . . 5 ⊢ (1o mPoly 𝑆) = (1o mPoly 𝑆) | |
| 49 | eqid 2729 | . . . . 5 ⊢ (Base‘(1o mPoly 𝑆)) = (Base‘(1o mPoly 𝑆)) | |
| 50 | 47, 9, 11, 48, 49 | evl1val 22192 | . . . 4 ⊢ ((𝑆 ∈ CRing ∧ (var1‘𝑆) ∈ (Base‘(1o mPoly 𝑆))) → ((eval1‘𝑆)‘(var1‘𝑆)) = (((1o eval 𝑆)‘(var1‘𝑆)) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) |
| 51 | 14, 46, 50 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((eval1‘𝑆)‘(var1‘𝑆)) = (((1o eval 𝑆)‘(var1‘𝑆)) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) |
| 52 | 26, 39, 51 | 3eqtr4d 2774 | . 2 ⊢ (𝜑 → (𝑄‘(var1‘𝑆)) = ((eval1‘𝑆)‘(var1‘𝑆))) |
| 53 | 47, 2, 11 | evl1var 22199 | . . 3 ⊢ (𝑆 ∈ CRing → ((eval1‘𝑆)‘(var1‘𝑆)) = ( I ↾ 𝐵)) |
| 54 | 14, 53 | syl 17 | . 2 ⊢ (𝜑 → ((eval1‘𝑆)‘(var1‘𝑆)) = ( I ↾ 𝐵)) |
| 55 | 7, 52, 54 | 3eqtrd 2768 | 1 ⊢ (𝜑 → (𝑄‘𝑋) = ( I ↾ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∅c0 4292 {csn 4585 ↦ cmpt 5183 I cid 5525 × cxp 5629 ↾ cres 5633 ∘ ccom 5635 Oncon0 6320 ‘cfv 6499 (class class class)co 7369 1oc1o 8404 Basecbs 17155 ↾s cress 17176 Ringcrg 20118 CRingccrg 20119 SubRingcsubrg 20454 mVar cmvr 21790 mPoly cmpl 21791 evalSub ces 21955 eval cevl 21956 var1cv1 22036 Poly1cpl1 22037 evalSub1 ces1 22176 eval1ce1 22177 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-ofr 7634 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-pm 8779 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-sup 9369 df-oi 9439 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-fzo 13592 df-seq 13943 df-hash 14272 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-hom 17220 df-cco 17221 df-0g 17380 df-gsum 17381 df-prds 17386 df-pws 17388 df-mre 17523 df-mrc 17524 df-acs 17526 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-mhm 18686 df-submnd 18687 df-grp 18844 df-minusg 18845 df-sbg 18846 df-mulg 18976 df-subg 19031 df-ghm 19121 df-cntz 19225 df-cmn 19688 df-abl 19689 df-mgp 20026 df-rng 20038 df-ur 20067 df-srg 20072 df-ring 20120 df-cring 20121 df-rhm 20357 df-subrng 20431 df-subrg 20455 df-lmod 20744 df-lss 20814 df-lsp 20854 df-assa 21738 df-asp 21739 df-ascl 21740 df-psr 21794 df-mvr 21795 df-mpl 21796 df-opsr 21798 df-evls 21957 df-evl 21958 df-psr1 22040 df-vr1 22041 df-ply1 22042 df-evls1 22178 df-evl1 22179 |
| This theorem is referenced by: evls1varsrng 22203 evls1varpwval 22231 vr1nz 33532 algextdeglem4 33683 2sqr3minply 33743 cos9thpiminplylem6 33750 |
| Copyright terms: Public domain | W3C validator |