Step | Hyp | Ref
| Expression |
1 | | coe1tm.k |
. . . 4
⊢ 𝐾 = (Base‘𝑅) |
2 | | coe1tm.p |
. . . 4
⊢ 𝑃 = (Poly1‘𝑅) |
3 | | coe1tm.x |
. . . 4
⊢ 𝑋 = (var1‘𝑅) |
4 | | coe1tm.m |
. . . 4
⊢ · = (
·𝑠 ‘𝑃) |
5 | | coe1tm.n |
. . . 4
⊢ 𝑁 = (mulGrp‘𝑃) |
6 | | coe1tm.e |
. . . 4
⊢ ↑ =
(.g‘𝑁) |
7 | | eqid 2738 |
. . . 4
⊢
(Base‘𝑃) =
(Base‘𝑃) |
8 | 1, 2, 3, 4, 5, 6, 7 | ply1tmcl 21443 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) → (𝐶 · (𝐷 ↑ 𝑋)) ∈ (Base‘𝑃)) |
9 | | eqid 2738 |
. . . 4
⊢
(coe1‘(𝐶 · (𝐷 ↑ 𝑋))) = (coe1‘(𝐶 · (𝐷 ↑ 𝑋))) |
10 | | eqid 2738 |
. . . 4
⊢ (𝑥 ∈ ℕ0
↦ (1o × {𝑥})) = (𝑥 ∈ ℕ0 ↦
(1o × {𝑥})) |
11 | 9, 7, 2, 10 | coe1fval2 21381 |
. . 3
⊢ ((𝐶 · (𝐷 ↑ 𝑋)) ∈ (Base‘𝑃) → (coe1‘(𝐶 · (𝐷 ↑ 𝑋))) = ((𝐶 · (𝐷 ↑ 𝑋)) ∘ (𝑥 ∈ ℕ0 ↦
(1o × {𝑥})))) |
12 | 8, 11 | syl 17 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) →
(coe1‘(𝐶
·
(𝐷 ↑ 𝑋))) = ((𝐶 · (𝐷 ↑ 𝑋)) ∘ (𝑥 ∈ ℕ0 ↦
(1o × {𝑥})))) |
13 | | fconst6g 6663 |
. . . . 5
⊢ (𝑥 ∈ ℕ0
→ (1o × {𝑥}):1o⟶ℕ0) |
14 | | nn0ex 12239 |
. . . . . 6
⊢
ℕ0 ∈ V |
15 | | 1oex 8307 |
. . . . . 6
⊢
1o ∈ V |
16 | 14, 15 | elmap 8659 |
. . . . 5
⊢
((1o × {𝑥}) ∈ (ℕ0
↑m 1o) ↔ (1o × {𝑥}):1o⟶ℕ0) |
17 | 13, 16 | sylibr 233 |
. . . 4
⊢ (𝑥 ∈ ℕ0
→ (1o × {𝑥}) ∈ (ℕ0
↑m 1o)) |
18 | 17 | adantl 482 |
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0)
→ (1o × {𝑥}) ∈ (ℕ0
↑m 1o)) |
19 | | eqidd 2739 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) → (𝑥 ∈ ℕ0
↦ (1o × {𝑥})) = (𝑥 ∈ ℕ0 ↦
(1o × {𝑥}))) |
20 | | eqid 2738 |
. . . . . . . 8
⊢
(.g‘(mulGrp‘(1o mPoly 𝑅))) =
(.g‘(mulGrp‘(1o mPoly 𝑅))) |
21 | 5, 7 | mgpbas 19726 |
. . . . . . . . 9
⊢
(Base‘𝑃) =
(Base‘𝑁) |
22 | 21 | a1i 11 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring →
(Base‘𝑃) =
(Base‘𝑁)) |
23 | | eqid 2738 |
. . . . . . . . . 10
⊢
(mulGrp‘(1o mPoly 𝑅)) = (mulGrp‘(1o mPoly
𝑅)) |
24 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(PwSer1‘𝑅) = (PwSer1‘𝑅) |
25 | 2, 24, 7 | ply1bas 21366 |
. . . . . . . . . 10
⊢
(Base‘𝑃) =
(Base‘(1o mPoly 𝑅)) |
26 | 23, 25 | mgpbas 19726 |
. . . . . . . . 9
⊢
(Base‘𝑃) =
(Base‘(mulGrp‘(1o mPoly 𝑅))) |
27 | 26 | a1i 11 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring →
(Base‘𝑃) =
(Base‘(mulGrp‘(1o mPoly 𝑅)))) |
28 | | ssv 3945 |
. . . . . . . . 9
⊢
(Base‘𝑃)
⊆ V |
29 | 28 | a1i 11 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring →
(Base‘𝑃) ⊆
V) |
30 | | ovexd 7310 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥(+g‘𝑁)𝑦) ∈ V) |
31 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(.r‘𝑃) = (.r‘𝑃) |
32 | 5, 31 | mgpplusg 19724 |
. . . . . . . . . . 11
⊢
(.r‘𝑃) = (+g‘𝑁) |
33 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(1o mPoly 𝑅) = (1o mPoly 𝑅) |
34 | 2, 33, 31 | ply1mulr 21398 |
. . . . . . . . . . . 12
⊢
(.r‘𝑃) = (.r‘(1o
mPoly 𝑅)) |
35 | 23, 34 | mgpplusg 19724 |
. . . . . . . . . . 11
⊢
(.r‘𝑃) =
(+g‘(mulGrp‘(1o mPoly 𝑅))) |
36 | 32, 35 | eqtr3i 2768 |
. . . . . . . . . 10
⊢
(+g‘𝑁) =
(+g‘(mulGrp‘(1o mPoly 𝑅))) |
37 | 36 | a1i 11 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring →
(+g‘𝑁) =
(+g‘(mulGrp‘(1o mPoly 𝑅)))) |
38 | 37 | oveqdr 7303 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥(+g‘𝑁)𝑦) = (𝑥(+g‘(mulGrp‘(1o
mPoly 𝑅)))𝑦)) |
39 | 6, 20, 22, 27, 29, 30, 38 | mulgpropd 18745 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → ↑ =
(.g‘(mulGrp‘(1o mPoly 𝑅)))) |
40 | 39 | 3ad2ant1 1132 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) → ↑ =
(.g‘(mulGrp‘(1o mPoly 𝑅)))) |
41 | | eqidd 2739 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) → 𝐷 = 𝐷) |
42 | 3 | vr1val 21363 |
. . . . . . 7
⊢ 𝑋 = ((1o mVar 𝑅)‘∅) |
43 | 42 | a1i 11 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) → 𝑋 = ((1o mVar 𝑅)‘∅)) |
44 | 40, 41, 43 | oveq123d 7296 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) → (𝐷 ↑ 𝑋) = (𝐷(.g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘∅))) |
45 | 44 | oveq2d 7291 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) → (𝐶 · (𝐷 ↑ 𝑋)) = (𝐶 · (𝐷(.g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘∅)))) |
46 | | psr1baslem 21356 |
. . . . . 6
⊢
(ℕ0 ↑m 1o) = {𝑎 ∈ (ℕ0
↑m 1o) ∣ (◡𝑎 “ ℕ) ∈
Fin} |
47 | | coe1tm.z |
. . . . . 6
⊢ 0 =
(0g‘𝑅) |
48 | | eqid 2738 |
. . . . . 6
⊢
(1r‘𝑅) = (1r‘𝑅) |
49 | | 1on 8309 |
. . . . . . 7
⊢
1o ∈ On |
50 | 49 | a1i 11 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) →
1o ∈ On) |
51 | | eqid 2738 |
. . . . . 6
⊢
(1o mVar 𝑅) = (1o mVar 𝑅) |
52 | | simp1 1135 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) → 𝑅 ∈ Ring) |
53 | | 0lt1o 8334 |
. . . . . . 7
⊢ ∅
∈ 1o |
54 | 53 | a1i 11 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) → ∅
∈ 1o) |
55 | | simp3 1137 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) → 𝐷 ∈
ℕ0) |
56 | 33, 46, 47, 48, 50, 23, 20, 51, 52, 54, 55 | mplcoe3 21239 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) → (𝑦 ∈ (ℕ0
↑m 1o) ↦ if(𝑦 = (𝑏 ∈ 1o ↦ if(𝑏 = ∅, 𝐷, 0)), (1r‘𝑅), 0 )) = (𝐷(.g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘∅))) |
57 | 56 | oveq2d 7291 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) → (𝐶 · (𝑦 ∈ (ℕ0
↑m 1o) ↦ if(𝑦 = (𝑏 ∈ 1o ↦ if(𝑏 = ∅, 𝐷, 0)), (1r‘𝑅), 0 ))) = (𝐶 · (𝐷(.g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘∅)))) |
58 | 2, 33, 4 | ply1vsca 21397 |
. . . . 5
⊢ · = (
·𝑠 ‘(1o mPoly 𝑅)) |
59 | | elsni 4578 |
. . . . . . . . . . 11
⊢ (𝑏 ∈ {∅} → 𝑏 = ∅) |
60 | | df1o2 8304 |
. . . . . . . . . . 11
⊢
1o = {∅} |
61 | 59, 60 | eleq2s 2857 |
. . . . . . . . . 10
⊢ (𝑏 ∈ 1o →
𝑏 =
∅) |
62 | 61 | iftrued 4467 |
. . . . . . . . 9
⊢ (𝑏 ∈ 1o →
if(𝑏 = ∅, 𝐷, 0) = 𝐷) |
63 | 62 | adantl 482 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) ∧ 𝑏 ∈ 1o) →
if(𝑏 = ∅, 𝐷, 0) = 𝐷) |
64 | 63 | mpteq2dva 5174 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) → (𝑏 ∈ 1o ↦
if(𝑏 = ∅, 𝐷, 0)) = (𝑏 ∈ 1o ↦ 𝐷)) |
65 | | fconstmpt 5649 |
. . . . . . 7
⊢
(1o × {𝐷}) = (𝑏 ∈ 1o ↦ 𝐷) |
66 | 64, 65 | eqtr4di 2796 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) → (𝑏 ∈ 1o ↦
if(𝑏 = ∅, 𝐷, 0)) = (1o ×
{𝐷})) |
67 | | fconst6g 6663 |
. . . . . . . 8
⊢ (𝐷 ∈ ℕ0
→ (1o × {𝐷}):1o⟶ℕ0) |
68 | 14, 15 | elmap 8659 |
. . . . . . . 8
⊢
((1o × {𝐷}) ∈ (ℕ0
↑m 1o) ↔ (1o × {𝐷}):1o⟶ℕ0) |
69 | 67, 68 | sylibr 233 |
. . . . . . 7
⊢ (𝐷 ∈ ℕ0
→ (1o × {𝐷}) ∈ (ℕ0
↑m 1o)) |
70 | 69 | 3ad2ant3 1134 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) →
(1o × {𝐷})
∈ (ℕ0 ↑m 1o)) |
71 | 66, 70 | eqeltrd 2839 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) → (𝑏 ∈ 1o ↦
if(𝑏 = ∅, 𝐷, 0)) ∈
(ℕ0 ↑m 1o)) |
72 | | simp2 1136 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) → 𝐶 ∈ 𝐾) |
73 | 33, 58, 46, 48, 47, 1, 50, 52, 71, 72 | mplmon2 21269 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) → (𝐶 · (𝑦 ∈ (ℕ0
↑m 1o) ↦ if(𝑦 = (𝑏 ∈ 1o ↦ if(𝑏 = ∅, 𝐷, 0)), (1r‘𝑅), 0 ))) = (𝑦 ∈ (ℕ0
↑m 1o) ↦ if(𝑦 = (𝑏 ∈ 1o ↦ if(𝑏 = ∅, 𝐷, 0)), 𝐶, 0 ))) |
74 | 45, 57, 73 | 3eqtr2d 2784 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) → (𝐶 · (𝐷 ↑ 𝑋)) = (𝑦 ∈ (ℕ0
↑m 1o) ↦ if(𝑦 = (𝑏 ∈ 1o ↦ if(𝑏 = ∅, 𝐷, 0)), 𝐶, 0 ))) |
75 | | eqeq1 2742 |
. . . 4
⊢ (𝑦 = (1o × {𝑥}) → (𝑦 = (𝑏 ∈ 1o ↦ if(𝑏 = ∅, 𝐷, 0)) ↔ (1o × {𝑥}) = (𝑏 ∈ 1o ↦ if(𝑏 = ∅, 𝐷, 0)))) |
76 | 75 | ifbid 4482 |
. . 3
⊢ (𝑦 = (1o × {𝑥}) → if(𝑦 = (𝑏 ∈ 1o ↦ if(𝑏 = ∅, 𝐷, 0)), 𝐶, 0 ) = if((1o
× {𝑥}) = (𝑏 ∈ 1o ↦
if(𝑏 = ∅, 𝐷, 0)), 𝐶, 0 )) |
77 | 18, 19, 74, 76 | fmptco 7001 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) → ((𝐶 · (𝐷 ↑ 𝑋)) ∘ (𝑥 ∈ ℕ0 ↦
(1o × {𝑥}))) = (𝑥 ∈ ℕ0 ↦
if((1o × {𝑥}) = (𝑏 ∈ 1o ↦ if(𝑏 = ∅, 𝐷, 0)), 𝐶, 0 ))) |
78 | 66 | adantr 481 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0)
→ (𝑏 ∈
1o ↦ if(𝑏
= ∅, 𝐷, 0)) =
(1o × {𝐷})) |
79 | 78 | eqeq2d 2749 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0)
→ ((1o × {𝑥}) = (𝑏 ∈ 1o ↦ if(𝑏 = ∅, 𝐷, 0)) ↔ (1o × {𝑥}) = (1o ×
{𝐷}))) |
80 | | fveq1 6773 |
. . . . . . 7
⊢
((1o × {𝑥}) = (1o × {𝐷}) → ((1o
× {𝑥})‘∅)
= ((1o × {𝐷})‘∅)) |
81 | | vex 3436 |
. . . . . . . . . 10
⊢ 𝑥 ∈ V |
82 | 81 | fvconst2 7079 |
. . . . . . . . 9
⊢ (∅
∈ 1o → ((1o × {𝑥})‘∅) = 𝑥) |
83 | 53, 82 | mp1i 13 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0)
→ ((1o × {𝑥})‘∅) = 𝑥) |
84 | | simpl3 1192 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0)
→ 𝐷 ∈
ℕ0) |
85 | | fvconst2g 7077 |
. . . . . . . . 9
⊢ ((𝐷 ∈ ℕ0
∧ ∅ ∈ 1o) → ((1o × {𝐷})‘∅) = 𝐷) |
86 | 84, 53, 85 | sylancl 586 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0)
→ ((1o × {𝐷})‘∅) = 𝐷) |
87 | 83, 86 | eqeq12d 2754 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0)
→ (((1o × {𝑥})‘∅) = ((1o ×
{𝐷})‘∅) ↔
𝑥 = 𝐷)) |
88 | 80, 87 | syl5ib 243 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0)
→ ((1o × {𝑥}) = (1o × {𝐷}) → 𝑥 = 𝐷)) |
89 | | sneq 4571 |
. . . . . . 7
⊢ (𝑥 = 𝐷 → {𝑥} = {𝐷}) |
90 | 89 | xpeq2d 5619 |
. . . . . 6
⊢ (𝑥 = 𝐷 → (1o × {𝑥}) = (1o ×
{𝐷})) |
91 | 88, 90 | impbid1 224 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0)
→ ((1o × {𝑥}) = (1o × {𝐷}) ↔ 𝑥 = 𝐷)) |
92 | 79, 91 | bitrd 278 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0)
→ ((1o × {𝑥}) = (𝑏 ∈ 1o ↦ if(𝑏 = ∅, 𝐷, 0)) ↔ 𝑥 = 𝐷)) |
93 | 92 | ifbid 4482 |
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0)
→ if((1o × {𝑥}) = (𝑏 ∈ 1o ↦ if(𝑏 = ∅, 𝐷, 0)), 𝐶, 0 ) = if(𝑥 = 𝐷, 𝐶, 0 )) |
94 | 93 | mpteq2dva 5174 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) → (𝑥 ∈ ℕ0
↦ if((1o × {𝑥}) = (𝑏 ∈ 1o ↦ if(𝑏 = ∅, 𝐷, 0)), 𝐶, 0 )) = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 𝐷, 𝐶, 0 ))) |
95 | 12, 77, 94 | 3eqtrd 2782 |
1
⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) →
(coe1‘(𝐶
·
(𝐷 ↑ 𝑋))) = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 𝐷, 𝐶, 0 ))) |