MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1tm Structured version   Visualization version   GIF version

Theorem coe1tm 22157
Description: Coefficient vector of a polynomial term. (Contributed by Stefan O'Rear, 27-Mar-2015.)
Hypotheses
Ref Expression
coe1tm.z 0 = (0g𝑅)
coe1tm.k 𝐾 = (Base‘𝑅)
coe1tm.p 𝑃 = (Poly1𝑅)
coe1tm.x 𝑋 = (var1𝑅)
coe1tm.m · = ( ·𝑠𝑃)
coe1tm.n 𝑁 = (mulGrp‘𝑃)
coe1tm.e = (.g𝑁)
Assertion
Ref Expression
coe1tm ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → (coe1‘(𝐶 · (𝐷 𝑋))) = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 𝐷, 𝐶, 0 )))
Distinct variable groups:   𝑥, 0   𝑥,𝐶   𝑥,𝐷   𝑥,𝐾   𝑥,   𝑥,𝑁   𝑥,𝑃   𝑥,𝑋   𝑥,𝑅   𝑥, ·

Proof of Theorem coe1tm
Dummy variables 𝑎 𝑏 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 coe1tm.k . . . 4 𝐾 = (Base‘𝑅)
2 coe1tm.p . . . 4 𝑃 = (Poly1𝑅)
3 coe1tm.x . . . 4 𝑋 = (var1𝑅)
4 coe1tm.m . . . 4 · = ( ·𝑠𝑃)
5 coe1tm.n . . . 4 𝑁 = (mulGrp‘𝑃)
6 coe1tm.e . . . 4 = (.g𝑁)
7 eqid 2729 . . . 4 (Base‘𝑃) = (Base‘𝑃)
81, 2, 3, 4, 5, 6, 7ply1tmcl 22156 . . 3 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → (𝐶 · (𝐷 𝑋)) ∈ (Base‘𝑃))
9 eqid 2729 . . . 4 (coe1‘(𝐶 · (𝐷 𝑋))) = (coe1‘(𝐶 · (𝐷 𝑋)))
10 eqid 2729 . . . 4 (𝑥 ∈ ℕ0 ↦ (1o × {𝑥})) = (𝑥 ∈ ℕ0 ↦ (1o × {𝑥}))
119, 7, 2, 10coe1fval2 22093 . . 3 ((𝐶 · (𝐷 𝑋)) ∈ (Base‘𝑃) → (coe1‘(𝐶 · (𝐷 𝑋))) = ((𝐶 · (𝐷 𝑋)) ∘ (𝑥 ∈ ℕ0 ↦ (1o × {𝑥}))))
128, 11syl 17 . 2 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → (coe1‘(𝐶 · (𝐷 𝑋))) = ((𝐶 · (𝐷 𝑋)) ∘ (𝑥 ∈ ℕ0 ↦ (1o × {𝑥}))))
13 fconst6g 6713 . . . . 5 (𝑥 ∈ ℕ0 → (1o × {𝑥}):1o⟶ℕ0)
14 nn0ex 12390 . . . . . 6 0 ∈ V
15 1oex 8398 . . . . . 6 1o ∈ V
1614, 15elmap 8798 . . . . 5 ((1o × {𝑥}) ∈ (ℕ0m 1o) ↔ (1o × {𝑥}):1o⟶ℕ0)
1713, 16sylibr 234 . . . 4 (𝑥 ∈ ℕ0 → (1o × {𝑥}) ∈ (ℕ0m 1o))
1817adantl 481 . . 3 (((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (1o × {𝑥}) ∈ (ℕ0m 1o))
19 eqidd 2730 . . 3 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → (𝑥 ∈ ℕ0 ↦ (1o × {𝑥})) = (𝑥 ∈ ℕ0 ↦ (1o × {𝑥})))
20 eqid 2729 . . . . . . . 8 (.g‘(mulGrp‘(1o mPoly 𝑅))) = (.g‘(mulGrp‘(1o mPoly 𝑅)))
215, 7mgpbas 20030 . . . . . . . . 9 (Base‘𝑃) = (Base‘𝑁)
2221a1i 11 . . . . . . . 8 (𝑅 ∈ Ring → (Base‘𝑃) = (Base‘𝑁))
23 eqid 2729 . . . . . . . . . 10 (mulGrp‘(1o mPoly 𝑅)) = (mulGrp‘(1o mPoly 𝑅))
242, 7ply1bas 22077 . . . . . . . . . 10 (Base‘𝑃) = (Base‘(1o mPoly 𝑅))
2523, 24mgpbas 20030 . . . . . . . . 9 (Base‘𝑃) = (Base‘(mulGrp‘(1o mPoly 𝑅)))
2625a1i 11 . . . . . . . 8 (𝑅 ∈ Ring → (Base‘𝑃) = (Base‘(mulGrp‘(1o mPoly 𝑅))))
27 ssv 3960 . . . . . . . . 9 (Base‘𝑃) ⊆ V
2827a1i 11 . . . . . . . 8 (𝑅 ∈ Ring → (Base‘𝑃) ⊆ V)
29 ovexd 7384 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥(+g𝑁)𝑦) ∈ V)
30 eqid 2729 . . . . . . . . . . . 12 (.r𝑃) = (.r𝑃)
315, 30mgpplusg 20029 . . . . . . . . . . 11 (.r𝑃) = (+g𝑁)
32 eqid 2729 . . . . . . . . . . . . 13 (1o mPoly 𝑅) = (1o mPoly 𝑅)
332, 32, 30ply1mulr 22108 . . . . . . . . . . . 12 (.r𝑃) = (.r‘(1o mPoly 𝑅))
3423, 33mgpplusg 20029 . . . . . . . . . . 11 (.r𝑃) = (+g‘(mulGrp‘(1o mPoly 𝑅)))
3531, 34eqtr3i 2754 . . . . . . . . . 10 (+g𝑁) = (+g‘(mulGrp‘(1o mPoly 𝑅)))
3635a1i 11 . . . . . . . . 9 (𝑅 ∈ Ring → (+g𝑁) = (+g‘(mulGrp‘(1o mPoly 𝑅))))
3736oveqdr 7377 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥(+g𝑁)𝑦) = (𝑥(+g‘(mulGrp‘(1o mPoly 𝑅)))𝑦))
386, 20, 22, 26, 28, 29, 37mulgpropd 18995 . . . . . . 7 (𝑅 ∈ Ring → = (.g‘(mulGrp‘(1o mPoly 𝑅))))
39383ad2ant1 1133 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → = (.g‘(mulGrp‘(1o mPoly 𝑅))))
40 eqidd 2730 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → 𝐷 = 𝐷)
413vr1val 22074 . . . . . . 7 𝑋 = ((1o mVar 𝑅)‘∅)
4241a1i 11 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → 𝑋 = ((1o mVar 𝑅)‘∅))
4339, 40, 42oveq123d 7370 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → (𝐷 𝑋) = (𝐷(.g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅)))
4443oveq2d 7365 . . . 4 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → (𝐶 · (𝐷 𝑋)) = (𝐶 · (𝐷(.g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅))))
45 psr1baslem 22067 . . . . . 6 (ℕ0m 1o) = {𝑎 ∈ (ℕ0m 1o) ∣ (𝑎 “ ℕ) ∈ Fin}
46 coe1tm.z . . . . . 6 0 = (0g𝑅)
47 eqid 2729 . . . . . 6 (1r𝑅) = (1r𝑅)
48 1on 8400 . . . . . . 7 1o ∈ On
4948a1i 11 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → 1o ∈ On)
50 eqid 2729 . . . . . 6 (1o mVar 𝑅) = (1o mVar 𝑅)
51 simp1 1136 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → 𝑅 ∈ Ring)
52 0lt1o 8422 . . . . . . 7 ∅ ∈ 1o
5352a1i 11 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → ∅ ∈ 1o)
54 simp3 1138 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → 𝐷 ∈ ℕ0)
5532, 45, 46, 47, 49, 23, 20, 50, 51, 53, 54mplcoe3 21943 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → (𝑦 ∈ (ℕ0m 1o) ↦ if(𝑦 = (𝑏 ∈ 1o ↦ if(𝑏 = ∅, 𝐷, 0)), (1r𝑅), 0 )) = (𝐷(.g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅)))
5655oveq2d 7365 . . . 4 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → (𝐶 · (𝑦 ∈ (ℕ0m 1o) ↦ if(𝑦 = (𝑏 ∈ 1o ↦ if(𝑏 = ∅, 𝐷, 0)), (1r𝑅), 0 ))) = (𝐶 · (𝐷(.g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅))))
572, 32, 4ply1vsca 22107 . . . . 5 · = ( ·𝑠 ‘(1o mPoly 𝑅))
58 elsni 4594 . . . . . . . . . . 11 (𝑏 ∈ {∅} → 𝑏 = ∅)
59 df1o2 8395 . . . . . . . . . . 11 1o = {∅}
6058, 59eleq2s 2846 . . . . . . . . . 10 (𝑏 ∈ 1o𝑏 = ∅)
6160iftrued 4484 . . . . . . . . 9 (𝑏 ∈ 1o → if(𝑏 = ∅, 𝐷, 0) = 𝐷)
6261adantl 481 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) ∧ 𝑏 ∈ 1o) → if(𝑏 = ∅, 𝐷, 0) = 𝐷)
6362mpteq2dva 5185 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → (𝑏 ∈ 1o ↦ if(𝑏 = ∅, 𝐷, 0)) = (𝑏 ∈ 1o𝐷))
64 fconstmpt 5681 . . . . . . 7 (1o × {𝐷}) = (𝑏 ∈ 1o𝐷)
6563, 64eqtr4di 2782 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → (𝑏 ∈ 1o ↦ if(𝑏 = ∅, 𝐷, 0)) = (1o × {𝐷}))
66 fconst6g 6713 . . . . . . . 8 (𝐷 ∈ ℕ0 → (1o × {𝐷}):1o⟶ℕ0)
6714, 15elmap 8798 . . . . . . . 8 ((1o × {𝐷}) ∈ (ℕ0m 1o) ↔ (1o × {𝐷}):1o⟶ℕ0)
6866, 67sylibr 234 . . . . . . 7 (𝐷 ∈ ℕ0 → (1o × {𝐷}) ∈ (ℕ0m 1o))
69683ad2ant3 1135 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → (1o × {𝐷}) ∈ (ℕ0m 1o))
7065, 69eqeltrd 2828 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → (𝑏 ∈ 1o ↦ if(𝑏 = ∅, 𝐷, 0)) ∈ (ℕ0m 1o))
71 simp2 1137 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → 𝐶𝐾)
7232, 57, 45, 47, 46, 1, 49, 51, 70, 71mplmon2 21966 . . . 4 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → (𝐶 · (𝑦 ∈ (ℕ0m 1o) ↦ if(𝑦 = (𝑏 ∈ 1o ↦ if(𝑏 = ∅, 𝐷, 0)), (1r𝑅), 0 ))) = (𝑦 ∈ (ℕ0m 1o) ↦ if(𝑦 = (𝑏 ∈ 1o ↦ if(𝑏 = ∅, 𝐷, 0)), 𝐶, 0 )))
7344, 56, 723eqtr2d 2770 . . 3 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → (𝐶 · (𝐷 𝑋)) = (𝑦 ∈ (ℕ0m 1o) ↦ if(𝑦 = (𝑏 ∈ 1o ↦ if(𝑏 = ∅, 𝐷, 0)), 𝐶, 0 )))
74 eqeq1 2733 . . . 4 (𝑦 = (1o × {𝑥}) → (𝑦 = (𝑏 ∈ 1o ↦ if(𝑏 = ∅, 𝐷, 0)) ↔ (1o × {𝑥}) = (𝑏 ∈ 1o ↦ if(𝑏 = ∅, 𝐷, 0))))
7574ifbid 4500 . . 3 (𝑦 = (1o × {𝑥}) → if(𝑦 = (𝑏 ∈ 1o ↦ if(𝑏 = ∅, 𝐷, 0)), 𝐶, 0 ) = if((1o × {𝑥}) = (𝑏 ∈ 1o ↦ if(𝑏 = ∅, 𝐷, 0)), 𝐶, 0 ))
7618, 19, 73, 75fmptco 7063 . 2 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → ((𝐶 · (𝐷 𝑋)) ∘ (𝑥 ∈ ℕ0 ↦ (1o × {𝑥}))) = (𝑥 ∈ ℕ0 ↦ if((1o × {𝑥}) = (𝑏 ∈ 1o ↦ if(𝑏 = ∅, 𝐷, 0)), 𝐶, 0 )))
7765adantr 480 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (𝑏 ∈ 1o ↦ if(𝑏 = ∅, 𝐷, 0)) = (1o × {𝐷}))
7877eqeq2d 2740 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((1o × {𝑥}) = (𝑏 ∈ 1o ↦ if(𝑏 = ∅, 𝐷, 0)) ↔ (1o × {𝑥}) = (1o × {𝐷})))
79 fveq1 6821 . . . . . . 7 ((1o × {𝑥}) = (1o × {𝐷}) → ((1o × {𝑥})‘∅) = ((1o × {𝐷})‘∅))
80 vex 3440 . . . . . . . . . 10 𝑥 ∈ V
8180fvconst2 7140 . . . . . . . . 9 (∅ ∈ 1o → ((1o × {𝑥})‘∅) = 𝑥)
8252, 81mp1i 13 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((1o × {𝑥})‘∅) = 𝑥)
83 simpl3 1194 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → 𝐷 ∈ ℕ0)
84 fvconst2g 7138 . . . . . . . . 9 ((𝐷 ∈ ℕ0 ∧ ∅ ∈ 1o) → ((1o × {𝐷})‘∅) = 𝐷)
8583, 52, 84sylancl 586 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((1o × {𝐷})‘∅) = 𝐷)
8682, 85eqeq12d 2745 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (((1o × {𝑥})‘∅) = ((1o × {𝐷})‘∅) ↔ 𝑥 = 𝐷))
8779, 86imbitrid 244 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((1o × {𝑥}) = (1o × {𝐷}) → 𝑥 = 𝐷))
88 sneq 4587 . . . . . . 7 (𝑥 = 𝐷 → {𝑥} = {𝐷})
8988xpeq2d 5649 . . . . . 6 (𝑥 = 𝐷 → (1o × {𝑥}) = (1o × {𝐷}))
9087, 89impbid1 225 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((1o × {𝑥}) = (1o × {𝐷}) ↔ 𝑥 = 𝐷))
9178, 90bitrd 279 . . . 4 (((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((1o × {𝑥}) = (𝑏 ∈ 1o ↦ if(𝑏 = ∅, 𝐷, 0)) ↔ 𝑥 = 𝐷))
9291ifbid 4500 . . 3 (((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → if((1o × {𝑥}) = (𝑏 ∈ 1o ↦ if(𝑏 = ∅, 𝐷, 0)), 𝐶, 0 ) = if(𝑥 = 𝐷, 𝐶, 0 ))
9392mpteq2dva 5185 . 2 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → (𝑥 ∈ ℕ0 ↦ if((1o × {𝑥}) = (𝑏 ∈ 1o ↦ if(𝑏 = ∅, 𝐷, 0)), 𝐶, 0 )) = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 𝐷, 𝐶, 0 )))
9412, 76, 933eqtrd 2768 1 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → (coe1‘(𝐶 · (𝐷 𝑋))) = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 𝐷, 𝐶, 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3436  wss 3903  c0 4284  ifcif 4476  {csn 4577  cmpt 5173   × cxp 5617  ccom 5623  Oncon0 6307  wf 6478  cfv 6482  (class class class)co 7349  1oc1o 8381  m cmap 8753  0cc0 11009  0cn0 12384  Basecbs 17120  +gcplusg 17161  .rcmulr 17162   ·𝑠 cvsca 17165  0gc0g 17343  .gcmg 18946  mulGrpcmgp 20025  1rcur 20066  Ringcrg 20118   mVar cmvr 21812   mPoly cmpl 21813  var1cv1 22058  Poly1cpl1 22059  coe1cco1 22060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-ofr 7614  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-sup 9332  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-fz 13411  df-fzo 13558  df-seq 13909  df-hash 14238  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-mhm 18657  df-submnd 18658  df-grp 18815  df-minusg 18816  df-sbg 18817  df-mulg 18947  df-subg 19002  df-ghm 19092  df-cntz 19196  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-subrng 20431  df-subrg 20455  df-lmod 20765  df-lss 20835  df-psr 21816  df-mvr 21817  df-mpl 21818  df-opsr 21820  df-psr1 22062  df-vr1 22063  df-ply1 22064  df-coe1 22065
This theorem is referenced by:  coe1tmfv1  22158  coe1tmfv2  22159  coe1scl  22171  gsummoncoe1  22193  decpmatid  22655  monmatcollpw  22664  mp2pm2mplem4  22694  coe1mon  33521
  Copyright terms: Public domain W3C validator