| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > evls1var | Structured version Visualization version GIF version | ||
| Description: Univariate polynomial evaluation for subrings maps the variable to the identity function. (Contributed by AV, 13-Sep-2019.) |
| Ref | Expression |
|---|---|
| evls1var.q | ⊢ 𝑄 = (𝑆 evalSub1 𝑅) |
| evls1var.x | ⊢ 𝑋 = (var1‘𝑈) |
| evls1var.u | ⊢ 𝑈 = (𝑆 ↾s 𝑅) |
| evls1var.b | ⊢ 𝐵 = (Base‘𝑆) |
| evls1var.s | ⊢ (𝜑 → 𝑆 ∈ CRing) |
| evls1var.r | ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) |
| Ref | Expression |
|---|---|
| evls1var | ⊢ (𝜑 → (𝑄‘𝑋) = ( I ↾ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evls1var.x | . . . 4 ⊢ 𝑋 = (var1‘𝑈) | |
| 2 | eqid 2733 | . . . . 5 ⊢ (var1‘𝑆) = (var1‘𝑆) | |
| 3 | evls1var.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) | |
| 4 | evls1var.u | . . . . 5 ⊢ 𝑈 = (𝑆 ↾s 𝑅) | |
| 5 | 2, 3, 4 | subrgvr1 22178 | . . . 4 ⊢ (𝜑 → (var1‘𝑆) = (var1‘𝑈)) |
| 6 | 1, 5 | eqtr4id 2787 | . . 3 ⊢ (𝜑 → 𝑋 = (var1‘𝑆)) |
| 7 | 6 | fveq2d 6834 | . 2 ⊢ (𝜑 → (𝑄‘𝑋) = (𝑄‘(var1‘𝑆))) |
| 8 | eqid 2733 | . . . . . 6 ⊢ ((1o evalSub 𝑆)‘𝑅) = ((1o evalSub 𝑆)‘𝑅) | |
| 9 | eqid 2733 | . . . . . 6 ⊢ (1o eval 𝑆) = (1o eval 𝑆) | |
| 10 | eqid 2733 | . . . . . 6 ⊢ (1o mVar 𝑈) = (1o mVar 𝑈) | |
| 11 | evls1var.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑆) | |
| 12 | 1on 8405 | . . . . . . 7 ⊢ 1o ∈ On | |
| 13 | 12 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 1o ∈ On) |
| 14 | evls1var.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ CRing) | |
| 15 | 0lt1o 8427 | . . . . . . 7 ⊢ ∅ ∈ 1o | |
| 16 | 15 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ∅ ∈ 1o) |
| 17 | 8, 9, 10, 4, 11, 13, 14, 3, 16 | evlsvarsrng 22037 | . . . . 5 ⊢ (𝜑 → (((1o evalSub 𝑆)‘𝑅)‘((1o mVar 𝑈)‘∅)) = ((1o eval 𝑆)‘((1o mVar 𝑈)‘∅))) |
| 18 | 2 | vr1val 22107 | . . . . . . 7 ⊢ (var1‘𝑆) = ((1o mVar 𝑆)‘∅) |
| 19 | eqid 2733 | . . . . . . . . 9 ⊢ (1o mVar 𝑆) = (1o mVar 𝑆) | |
| 20 | 19, 13, 3, 4 | subrgmvr 21971 | . . . . . . . 8 ⊢ (𝜑 → (1o mVar 𝑆) = (1o mVar 𝑈)) |
| 21 | 20 | fveq1d 6832 | . . . . . . 7 ⊢ (𝜑 → ((1o mVar 𝑆)‘∅) = ((1o mVar 𝑈)‘∅)) |
| 22 | 18, 21 | eqtrid 2780 | . . . . . 6 ⊢ (𝜑 → (var1‘𝑆) = ((1o mVar 𝑈)‘∅)) |
| 23 | 22 | fveq2d 6834 | . . . . 5 ⊢ (𝜑 → (((1o evalSub 𝑆)‘𝑅)‘(var1‘𝑆)) = (((1o evalSub 𝑆)‘𝑅)‘((1o mVar 𝑈)‘∅))) |
| 24 | 22 | fveq2d 6834 | . . . . 5 ⊢ (𝜑 → ((1o eval 𝑆)‘(var1‘𝑆)) = ((1o eval 𝑆)‘((1o mVar 𝑈)‘∅))) |
| 25 | 17, 23, 24 | 3eqtr4d 2778 | . . . 4 ⊢ (𝜑 → (((1o evalSub 𝑆)‘𝑅)‘(var1‘𝑆)) = ((1o eval 𝑆)‘(var1‘𝑆))) |
| 26 | 25 | coeq1d 5807 | . . 3 ⊢ (𝜑 → ((((1o evalSub 𝑆)‘𝑅)‘(var1‘𝑆)) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))) = (((1o eval 𝑆)‘(var1‘𝑆)) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) |
| 27 | eqid 2733 | . . . . 5 ⊢ (Poly1‘𝑈) = (Poly1‘𝑈) | |
| 28 | eqid 2733 | . . . . . . 7 ⊢ (Poly1‘(𝑆 ↾s 𝑅)) = (Poly1‘(𝑆 ↾s 𝑅)) | |
| 29 | 4 | fveq2i 6833 | . . . . . . . 8 ⊢ (Poly1‘𝑈) = (Poly1‘(𝑆 ↾s 𝑅)) |
| 30 | 29 | fveq2i 6833 | . . . . . . 7 ⊢ (Base‘(Poly1‘𝑈)) = (Base‘(Poly1‘(𝑆 ↾s 𝑅))) |
| 31 | 28, 30 | ply1bas 22110 | . . . . . 6 ⊢ (Base‘(Poly1‘𝑈)) = (Base‘(1o mPoly (𝑆 ↾s 𝑅))) |
| 32 | 31 | eqcomi 2742 | . . . . 5 ⊢ (Base‘(1o mPoly (𝑆 ↾s 𝑅))) = (Base‘(Poly1‘𝑈)) |
| 33 | 2, 3, 4, 27, 32 | subrgvr1cl 22179 | . . . 4 ⊢ (𝜑 → (var1‘𝑆) ∈ (Base‘(1o mPoly (𝑆 ↾s 𝑅)))) |
| 34 | evls1var.q | . . . . 5 ⊢ 𝑄 = (𝑆 evalSub1 𝑅) | |
| 35 | eqid 2733 | . . . . 5 ⊢ (1o evalSub 𝑆) = (1o evalSub 𝑆) | |
| 36 | eqid 2733 | . . . . 5 ⊢ (1o mPoly (𝑆 ↾s 𝑅)) = (1o mPoly (𝑆 ↾s 𝑅)) | |
| 37 | eqid 2733 | . . . . 5 ⊢ (Base‘(1o mPoly (𝑆 ↾s 𝑅))) = (Base‘(1o mPoly (𝑆 ↾s 𝑅))) | |
| 38 | 34, 35, 11, 36, 37 | evls1val 22238 | . . . 4 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ (var1‘𝑆) ∈ (Base‘(1o mPoly (𝑆 ↾s 𝑅)))) → (𝑄‘(var1‘𝑆)) = ((((1o evalSub 𝑆)‘𝑅)‘(var1‘𝑆)) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) |
| 39 | 14, 3, 33, 38 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝑄‘(var1‘𝑆)) = ((((1o evalSub 𝑆)‘𝑅)‘(var1‘𝑆)) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) |
| 40 | crngring 20167 | . . . . 5 ⊢ (𝑆 ∈ CRing → 𝑆 ∈ Ring) | |
| 41 | eqid 2733 | . . . . . 6 ⊢ (Poly1‘𝑆) = (Poly1‘𝑆) | |
| 42 | eqid 2733 | . . . . . . . 8 ⊢ (Base‘(Poly1‘𝑆)) = (Base‘(Poly1‘𝑆)) | |
| 43 | 41, 42 | ply1bas 22110 | . . . . . . 7 ⊢ (Base‘(Poly1‘𝑆)) = (Base‘(1o mPoly 𝑆)) |
| 44 | 43 | eqcomi 2742 | . . . . . 6 ⊢ (Base‘(1o mPoly 𝑆)) = (Base‘(Poly1‘𝑆)) |
| 45 | 2, 41, 44 | vr1cl 22133 | . . . . 5 ⊢ (𝑆 ∈ Ring → (var1‘𝑆) ∈ (Base‘(1o mPoly 𝑆))) |
| 46 | 14, 40, 45 | 3syl 18 | . . . 4 ⊢ (𝜑 → (var1‘𝑆) ∈ (Base‘(1o mPoly 𝑆))) |
| 47 | eqid 2733 | . . . . 5 ⊢ (eval1‘𝑆) = (eval1‘𝑆) | |
| 48 | eqid 2733 | . . . . 5 ⊢ (1o mPoly 𝑆) = (1o mPoly 𝑆) | |
| 49 | eqid 2733 | . . . . 5 ⊢ (Base‘(1o mPoly 𝑆)) = (Base‘(1o mPoly 𝑆)) | |
| 50 | 47, 9, 11, 48, 49 | evl1val 22247 | . . . 4 ⊢ ((𝑆 ∈ CRing ∧ (var1‘𝑆) ∈ (Base‘(1o mPoly 𝑆))) → ((eval1‘𝑆)‘(var1‘𝑆)) = (((1o eval 𝑆)‘(var1‘𝑆)) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) |
| 51 | 14, 46, 50 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((eval1‘𝑆)‘(var1‘𝑆)) = (((1o eval 𝑆)‘(var1‘𝑆)) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) |
| 52 | 26, 39, 51 | 3eqtr4d 2778 | . 2 ⊢ (𝜑 → (𝑄‘(var1‘𝑆)) = ((eval1‘𝑆)‘(var1‘𝑆))) |
| 53 | 47, 2, 11 | evl1var 22254 | . . 3 ⊢ (𝑆 ∈ CRing → ((eval1‘𝑆)‘(var1‘𝑆)) = ( I ↾ 𝐵)) |
| 54 | 14, 53 | syl 17 | . 2 ⊢ (𝜑 → ((eval1‘𝑆)‘(var1‘𝑆)) = ( I ↾ 𝐵)) |
| 55 | 7, 52, 54 | 3eqtrd 2772 | 1 ⊢ (𝜑 → (𝑄‘𝑋) = ( I ↾ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ∅c0 4282 {csn 4577 ↦ cmpt 5176 I cid 5515 × cxp 5619 ↾ cres 5623 ∘ ccom 5625 Oncon0 6313 ‘cfv 6488 (class class class)co 7354 1oc1o 8386 Basecbs 17124 ↾s cress 17145 Ringcrg 20155 CRingccrg 20156 SubRingcsubrg 20488 mVar cmvr 21846 mPoly cmpl 21847 evalSub ces 22010 eval cevl 22011 var1cv1 22091 Poly1cpl1 22092 evalSub1 ces1 22231 eval1ce1 22232 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-isom 6497 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-of 7618 df-ofr 7619 df-om 7805 df-1st 7929 df-2nd 7930 df-supp 8099 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-2o 8394 df-er 8630 df-map 8760 df-pm 8761 df-ixp 8830 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-fsupp 9255 df-sup 9335 df-oi 9405 df-card 9841 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-nn 12135 df-2 12197 df-3 12198 df-4 12199 df-5 12200 df-6 12201 df-7 12202 df-8 12203 df-9 12204 df-n0 12391 df-z 12478 df-dec 12597 df-uz 12741 df-fz 13412 df-fzo 13559 df-seq 13913 df-hash 14242 df-struct 17062 df-sets 17079 df-slot 17097 df-ndx 17109 df-base 17125 df-ress 17146 df-plusg 17178 df-mulr 17179 df-sca 17181 df-vsca 17182 df-ip 17183 df-tset 17184 df-ple 17185 df-ds 17187 df-hom 17189 df-cco 17190 df-0g 17349 df-gsum 17350 df-prds 17355 df-pws 17357 df-mre 17492 df-mrc 17493 df-acs 17495 df-mgm 18552 df-sgrp 18631 df-mnd 18647 df-mhm 18695 df-submnd 18696 df-grp 18853 df-minusg 18854 df-sbg 18855 df-mulg 18985 df-subg 19040 df-ghm 19129 df-cntz 19233 df-cmn 19698 df-abl 19699 df-mgp 20063 df-rng 20075 df-ur 20104 df-srg 20109 df-ring 20157 df-cring 20158 df-rhm 20394 df-subrng 20465 df-subrg 20489 df-lmod 20799 df-lss 20869 df-lsp 20909 df-assa 21794 df-asp 21795 df-ascl 21796 df-psr 21850 df-mvr 21851 df-mpl 21852 df-opsr 21854 df-evls 22012 df-evl 22013 df-psr1 22095 df-vr1 22096 df-ply1 22097 df-evls1 22233 df-evl1 22234 |
| This theorem is referenced by: evls1varsrng 22258 evls1varpwval 22286 vr1nz 33563 algextdeglem4 33756 2sqr3minply 33816 cos9thpiminplylem6 33823 |
| Copyright terms: Public domain | W3C validator |