MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1tm Structured version   Visualization version   GIF version

Theorem coe1tm 21354
Description: Coefficient vector of a polynomial term. (Contributed by Stefan O'Rear, 27-Mar-2015.)
Hypotheses
Ref Expression
coe1tm.z 0 = (0g𝑅)
coe1tm.k 𝐾 = (Base‘𝑅)
coe1tm.p 𝑃 = (Poly1𝑅)
coe1tm.x 𝑋 = (var1𝑅)
coe1tm.m · = ( ·𝑠𝑃)
coe1tm.n 𝑁 = (mulGrp‘𝑃)
coe1tm.e = (.g𝑁)
Assertion
Ref Expression
coe1tm ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → (coe1‘(𝐶 · (𝐷 𝑋))) = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 𝐷, 𝐶, 0 )))
Distinct variable groups:   𝑥, 0   𝑥,𝐶   𝑥,𝐷   𝑥,𝐾   𝑥,   𝑥,𝑁   𝑥,𝑃   𝑥,𝑋   𝑥,𝑅   𝑥, ·

Proof of Theorem coe1tm
Dummy variables 𝑎 𝑏 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 coe1tm.k . . . 4 𝐾 = (Base‘𝑅)
2 coe1tm.p . . . 4 𝑃 = (Poly1𝑅)
3 coe1tm.x . . . 4 𝑋 = (var1𝑅)
4 coe1tm.m . . . 4 · = ( ·𝑠𝑃)
5 coe1tm.n . . . 4 𝑁 = (mulGrp‘𝑃)
6 coe1tm.e . . . 4 = (.g𝑁)
7 eqid 2738 . . . 4 (Base‘𝑃) = (Base‘𝑃)
81, 2, 3, 4, 5, 6, 7ply1tmcl 21353 . . 3 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → (𝐶 · (𝐷 𝑋)) ∈ (Base‘𝑃))
9 eqid 2738 . . . 4 (coe1‘(𝐶 · (𝐷 𝑋))) = (coe1‘(𝐶 · (𝐷 𝑋)))
10 eqid 2738 . . . 4 (𝑥 ∈ ℕ0 ↦ (1o × {𝑥})) = (𝑥 ∈ ℕ0 ↦ (1o × {𝑥}))
119, 7, 2, 10coe1fval2 21291 . . 3 ((𝐶 · (𝐷 𝑋)) ∈ (Base‘𝑃) → (coe1‘(𝐶 · (𝐷 𝑋))) = ((𝐶 · (𝐷 𝑋)) ∘ (𝑥 ∈ ℕ0 ↦ (1o × {𝑥}))))
128, 11syl 17 . 2 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → (coe1‘(𝐶 · (𝐷 𝑋))) = ((𝐶 · (𝐷 𝑋)) ∘ (𝑥 ∈ ℕ0 ↦ (1o × {𝑥}))))
13 fconst6g 6647 . . . . 5 (𝑥 ∈ ℕ0 → (1o × {𝑥}):1o⟶ℕ0)
14 nn0ex 12169 . . . . . 6 0 ∈ V
15 1oex 8280 . . . . . 6 1o ∈ V
1614, 15elmap 8617 . . . . 5 ((1o × {𝑥}) ∈ (ℕ0m 1o) ↔ (1o × {𝑥}):1o⟶ℕ0)
1713, 16sylibr 233 . . . 4 (𝑥 ∈ ℕ0 → (1o × {𝑥}) ∈ (ℕ0m 1o))
1817adantl 481 . . 3 (((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (1o × {𝑥}) ∈ (ℕ0m 1o))
19 eqidd 2739 . . 3 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → (𝑥 ∈ ℕ0 ↦ (1o × {𝑥})) = (𝑥 ∈ ℕ0 ↦ (1o × {𝑥})))
20 eqid 2738 . . . . . . . 8 (.g‘(mulGrp‘(1o mPoly 𝑅))) = (.g‘(mulGrp‘(1o mPoly 𝑅)))
215, 7mgpbas 19641 . . . . . . . . 9 (Base‘𝑃) = (Base‘𝑁)
2221a1i 11 . . . . . . . 8 (𝑅 ∈ Ring → (Base‘𝑃) = (Base‘𝑁))
23 eqid 2738 . . . . . . . . . 10 (mulGrp‘(1o mPoly 𝑅)) = (mulGrp‘(1o mPoly 𝑅))
24 eqid 2738 . . . . . . . . . . 11 (PwSer1𝑅) = (PwSer1𝑅)
252, 24, 7ply1bas 21276 . . . . . . . . . 10 (Base‘𝑃) = (Base‘(1o mPoly 𝑅))
2623, 25mgpbas 19641 . . . . . . . . 9 (Base‘𝑃) = (Base‘(mulGrp‘(1o mPoly 𝑅)))
2726a1i 11 . . . . . . . 8 (𝑅 ∈ Ring → (Base‘𝑃) = (Base‘(mulGrp‘(1o mPoly 𝑅))))
28 ssv 3941 . . . . . . . . 9 (Base‘𝑃) ⊆ V
2928a1i 11 . . . . . . . 8 (𝑅 ∈ Ring → (Base‘𝑃) ⊆ V)
30 ovexd 7290 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥(+g𝑁)𝑦) ∈ V)
31 eqid 2738 . . . . . . . . . . . 12 (.r𝑃) = (.r𝑃)
325, 31mgpplusg 19639 . . . . . . . . . . 11 (.r𝑃) = (+g𝑁)
33 eqid 2738 . . . . . . . . . . . . 13 (1o mPoly 𝑅) = (1o mPoly 𝑅)
342, 33, 31ply1mulr 21308 . . . . . . . . . . . 12 (.r𝑃) = (.r‘(1o mPoly 𝑅))
3523, 34mgpplusg 19639 . . . . . . . . . . 11 (.r𝑃) = (+g‘(mulGrp‘(1o mPoly 𝑅)))
3632, 35eqtr3i 2768 . . . . . . . . . 10 (+g𝑁) = (+g‘(mulGrp‘(1o mPoly 𝑅)))
3736a1i 11 . . . . . . . . 9 (𝑅 ∈ Ring → (+g𝑁) = (+g‘(mulGrp‘(1o mPoly 𝑅))))
3837oveqdr 7283 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥(+g𝑁)𝑦) = (𝑥(+g‘(mulGrp‘(1o mPoly 𝑅)))𝑦))
396, 20, 22, 27, 29, 30, 38mulgpropd 18660 . . . . . . 7 (𝑅 ∈ Ring → = (.g‘(mulGrp‘(1o mPoly 𝑅))))
40393ad2ant1 1131 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → = (.g‘(mulGrp‘(1o mPoly 𝑅))))
41 eqidd 2739 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → 𝐷 = 𝐷)
423vr1val 21273 . . . . . . 7 𝑋 = ((1o mVar 𝑅)‘∅)
4342a1i 11 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → 𝑋 = ((1o mVar 𝑅)‘∅))
4440, 41, 43oveq123d 7276 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → (𝐷 𝑋) = (𝐷(.g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅)))
4544oveq2d 7271 . . . 4 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → (𝐶 · (𝐷 𝑋)) = (𝐶 · (𝐷(.g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅))))
46 psr1baslem 21266 . . . . . 6 (ℕ0m 1o) = {𝑎 ∈ (ℕ0m 1o) ∣ (𝑎 “ ℕ) ∈ Fin}
47 coe1tm.z . . . . . 6 0 = (0g𝑅)
48 eqid 2738 . . . . . 6 (1r𝑅) = (1r𝑅)
49 1on 8274 . . . . . . 7 1o ∈ On
5049a1i 11 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → 1o ∈ On)
51 eqid 2738 . . . . . 6 (1o mVar 𝑅) = (1o mVar 𝑅)
52 simp1 1134 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → 𝑅 ∈ Ring)
53 0lt1o 8296 . . . . . . 7 ∅ ∈ 1o
5453a1i 11 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → ∅ ∈ 1o)
55 simp3 1136 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → 𝐷 ∈ ℕ0)
5633, 46, 47, 48, 50, 23, 20, 51, 52, 54, 55mplcoe3 21149 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → (𝑦 ∈ (ℕ0m 1o) ↦ if(𝑦 = (𝑏 ∈ 1o ↦ if(𝑏 = ∅, 𝐷, 0)), (1r𝑅), 0 )) = (𝐷(.g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅)))
5756oveq2d 7271 . . . 4 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → (𝐶 · (𝑦 ∈ (ℕ0m 1o) ↦ if(𝑦 = (𝑏 ∈ 1o ↦ if(𝑏 = ∅, 𝐷, 0)), (1r𝑅), 0 ))) = (𝐶 · (𝐷(.g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅))))
582, 33, 4ply1vsca 21307 . . . . 5 · = ( ·𝑠 ‘(1o mPoly 𝑅))
59 elsni 4575 . . . . . . . . . . 11 (𝑏 ∈ {∅} → 𝑏 = ∅)
60 df1o2 8279 . . . . . . . . . . 11 1o = {∅}
6159, 60eleq2s 2857 . . . . . . . . . 10 (𝑏 ∈ 1o𝑏 = ∅)
6261iftrued 4464 . . . . . . . . 9 (𝑏 ∈ 1o → if(𝑏 = ∅, 𝐷, 0) = 𝐷)
6362adantl 481 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) ∧ 𝑏 ∈ 1o) → if(𝑏 = ∅, 𝐷, 0) = 𝐷)
6463mpteq2dva 5170 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → (𝑏 ∈ 1o ↦ if(𝑏 = ∅, 𝐷, 0)) = (𝑏 ∈ 1o𝐷))
65 fconstmpt 5640 . . . . . . 7 (1o × {𝐷}) = (𝑏 ∈ 1o𝐷)
6664, 65eqtr4di 2797 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → (𝑏 ∈ 1o ↦ if(𝑏 = ∅, 𝐷, 0)) = (1o × {𝐷}))
67 fconst6g 6647 . . . . . . . 8 (𝐷 ∈ ℕ0 → (1o × {𝐷}):1o⟶ℕ0)
6814, 15elmap 8617 . . . . . . . 8 ((1o × {𝐷}) ∈ (ℕ0m 1o) ↔ (1o × {𝐷}):1o⟶ℕ0)
6967, 68sylibr 233 . . . . . . 7 (𝐷 ∈ ℕ0 → (1o × {𝐷}) ∈ (ℕ0m 1o))
70693ad2ant3 1133 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → (1o × {𝐷}) ∈ (ℕ0m 1o))
7166, 70eqeltrd 2839 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → (𝑏 ∈ 1o ↦ if(𝑏 = ∅, 𝐷, 0)) ∈ (ℕ0m 1o))
72 simp2 1135 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → 𝐶𝐾)
7333, 58, 46, 48, 47, 1, 50, 52, 71, 72mplmon2 21179 . . . 4 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → (𝐶 · (𝑦 ∈ (ℕ0m 1o) ↦ if(𝑦 = (𝑏 ∈ 1o ↦ if(𝑏 = ∅, 𝐷, 0)), (1r𝑅), 0 ))) = (𝑦 ∈ (ℕ0m 1o) ↦ if(𝑦 = (𝑏 ∈ 1o ↦ if(𝑏 = ∅, 𝐷, 0)), 𝐶, 0 )))
7445, 57, 733eqtr2d 2784 . . 3 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → (𝐶 · (𝐷 𝑋)) = (𝑦 ∈ (ℕ0m 1o) ↦ if(𝑦 = (𝑏 ∈ 1o ↦ if(𝑏 = ∅, 𝐷, 0)), 𝐶, 0 )))
75 eqeq1 2742 . . . 4 (𝑦 = (1o × {𝑥}) → (𝑦 = (𝑏 ∈ 1o ↦ if(𝑏 = ∅, 𝐷, 0)) ↔ (1o × {𝑥}) = (𝑏 ∈ 1o ↦ if(𝑏 = ∅, 𝐷, 0))))
7675ifbid 4479 . . 3 (𝑦 = (1o × {𝑥}) → if(𝑦 = (𝑏 ∈ 1o ↦ if(𝑏 = ∅, 𝐷, 0)), 𝐶, 0 ) = if((1o × {𝑥}) = (𝑏 ∈ 1o ↦ if(𝑏 = ∅, 𝐷, 0)), 𝐶, 0 ))
7718, 19, 74, 76fmptco 6983 . 2 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → ((𝐶 · (𝐷 𝑋)) ∘ (𝑥 ∈ ℕ0 ↦ (1o × {𝑥}))) = (𝑥 ∈ ℕ0 ↦ if((1o × {𝑥}) = (𝑏 ∈ 1o ↦ if(𝑏 = ∅, 𝐷, 0)), 𝐶, 0 )))
7866adantr 480 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (𝑏 ∈ 1o ↦ if(𝑏 = ∅, 𝐷, 0)) = (1o × {𝐷}))
7978eqeq2d 2749 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((1o × {𝑥}) = (𝑏 ∈ 1o ↦ if(𝑏 = ∅, 𝐷, 0)) ↔ (1o × {𝑥}) = (1o × {𝐷})))
80 fveq1 6755 . . . . . . 7 ((1o × {𝑥}) = (1o × {𝐷}) → ((1o × {𝑥})‘∅) = ((1o × {𝐷})‘∅))
81 vex 3426 . . . . . . . . . 10 𝑥 ∈ V
8281fvconst2 7061 . . . . . . . . 9 (∅ ∈ 1o → ((1o × {𝑥})‘∅) = 𝑥)
8353, 82mp1i 13 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((1o × {𝑥})‘∅) = 𝑥)
84 simpl3 1191 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → 𝐷 ∈ ℕ0)
85 fvconst2g 7059 . . . . . . . . 9 ((𝐷 ∈ ℕ0 ∧ ∅ ∈ 1o) → ((1o × {𝐷})‘∅) = 𝐷)
8684, 53, 85sylancl 585 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((1o × {𝐷})‘∅) = 𝐷)
8783, 86eqeq12d 2754 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (((1o × {𝑥})‘∅) = ((1o × {𝐷})‘∅) ↔ 𝑥 = 𝐷))
8880, 87syl5ib 243 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((1o × {𝑥}) = (1o × {𝐷}) → 𝑥 = 𝐷))
89 sneq 4568 . . . . . . 7 (𝑥 = 𝐷 → {𝑥} = {𝐷})
9089xpeq2d 5610 . . . . . 6 (𝑥 = 𝐷 → (1o × {𝑥}) = (1o × {𝐷}))
9188, 90impbid1 224 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((1o × {𝑥}) = (1o × {𝐷}) ↔ 𝑥 = 𝐷))
9279, 91bitrd 278 . . . 4 (((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((1o × {𝑥}) = (𝑏 ∈ 1o ↦ if(𝑏 = ∅, 𝐷, 0)) ↔ 𝑥 = 𝐷))
9392ifbid 4479 . . 3 (((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → if((1o × {𝑥}) = (𝑏 ∈ 1o ↦ if(𝑏 = ∅, 𝐷, 0)), 𝐶, 0 ) = if(𝑥 = 𝐷, 𝐶, 0 ))
9493mpteq2dva 5170 . 2 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → (𝑥 ∈ ℕ0 ↦ if((1o × {𝑥}) = (𝑏 ∈ 1o ↦ if(𝑏 = ∅, 𝐷, 0)), 𝐶, 0 )) = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 𝐷, 𝐶, 0 )))
9512, 77, 943eqtrd 2782 1 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → (coe1‘(𝐶 · (𝐷 𝑋))) = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 𝐷, 𝐶, 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  Vcvv 3422  wss 3883  c0 4253  ifcif 4456  {csn 4558  cmpt 5153   × cxp 5578  ccom 5584  Oncon0 6251  wf 6414  cfv 6418  (class class class)co 7255  1oc1o 8260  m cmap 8573  0cc0 10802  0cn0 12163  Basecbs 16840  +gcplusg 16888  .rcmulr 16889   ·𝑠 cvsca 16892  0gc0g 17067  .gcmg 18615  mulGrpcmgp 19635  1rcur 19652  Ringcrg 19698   mVar cmvr 21018   mPoly cmpl 21019  PwSer1cps1 21256  var1cv1 21257  Poly1cpl1 21258  coe1cco1 21259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-ofr 7512  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-tset 16907  df-ple 16908  df-0g 17069  df-gsum 17070  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mulg 18616  df-subg 18667  df-ghm 18747  df-cntz 18838  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-subrg 19937  df-lmod 20040  df-lss 20109  df-psr 21022  df-mvr 21023  df-mpl 21024  df-opsr 21026  df-psr1 21261  df-vr1 21262  df-ply1 21263  df-coe1 21264
This theorem is referenced by:  coe1tmfv1  21355  coe1tmfv2  21356  coe1scl  21368  gsummoncoe1  21385  decpmatid  21827  monmatcollpw  21836  mp2pm2mplem4  21866
  Copyright terms: Public domain W3C validator