MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1tm Structured version   Visualization version   GIF version

Theorem coe1tm 20147
Description: Coefficient vector of a polynomial term. (Contributed by Stefan O'Rear, 27-Mar-2015.)
Hypotheses
Ref Expression
coe1tm.z 0 = (0g𝑅)
coe1tm.k 𝐾 = (Base‘𝑅)
coe1tm.p 𝑃 = (Poly1𝑅)
coe1tm.x 𝑋 = (var1𝑅)
coe1tm.m · = ( ·𝑠𝑃)
coe1tm.n 𝑁 = (mulGrp‘𝑃)
coe1tm.e = (.g𝑁)
Assertion
Ref Expression
coe1tm ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → (coe1‘(𝐶 · (𝐷 𝑋))) = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 𝐷, 𝐶, 0 )))
Distinct variable groups:   𝑥, 0   𝑥,𝐶   𝑥,𝐷   𝑥,𝐾   𝑥,   𝑥,𝑁   𝑥,𝑃   𝑥,𝑋   𝑥,𝑅   𝑥, ·

Proof of Theorem coe1tm
Dummy variables 𝑎 𝑏 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 coe1tm.k . . . 4 𝐾 = (Base‘𝑅)
2 coe1tm.p . . . 4 𝑃 = (Poly1𝑅)
3 coe1tm.x . . . 4 𝑋 = (var1𝑅)
4 coe1tm.m . . . 4 · = ( ·𝑠𝑃)
5 coe1tm.n . . . 4 𝑁 = (mulGrp‘𝑃)
6 coe1tm.e . . . 4 = (.g𝑁)
7 eqid 2778 . . . 4 (Base‘𝑃) = (Base‘𝑃)
81, 2, 3, 4, 5, 6, 7ply1tmcl 20146 . . 3 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → (𝐶 · (𝐷 𝑋)) ∈ (Base‘𝑃))
9 eqid 2778 . . . 4 (coe1‘(𝐶 · (𝐷 𝑋))) = (coe1‘(𝐶 · (𝐷 𝑋)))
10 eqid 2778 . . . 4 (𝑥 ∈ ℕ0 ↦ (1o × {𝑥})) = (𝑥 ∈ ℕ0 ↦ (1o × {𝑥}))
119, 7, 2, 10coe1fval2 20084 . . 3 ((𝐶 · (𝐷 𝑋)) ∈ (Base‘𝑃) → (coe1‘(𝐶 · (𝐷 𝑋))) = ((𝐶 · (𝐷 𝑋)) ∘ (𝑥 ∈ ℕ0 ↦ (1o × {𝑥}))))
128, 11syl 17 . 2 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → (coe1‘(𝐶 · (𝐷 𝑋))) = ((𝐶 · (𝐷 𝑋)) ∘ (𝑥 ∈ ℕ0 ↦ (1o × {𝑥}))))
13 fconst6g 6399 . . . . 5 (𝑥 ∈ ℕ0 → (1o × {𝑥}):1o⟶ℕ0)
14 nn0ex 11717 . . . . . 6 0 ∈ V
15 1oex 7915 . . . . . 6 1o ∈ V
1614, 15elmap 8237 . . . . 5 ((1o × {𝑥}) ∈ (ℕ0𝑚 1o) ↔ (1o × {𝑥}):1o⟶ℕ0)
1713, 16sylibr 226 . . . 4 (𝑥 ∈ ℕ0 → (1o × {𝑥}) ∈ (ℕ0𝑚 1o))
1817adantl 474 . . 3 (((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (1o × {𝑥}) ∈ (ℕ0𝑚 1o))
19 eqidd 2779 . . 3 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → (𝑥 ∈ ℕ0 ↦ (1o × {𝑥})) = (𝑥 ∈ ℕ0 ↦ (1o × {𝑥})))
20 eqid 2778 . . . . . . . 8 (.g‘(mulGrp‘(1o mPoly 𝑅))) = (.g‘(mulGrp‘(1o mPoly 𝑅)))
215, 7mgpbas 18971 . . . . . . . . 9 (Base‘𝑃) = (Base‘𝑁)
2221a1i 11 . . . . . . . 8 (𝑅 ∈ Ring → (Base‘𝑃) = (Base‘𝑁))
23 eqid 2778 . . . . . . . . . 10 (mulGrp‘(1o mPoly 𝑅)) = (mulGrp‘(1o mPoly 𝑅))
24 eqid 2778 . . . . . . . . . . 11 (PwSer1𝑅) = (PwSer1𝑅)
252, 24, 7ply1bas 20069 . . . . . . . . . 10 (Base‘𝑃) = (Base‘(1o mPoly 𝑅))
2623, 25mgpbas 18971 . . . . . . . . 9 (Base‘𝑃) = (Base‘(mulGrp‘(1o mPoly 𝑅)))
2726a1i 11 . . . . . . . 8 (𝑅 ∈ Ring → (Base‘𝑃) = (Base‘(mulGrp‘(1o mPoly 𝑅))))
28 ssv 3883 . . . . . . . . 9 (Base‘𝑃) ⊆ V
2928a1i 11 . . . . . . . 8 (𝑅 ∈ Ring → (Base‘𝑃) ⊆ V)
30 ovexd 7012 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥(+g𝑁)𝑦) ∈ V)
31 eqid 2778 . . . . . . . . . . . 12 (.r𝑃) = (.r𝑃)
325, 31mgpplusg 18969 . . . . . . . . . . 11 (.r𝑃) = (+g𝑁)
33 eqid 2778 . . . . . . . . . . . . 13 (1o mPoly 𝑅) = (1o mPoly 𝑅)
342, 33, 31ply1mulr 20101 . . . . . . . . . . . 12 (.r𝑃) = (.r‘(1o mPoly 𝑅))
3523, 34mgpplusg 18969 . . . . . . . . . . 11 (.r𝑃) = (+g‘(mulGrp‘(1o mPoly 𝑅)))
3632, 35eqtr3i 2804 . . . . . . . . . 10 (+g𝑁) = (+g‘(mulGrp‘(1o mPoly 𝑅)))
3736a1i 11 . . . . . . . . 9 (𝑅 ∈ Ring → (+g𝑁) = (+g‘(mulGrp‘(1o mPoly 𝑅))))
3837oveqdr 7006 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥(+g𝑁)𝑦) = (𝑥(+g‘(mulGrp‘(1o mPoly 𝑅)))𝑦))
396, 20, 22, 27, 29, 30, 38mulgpropd 18056 . . . . . . 7 (𝑅 ∈ Ring → = (.g‘(mulGrp‘(1o mPoly 𝑅))))
40393ad2ant1 1113 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → = (.g‘(mulGrp‘(1o mPoly 𝑅))))
41 eqidd 2779 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → 𝐷 = 𝐷)
423vr1val 20066 . . . . . . 7 𝑋 = ((1o mVar 𝑅)‘∅)
4342a1i 11 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → 𝑋 = ((1o mVar 𝑅)‘∅))
4440, 41, 43oveq123d 6999 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → (𝐷 𝑋) = (𝐷(.g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅)))
4544oveq2d 6994 . . . 4 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → (𝐶 · (𝐷 𝑋)) = (𝐶 · (𝐷(.g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅))))
46 psr1baslem 20059 . . . . . 6 (ℕ0𝑚 1o) = {𝑎 ∈ (ℕ0𝑚 1o) ∣ (𝑎 “ ℕ) ∈ Fin}
47 coe1tm.z . . . . . 6 0 = (0g𝑅)
48 eqid 2778 . . . . . 6 (1r𝑅) = (1r𝑅)
49 1on 7914 . . . . . . 7 1o ∈ On
5049a1i 11 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → 1o ∈ On)
51 eqid 2778 . . . . . 6 (1o mVar 𝑅) = (1o mVar 𝑅)
52 simp1 1116 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → 𝑅 ∈ Ring)
53 0lt1o 7933 . . . . . . 7 ∅ ∈ 1o
5453a1i 11 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → ∅ ∈ 1o)
55 simp3 1118 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → 𝐷 ∈ ℕ0)
5633, 46, 47, 48, 50, 23, 20, 51, 52, 54, 55mplcoe3 19963 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → (𝑦 ∈ (ℕ0𝑚 1o) ↦ if(𝑦 = (𝑏 ∈ 1o ↦ if(𝑏 = ∅, 𝐷, 0)), (1r𝑅), 0 )) = (𝐷(.g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅)))
5756oveq2d 6994 . . . 4 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → (𝐶 · (𝑦 ∈ (ℕ0𝑚 1o) ↦ if(𝑦 = (𝑏 ∈ 1o ↦ if(𝑏 = ∅, 𝐷, 0)), (1r𝑅), 0 ))) = (𝐶 · (𝐷(.g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅))))
582, 33, 4ply1vsca 20100 . . . . 5 · = ( ·𝑠 ‘(1o mPoly 𝑅))
59 elsni 4459 . . . . . . . . . . 11 (𝑏 ∈ {∅} → 𝑏 = ∅)
60 df1o2 7920 . . . . . . . . . . 11 1o = {∅}
6159, 60eleq2s 2884 . . . . . . . . . 10 (𝑏 ∈ 1o𝑏 = ∅)
6261iftrued 4359 . . . . . . . . 9 (𝑏 ∈ 1o → if(𝑏 = ∅, 𝐷, 0) = 𝐷)
6362adantl 474 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) ∧ 𝑏 ∈ 1o) → if(𝑏 = ∅, 𝐷, 0) = 𝐷)
6463mpteq2dva 5023 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → (𝑏 ∈ 1o ↦ if(𝑏 = ∅, 𝐷, 0)) = (𝑏 ∈ 1o𝐷))
65 fconstmpt 5465 . . . . . . 7 (1o × {𝐷}) = (𝑏 ∈ 1o𝐷)
6664, 65syl6eqr 2832 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → (𝑏 ∈ 1o ↦ if(𝑏 = ∅, 𝐷, 0)) = (1o × {𝐷}))
67 fconst6g 6399 . . . . . . . 8 (𝐷 ∈ ℕ0 → (1o × {𝐷}):1o⟶ℕ0)
6814, 15elmap 8237 . . . . . . . 8 ((1o × {𝐷}) ∈ (ℕ0𝑚 1o) ↔ (1o × {𝐷}):1o⟶ℕ0)
6967, 68sylibr 226 . . . . . . 7 (𝐷 ∈ ℕ0 → (1o × {𝐷}) ∈ (ℕ0𝑚 1o))
70693ad2ant3 1115 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → (1o × {𝐷}) ∈ (ℕ0𝑚 1o))
7166, 70eqeltrd 2866 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → (𝑏 ∈ 1o ↦ if(𝑏 = ∅, 𝐷, 0)) ∈ (ℕ0𝑚 1o))
72 simp2 1117 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → 𝐶𝐾)
7333, 58, 46, 48, 47, 1, 50, 52, 71, 72mplmon2 19989 . . . 4 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → (𝐶 · (𝑦 ∈ (ℕ0𝑚 1o) ↦ if(𝑦 = (𝑏 ∈ 1o ↦ if(𝑏 = ∅, 𝐷, 0)), (1r𝑅), 0 ))) = (𝑦 ∈ (ℕ0𝑚 1o) ↦ if(𝑦 = (𝑏 ∈ 1o ↦ if(𝑏 = ∅, 𝐷, 0)), 𝐶, 0 )))
7445, 57, 733eqtr2d 2820 . . 3 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → (𝐶 · (𝐷 𝑋)) = (𝑦 ∈ (ℕ0𝑚 1o) ↦ if(𝑦 = (𝑏 ∈ 1o ↦ if(𝑏 = ∅, 𝐷, 0)), 𝐶, 0 )))
75 eqeq1 2782 . . . 4 (𝑦 = (1o × {𝑥}) → (𝑦 = (𝑏 ∈ 1o ↦ if(𝑏 = ∅, 𝐷, 0)) ↔ (1o × {𝑥}) = (𝑏 ∈ 1o ↦ if(𝑏 = ∅, 𝐷, 0))))
7675ifbid 4373 . . 3 (𝑦 = (1o × {𝑥}) → if(𝑦 = (𝑏 ∈ 1o ↦ if(𝑏 = ∅, 𝐷, 0)), 𝐶, 0 ) = if((1o × {𝑥}) = (𝑏 ∈ 1o ↦ if(𝑏 = ∅, 𝐷, 0)), 𝐶, 0 ))
7718, 19, 74, 76fmptco 6716 . 2 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → ((𝐶 · (𝐷 𝑋)) ∘ (𝑥 ∈ ℕ0 ↦ (1o × {𝑥}))) = (𝑥 ∈ ℕ0 ↦ if((1o × {𝑥}) = (𝑏 ∈ 1o ↦ if(𝑏 = ∅, 𝐷, 0)), 𝐶, 0 )))
7866adantr 473 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (𝑏 ∈ 1o ↦ if(𝑏 = ∅, 𝐷, 0)) = (1o × {𝐷}))
7978eqeq2d 2788 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((1o × {𝑥}) = (𝑏 ∈ 1o ↦ if(𝑏 = ∅, 𝐷, 0)) ↔ (1o × {𝑥}) = (1o × {𝐷})))
80 fveq1 6500 . . . . . . 7 ((1o × {𝑥}) = (1o × {𝐷}) → ((1o × {𝑥})‘∅) = ((1o × {𝐷})‘∅))
81 vex 3418 . . . . . . . . . 10 𝑥 ∈ V
8281fvconst2 6795 . . . . . . . . 9 (∅ ∈ 1o → ((1o × {𝑥})‘∅) = 𝑥)
8353, 82mp1i 13 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((1o × {𝑥})‘∅) = 𝑥)
84 simpl3 1173 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → 𝐷 ∈ ℕ0)
85 fvconst2g 6793 . . . . . . . . 9 ((𝐷 ∈ ℕ0 ∧ ∅ ∈ 1o) → ((1o × {𝐷})‘∅) = 𝐷)
8684, 53, 85sylancl 577 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((1o × {𝐷})‘∅) = 𝐷)
8783, 86eqeq12d 2793 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (((1o × {𝑥})‘∅) = ((1o × {𝐷})‘∅) ↔ 𝑥 = 𝐷))
8880, 87syl5ib 236 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((1o × {𝑥}) = (1o × {𝐷}) → 𝑥 = 𝐷))
89 sneq 4452 . . . . . . 7 (𝑥 = 𝐷 → {𝑥} = {𝐷})
9089xpeq2d 5438 . . . . . 6 (𝑥 = 𝐷 → (1o × {𝑥}) = (1o × {𝐷}))
9188, 90impbid1 217 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((1o × {𝑥}) = (1o × {𝐷}) ↔ 𝑥 = 𝐷))
9279, 91bitrd 271 . . . 4 (((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((1o × {𝑥}) = (𝑏 ∈ 1o ↦ if(𝑏 = ∅, 𝐷, 0)) ↔ 𝑥 = 𝐷))
9392ifbid 4373 . . 3 (((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → if((1o × {𝑥}) = (𝑏 ∈ 1o ↦ if(𝑏 = ∅, 𝐷, 0)), 𝐶, 0 ) = if(𝑥 = 𝐷, 𝐶, 0 ))
9493mpteq2dva 5023 . 2 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → (𝑥 ∈ ℕ0 ↦ if((1o × {𝑥}) = (𝑏 ∈ 1o ↦ if(𝑏 = ∅, 𝐷, 0)), 𝐶, 0 )) = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 𝐷, 𝐶, 0 )))
9512, 77, 943eqtrd 2818 1 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → (coe1‘(𝐶 · (𝐷 𝑋))) = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 𝐷, 𝐶, 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387  w3a 1068   = wceq 1507  wcel 2050  Vcvv 3415  wss 3831  c0 4180  ifcif 4351  {csn 4442  cmpt 5009   × cxp 5406  ccom 5412  Oncon0 6031  wf 6186  cfv 6190  (class class class)co 6978  1oc1o 7900  𝑚 cmap 8208  0cc0 10337  0cn0 11710  Basecbs 16342  +gcplusg 16424  .rcmulr 16425   ·𝑠 cvsca 16428  0gc0g 16572  .gcmg 18014  mulGrpcmgp 18965  1rcur 18977  Ringcrg 19023   mVar cmvr 19849   mPoly cmpl 19850  PwSer1cps1 20049  var1cv1 20050  Poly1cpl1 20051  coe1cco1 20052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5050  ax-sep 5061  ax-nul 5068  ax-pow 5120  ax-pr 5187  ax-un 7281  ax-cnex 10393  ax-resscn 10394  ax-1cn 10395  ax-icn 10396  ax-addcl 10397  ax-addrcl 10398  ax-mulcl 10399  ax-mulrcl 10400  ax-mulcom 10401  ax-addass 10402  ax-mulass 10403  ax-distr 10404  ax-i2m1 10405  ax-1ne0 10406  ax-1rid 10407  ax-rnegex 10408  ax-rrecex 10409  ax-cnre 10410  ax-pre-lttri 10411  ax-pre-lttrn 10412  ax-pre-ltadd 10413  ax-pre-mulgt0 10414
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2583  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3417  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4181  df-if 4352  df-pw 4425  df-sn 4443  df-pr 4445  df-tp 4447  df-op 4449  df-uni 4714  df-int 4751  df-iun 4795  df-iin 4796  df-br 4931  df-opab 4993  df-mpt 5010  df-tr 5032  df-id 5313  df-eprel 5318  df-po 5327  df-so 5328  df-fr 5367  df-se 5368  df-we 5369  df-xp 5414  df-rel 5415  df-cnv 5416  df-co 5417  df-dm 5418  df-rn 5419  df-res 5420  df-ima 5421  df-pred 5988  df-ord 6034  df-on 6035  df-lim 6036  df-suc 6037  df-iota 6154  df-fun 6192  df-fn 6193  df-f 6194  df-f1 6195  df-fo 6196  df-f1o 6197  df-fv 6198  df-isom 6199  df-riota 6939  df-ov 6981  df-oprab 6982  df-mpo 6983  df-of 7229  df-ofr 7230  df-om 7399  df-1st 7503  df-2nd 7504  df-supp 7636  df-wrecs 7752  df-recs 7814  df-rdg 7852  df-1o 7907  df-2o 7908  df-oadd 7911  df-er 8091  df-map 8210  df-pm 8211  df-ixp 8262  df-en 8309  df-dom 8310  df-sdom 8311  df-fin 8312  df-fsupp 8631  df-oi 8771  df-card 9164  df-pnf 10478  df-mnf 10479  df-xr 10480  df-ltxr 10481  df-le 10482  df-sub 10674  df-neg 10675  df-nn 11442  df-2 11506  df-3 11507  df-4 11508  df-5 11509  df-6 11510  df-7 11511  df-8 11512  df-9 11513  df-n0 11711  df-z 11797  df-dec 11915  df-uz 12062  df-fz 12712  df-fzo 12853  df-seq 13188  df-hash 13509  df-struct 16344  df-ndx 16345  df-slot 16346  df-base 16348  df-sets 16349  df-ress 16350  df-plusg 16437  df-mulr 16438  df-sca 16440  df-vsca 16441  df-tset 16443  df-ple 16444  df-0g 16574  df-gsum 16575  df-mre 16718  df-mrc 16719  df-acs 16721  df-mgm 17713  df-sgrp 17755  df-mnd 17766  df-mhm 17806  df-submnd 17807  df-grp 17897  df-minusg 17898  df-sbg 17899  df-mulg 18015  df-subg 18063  df-ghm 18130  df-cntz 18221  df-cmn 18671  df-abl 18672  df-mgp 18966  df-ur 18978  df-ring 19025  df-subrg 19259  df-lmod 19361  df-lss 19429  df-psr 19853  df-mvr 19854  df-mpl 19855  df-opsr 19857  df-psr1 20054  df-vr1 20055  df-ply1 20056  df-coe1 20057
This theorem is referenced by:  coe1tmfv1  20148  coe1tmfv2  20149  coe1scl  20161  gsummoncoe1  20178  decpmatid  21085  monmatcollpw  21094  mp2pm2mplem4  21124
  Copyright terms: Public domain W3C validator