Step | Hyp | Ref
| Expression |
1 | | coe1tm.k |
. . . 4
β’ πΎ = (Baseβπ
) |
2 | | coe1tm.p |
. . . 4
β’ π = (Poly1βπ
) |
3 | | coe1tm.x |
. . . 4
β’ π = (var1βπ
) |
4 | | coe1tm.m |
. . . 4
β’ Β· = (
Β·π βπ) |
5 | | coe1tm.n |
. . . 4
β’ π = (mulGrpβπ) |
6 | | coe1tm.e |
. . . 4
β’ β =
(.gβπ) |
7 | | eqid 2732 |
. . . 4
β’
(Baseβπ) =
(Baseβπ) |
8 | 1, 2, 3, 4, 5, 6, 7 | ply1tmcl 21785 |
. . 3
β’ ((π
β Ring β§ πΆ β πΎ β§ π· β β0) β (πΆ Β· (π· β π)) β (Baseβπ)) |
9 | | eqid 2732 |
. . . 4
β’
(coe1β(πΆ Β· (π· β π))) = (coe1β(πΆ Β· (π· β π))) |
10 | | eqid 2732 |
. . . 4
β’ (π₯ β β0
β¦ (1o Γ {π₯})) = (π₯ β β0 β¦
(1o Γ {π₯})) |
11 | 9, 7, 2, 10 | coe1fval2 21725 |
. . 3
β’ ((πΆ Β· (π· β π)) β (Baseβπ) β (coe1β(πΆ Β· (π· β π))) = ((πΆ Β· (π· β π)) β (π₯ β β0 β¦
(1o Γ {π₯})))) |
12 | 8, 11 | syl 17 |
. 2
β’ ((π
β Ring β§ πΆ β πΎ β§ π· β β0) β
(coe1β(πΆ
Β·
(π· β π))) = ((πΆ Β· (π· β π)) β (π₯ β β0 β¦
(1o Γ {π₯})))) |
13 | | fconst6g 6777 |
. . . . 5
β’ (π₯ β β0
β (1o Γ {π₯}):1oβΆβ0) |
14 | | nn0ex 12474 |
. . . . . 6
β’
β0 β V |
15 | | 1oex 8472 |
. . . . . 6
β’
1o β V |
16 | 14, 15 | elmap 8861 |
. . . . 5
β’
((1o Γ {π₯}) β (β0
βm 1o) β (1o Γ {π₯}):1oβΆβ0) |
17 | 13, 16 | sylibr 233 |
. . . 4
β’ (π₯ β β0
β (1o Γ {π₯}) β (β0
βm 1o)) |
18 | 17 | adantl 482 |
. . 3
β’ (((π
β Ring β§ πΆ β πΎ β§ π· β β0) β§ π₯ β β0)
β (1o Γ {π₯}) β (β0
βm 1o)) |
19 | | eqidd 2733 |
. . 3
β’ ((π
β Ring β§ πΆ β πΎ β§ π· β β0) β (π₯ β β0
β¦ (1o Γ {π₯})) = (π₯ β β0 β¦
(1o Γ {π₯}))) |
20 | | eqid 2732 |
. . . . . . . 8
β’
(.gβ(mulGrpβ(1o mPoly π
))) =
(.gβ(mulGrpβ(1o mPoly π
))) |
21 | 5, 7 | mgpbas 19987 |
. . . . . . . . 9
β’
(Baseβπ) =
(Baseβπ) |
22 | 21 | a1i 11 |
. . . . . . . 8
β’ (π
β Ring β
(Baseβπ) =
(Baseβπ)) |
23 | | eqid 2732 |
. . . . . . . . . 10
β’
(mulGrpβ(1o mPoly π
)) = (mulGrpβ(1o mPoly
π
)) |
24 | | eqid 2732 |
. . . . . . . . . . 11
β’
(PwSer1βπ
) = (PwSer1βπ
) |
25 | 2, 24, 7 | ply1bas 21710 |
. . . . . . . . . 10
β’
(Baseβπ) =
(Baseβ(1o mPoly π
)) |
26 | 23, 25 | mgpbas 19987 |
. . . . . . . . 9
β’
(Baseβπ) =
(Baseβ(mulGrpβ(1o mPoly π
))) |
27 | 26 | a1i 11 |
. . . . . . . 8
β’ (π
β Ring β
(Baseβπ) =
(Baseβ(mulGrpβ(1o mPoly π
)))) |
28 | | ssv 4005 |
. . . . . . . . 9
β’
(Baseβπ)
β V |
29 | 28 | a1i 11 |
. . . . . . . 8
β’ (π
β Ring β
(Baseβπ) β
V) |
30 | | ovexd 7440 |
. . . . . . . 8
β’ ((π
β Ring β§ (π₯ β V β§ π¦ β V)) β (π₯(+gβπ)π¦) β V) |
31 | | eqid 2732 |
. . . . . . . . . . . 12
β’
(.rβπ) = (.rβπ) |
32 | 5, 31 | mgpplusg 19985 |
. . . . . . . . . . 11
β’
(.rβπ) = (+gβπ) |
33 | | eqid 2732 |
. . . . . . . . . . . . 13
β’
(1o mPoly π
) = (1o mPoly π
) |
34 | 2, 33, 31 | ply1mulr 21740 |
. . . . . . . . . . . 12
β’
(.rβπ) = (.rβ(1o
mPoly π
)) |
35 | 23, 34 | mgpplusg 19985 |
. . . . . . . . . . 11
β’
(.rβπ) =
(+gβ(mulGrpβ(1o mPoly π
))) |
36 | 32, 35 | eqtr3i 2762 |
. . . . . . . . . 10
β’
(+gβπ) =
(+gβ(mulGrpβ(1o mPoly π
))) |
37 | 36 | a1i 11 |
. . . . . . . . 9
β’ (π
β Ring β
(+gβπ) =
(+gβ(mulGrpβ(1o mPoly π
)))) |
38 | 37 | oveqdr 7433 |
. . . . . . . 8
β’ ((π
β Ring β§ (π₯ β V β§ π¦ β V)) β (π₯(+gβπ)π¦) = (π₯(+gβ(mulGrpβ(1o
mPoly π
)))π¦)) |
39 | 6, 20, 22, 27, 29, 30, 38 | mulgpropd 18990 |
. . . . . . 7
β’ (π
β Ring β β =
(.gβ(mulGrpβ(1o mPoly π
)))) |
40 | 39 | 3ad2ant1 1133 |
. . . . . 6
β’ ((π
β Ring β§ πΆ β πΎ β§ π· β β0) β β =
(.gβ(mulGrpβ(1o mPoly π
)))) |
41 | | eqidd 2733 |
. . . . . 6
β’ ((π
β Ring β§ πΆ β πΎ β§ π· β β0) β π· = π·) |
42 | 3 | vr1val 21707 |
. . . . . . 7
β’ π = ((1o mVar π
)ββ
) |
43 | 42 | a1i 11 |
. . . . . 6
β’ ((π
β Ring β§ πΆ β πΎ β§ π· β β0) β π = ((1o mVar π
)ββ
)) |
44 | 40, 41, 43 | oveq123d 7426 |
. . . . 5
β’ ((π
β Ring β§ πΆ β πΎ β§ π· β β0) β (π· β π) = (π·(.gβ(mulGrpβ(1o
mPoly π
)))((1o mVar
π
)ββ
))) |
45 | 44 | oveq2d 7421 |
. . . 4
β’ ((π
β Ring β§ πΆ β πΎ β§ π· β β0) β (πΆ Β· (π· β π)) = (πΆ Β· (π·(.gβ(mulGrpβ(1o
mPoly π
)))((1o mVar
π
)ββ
)))) |
46 | | psr1baslem 21700 |
. . . . . 6
β’
(β0 βm 1o) = {π β (β0
βm 1o) β£ (β‘π β β) β
Fin} |
47 | | coe1tm.z |
. . . . . 6
β’ 0 =
(0gβπ
) |
48 | | eqid 2732 |
. . . . . 6
β’
(1rβπ
) = (1rβπ
) |
49 | | 1on 8474 |
. . . . . . 7
β’
1o β On |
50 | 49 | a1i 11 |
. . . . . 6
β’ ((π
β Ring β§ πΆ β πΎ β§ π· β β0) β
1o β On) |
51 | | eqid 2732 |
. . . . . 6
β’
(1o mVar π
) = (1o mVar π
) |
52 | | simp1 1136 |
. . . . . 6
β’ ((π
β Ring β§ πΆ β πΎ β§ π· β β0) β π
β Ring) |
53 | | 0lt1o 8500 |
. . . . . . 7
β’ β
β 1o |
54 | 53 | a1i 11 |
. . . . . 6
β’ ((π
β Ring β§ πΆ β πΎ β§ π· β β0) β β
β 1o) |
55 | | simp3 1138 |
. . . . . 6
β’ ((π
β Ring β§ πΆ β πΎ β§ π· β β0) β π· β
β0) |
56 | 33, 46, 47, 48, 50, 23, 20, 51, 52, 54, 55 | mplcoe3 21584 |
. . . . 5
β’ ((π
β Ring β§ πΆ β πΎ β§ π· β β0) β (π¦ β (β0
βm 1o) β¦ if(π¦ = (π β 1o β¦ if(π = β
, π·, 0)), (1rβπ
), 0 )) = (π·(.gβ(mulGrpβ(1o
mPoly π
)))((1o mVar
π
)ββ
))) |
57 | 56 | oveq2d 7421 |
. . . 4
β’ ((π
β Ring β§ πΆ β πΎ β§ π· β β0) β (πΆ Β· (π¦ β (β0
βm 1o) β¦ if(π¦ = (π β 1o β¦ if(π = β
, π·, 0)), (1rβπ
), 0 ))) = (πΆ Β· (π·(.gβ(mulGrpβ(1o
mPoly π
)))((1o mVar
π
)ββ
)))) |
58 | 2, 33, 4 | ply1vsca 21739 |
. . . . 5
β’ Β· = (
Β·π β(1o mPoly π
)) |
59 | | elsni 4644 |
. . . . . . . . . . 11
β’ (π β {β
} β π = β
) |
60 | | df1o2 8469 |
. . . . . . . . . . 11
β’
1o = {β
} |
61 | 59, 60 | eleq2s 2851 |
. . . . . . . . . 10
β’ (π β 1o β
π =
β
) |
62 | 61 | iftrued 4535 |
. . . . . . . . 9
β’ (π β 1o β
if(π = β
, π·, 0) = π·) |
63 | 62 | adantl 482 |
. . . . . . . 8
β’ (((π
β Ring β§ πΆ β πΎ β§ π· β β0) β§ π β 1o) β
if(π = β
, π·, 0) = π·) |
64 | 63 | mpteq2dva 5247 |
. . . . . . 7
β’ ((π
β Ring β§ πΆ β πΎ β§ π· β β0) β (π β 1o β¦
if(π = β
, π·, 0)) = (π β 1o β¦ π·)) |
65 | | fconstmpt 5736 |
. . . . . . 7
β’
(1o Γ {π·}) = (π β 1o β¦ π·) |
66 | 64, 65 | eqtr4di 2790 |
. . . . . 6
β’ ((π
β Ring β§ πΆ β πΎ β§ π· β β0) β (π β 1o β¦
if(π = β
, π·, 0)) = (1o Γ
{π·})) |
67 | | fconst6g 6777 |
. . . . . . . 8
β’ (π· β β0
β (1o Γ {π·}):1oβΆβ0) |
68 | 14, 15 | elmap 8861 |
. . . . . . . 8
β’
((1o Γ {π·}) β (β0
βm 1o) β (1o Γ {π·}):1oβΆβ0) |
69 | 67, 68 | sylibr 233 |
. . . . . . 7
β’ (π· β β0
β (1o Γ {π·}) β (β0
βm 1o)) |
70 | 69 | 3ad2ant3 1135 |
. . . . . 6
β’ ((π
β Ring β§ πΆ β πΎ β§ π· β β0) β
(1o Γ {π·})
β (β0 βm 1o)) |
71 | 66, 70 | eqeltrd 2833 |
. . . . 5
β’ ((π
β Ring β§ πΆ β πΎ β§ π· β β0) β (π β 1o β¦
if(π = β
, π·, 0)) β
(β0 βm 1o)) |
72 | | simp2 1137 |
. . . . 5
β’ ((π
β Ring β§ πΆ β πΎ β§ π· β β0) β πΆ β πΎ) |
73 | 33, 58, 46, 48, 47, 1, 50, 52, 71, 72 | mplmon2 21613 |
. . . 4
β’ ((π
β Ring β§ πΆ β πΎ β§ π· β β0) β (πΆ Β· (π¦ β (β0
βm 1o) β¦ if(π¦ = (π β 1o β¦ if(π = β
, π·, 0)), (1rβπ
), 0 ))) = (π¦ β (β0
βm 1o) β¦ if(π¦ = (π β 1o β¦ if(π = β
, π·, 0)), πΆ, 0 ))) |
74 | 45, 57, 73 | 3eqtr2d 2778 |
. . 3
β’ ((π
β Ring β§ πΆ β πΎ β§ π· β β0) β (πΆ Β· (π· β π)) = (π¦ β (β0
βm 1o) β¦ if(π¦ = (π β 1o β¦ if(π = β
, π·, 0)), πΆ, 0 ))) |
75 | | eqeq1 2736 |
. . . 4
β’ (π¦ = (1o Γ {π₯}) β (π¦ = (π β 1o β¦ if(π = β
, π·, 0)) β (1o Γ {π₯}) = (π β 1o β¦ if(π = β
, π·, 0)))) |
76 | 75 | ifbid 4550 |
. . 3
β’ (π¦ = (1o Γ {π₯}) β if(π¦ = (π β 1o β¦ if(π = β
, π·, 0)), πΆ, 0 ) = if((1o
Γ {π₯}) = (π β 1o β¦
if(π = β
, π·, 0)), πΆ, 0 )) |
77 | 18, 19, 74, 76 | fmptco 7123 |
. 2
β’ ((π
β Ring β§ πΆ β πΎ β§ π· β β0) β ((πΆ Β· (π· β π)) β (π₯ β β0 β¦
(1o Γ {π₯}))) = (π₯ β β0 β¦
if((1o Γ {π₯}) = (π β 1o β¦ if(π = β
, π·, 0)), πΆ, 0 ))) |
78 | 66 | adantr 481 |
. . . . . 6
β’ (((π
β Ring β§ πΆ β πΎ β§ π· β β0) β§ π₯ β β0)
β (π β
1o β¦ if(π
= β
, π·, 0)) =
(1o Γ {π·})) |
79 | 78 | eqeq2d 2743 |
. . . . 5
β’ (((π
β Ring β§ πΆ β πΎ β§ π· β β0) β§ π₯ β β0)
β ((1o Γ {π₯}) = (π β 1o β¦ if(π = β
, π·, 0)) β (1o Γ {π₯}) = (1o Γ
{π·}))) |
80 | | fveq1 6887 |
. . . . . . 7
β’
((1o Γ {π₯}) = (1o Γ {π·}) β ((1o
Γ {π₯})ββ
)
= ((1o Γ {π·})ββ
)) |
81 | | vex 3478 |
. . . . . . . . . 10
β’ π₯ β V |
82 | 81 | fvconst2 7201 |
. . . . . . . . 9
β’ (β
β 1o β ((1o Γ {π₯})ββ
) = π₯) |
83 | 53, 82 | mp1i 13 |
. . . . . . . 8
β’ (((π
β Ring β§ πΆ β πΎ β§ π· β β0) β§ π₯ β β0)
β ((1o Γ {π₯})ββ
) = π₯) |
84 | | simpl3 1193 |
. . . . . . . . 9
β’ (((π
β Ring β§ πΆ β πΎ β§ π· β β0) β§ π₯ β β0)
β π· β
β0) |
85 | | fvconst2g 7199 |
. . . . . . . . 9
β’ ((π· β β0
β§ β
β 1o) β ((1o Γ {π·})ββ
) = π·) |
86 | 84, 53, 85 | sylancl 586 |
. . . . . . . 8
β’ (((π
β Ring β§ πΆ β πΎ β§ π· β β0) β§ π₯ β β0)
β ((1o Γ {π·})ββ
) = π·) |
87 | 83, 86 | eqeq12d 2748 |
. . . . . . 7
β’ (((π
β Ring β§ πΆ β πΎ β§ π· β β0) β§ π₯ β β0)
β (((1o Γ {π₯})ββ
) = ((1o Γ
{π·})ββ
) β
π₯ = π·)) |
88 | 80, 87 | imbitrid 243 |
. . . . . 6
β’ (((π
β Ring β§ πΆ β πΎ β§ π· β β0) β§ π₯ β β0)
β ((1o Γ {π₯}) = (1o Γ {π·}) β π₯ = π·)) |
89 | | sneq 4637 |
. . . . . . 7
β’ (π₯ = π· β {π₯} = {π·}) |
90 | 89 | xpeq2d 5705 |
. . . . . 6
β’ (π₯ = π· β (1o Γ {π₯}) = (1o Γ
{π·})) |
91 | 88, 90 | impbid1 224 |
. . . . 5
β’ (((π
β Ring β§ πΆ β πΎ β§ π· β β0) β§ π₯ β β0)
β ((1o Γ {π₯}) = (1o Γ {π·}) β π₯ = π·)) |
92 | 79, 91 | bitrd 278 |
. . . 4
β’ (((π
β Ring β§ πΆ β πΎ β§ π· β β0) β§ π₯ β β0)
β ((1o Γ {π₯}) = (π β 1o β¦ if(π = β
, π·, 0)) β π₯ = π·)) |
93 | 92 | ifbid 4550 |
. . 3
β’ (((π
β Ring β§ πΆ β πΎ β§ π· β β0) β§ π₯ β β0)
β if((1o Γ {π₯}) = (π β 1o β¦ if(π = β
, π·, 0)), πΆ, 0 ) = if(π₯ = π·, πΆ, 0 )) |
94 | 93 | mpteq2dva 5247 |
. 2
β’ ((π
β Ring β§ πΆ β πΎ β§ π· β β0) β (π₯ β β0
β¦ if((1o Γ {π₯}) = (π β 1o β¦ if(π = β
, π·, 0)), πΆ, 0 )) = (π₯ β β0 β¦ if(π₯ = π·, πΆ, 0 ))) |
95 | 12, 77, 94 | 3eqtrd 2776 |
1
β’ ((π
β Ring β§ πΆ β πΎ β§ π· β β0) β
(coe1β(πΆ
Β·
(π· β π))) = (π₯ β β0 β¦ if(π₯ = π·, πΆ, 0 ))) |