Step | Hyp | Ref
| Expression |
1 | | coe1tm.k |
. . . 4
⊢ 𝐾 = (Base‘𝑅) |
2 | | coe1tm.p |
. . . 4
⊢ 𝑃 = (Poly1‘𝑅) |
3 | | coe1tm.x |
. . . 4
⊢ 𝑋 = (var1‘𝑅) |
4 | | coe1tm.m |
. . . 4
⊢ · = (
·𝑠 ‘𝑃) |
5 | | coe1tm.n |
. . . 4
⊢ 𝑁 = (mulGrp‘𝑃) |
6 | | coe1tm.e |
. . . 4
⊢ ↑ =
(.g‘𝑁) |
7 | | eqid 2740 |
. . . 4
⊢
(Base‘𝑃) =
(Base‘𝑃) |
8 | 1, 2, 3, 4, 5, 6, 7 | ply1tmcl 22296 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) → (𝐶 · (𝐷 ↑ 𝑋)) ∈ (Base‘𝑃)) |
9 | | eqid 2740 |
. . . 4
⊢
(coe1‘(𝐶 · (𝐷 ↑ 𝑋))) = (coe1‘(𝐶 · (𝐷 ↑ 𝑋))) |
10 | | eqid 2740 |
. . . 4
⊢ (𝑥 ∈ ℕ0
↦ (1o × {𝑥})) = (𝑥 ∈ ℕ0 ↦
(1o × {𝑥})) |
11 | 9, 7, 2, 10 | coe1fval2 22233 |
. . 3
⊢ ((𝐶 · (𝐷 ↑ 𝑋)) ∈ (Base‘𝑃) → (coe1‘(𝐶 · (𝐷 ↑ 𝑋))) = ((𝐶 · (𝐷 ↑ 𝑋)) ∘ (𝑥 ∈ ℕ0 ↦
(1o × {𝑥})))) |
12 | 8, 11 | syl 17 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) →
(coe1‘(𝐶
·
(𝐷 ↑ 𝑋))) = ((𝐶 · (𝐷 ↑ 𝑋)) ∘ (𝑥 ∈ ℕ0 ↦
(1o × {𝑥})))) |
13 | | fconst6g 6810 |
. . . . 5
⊢ (𝑥 ∈ ℕ0
→ (1o × {𝑥}):1o⟶ℕ0) |
14 | | nn0ex 12559 |
. . . . . 6
⊢
ℕ0 ∈ V |
15 | | 1oex 8532 |
. . . . . 6
⊢
1o ∈ V |
16 | 14, 15 | elmap 8929 |
. . . . 5
⊢
((1o × {𝑥}) ∈ (ℕ0
↑m 1o) ↔ (1o × {𝑥}):1o⟶ℕ0) |
17 | 13, 16 | sylibr 234 |
. . . 4
⊢ (𝑥 ∈ ℕ0
→ (1o × {𝑥}) ∈ (ℕ0
↑m 1o)) |
18 | 17 | adantl 481 |
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0)
→ (1o × {𝑥}) ∈ (ℕ0
↑m 1o)) |
19 | | eqidd 2741 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) → (𝑥 ∈ ℕ0
↦ (1o × {𝑥})) = (𝑥 ∈ ℕ0 ↦
(1o × {𝑥}))) |
20 | | eqid 2740 |
. . . . . . . 8
⊢
(.g‘(mulGrp‘(1o mPoly 𝑅))) =
(.g‘(mulGrp‘(1o mPoly 𝑅))) |
21 | 5, 7 | mgpbas 20167 |
. . . . . . . . 9
⊢
(Base‘𝑃) =
(Base‘𝑁) |
22 | 21 | a1i 11 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring →
(Base‘𝑃) =
(Base‘𝑁)) |
23 | | eqid 2740 |
. . . . . . . . . 10
⊢
(mulGrp‘(1o mPoly 𝑅)) = (mulGrp‘(1o mPoly
𝑅)) |
24 | 2, 7 | ply1bas 22217 |
. . . . . . . . . 10
⊢
(Base‘𝑃) =
(Base‘(1o mPoly 𝑅)) |
25 | 23, 24 | mgpbas 20167 |
. . . . . . . . 9
⊢
(Base‘𝑃) =
(Base‘(mulGrp‘(1o mPoly 𝑅))) |
26 | 25 | a1i 11 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring →
(Base‘𝑃) =
(Base‘(mulGrp‘(1o mPoly 𝑅)))) |
27 | | ssv 4033 |
. . . . . . . . 9
⊢
(Base‘𝑃)
⊆ V |
28 | 27 | a1i 11 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring →
(Base‘𝑃) ⊆
V) |
29 | | ovexd 7483 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥(+g‘𝑁)𝑦) ∈ V) |
30 | | eqid 2740 |
. . . . . . . . . . . 12
⊢
(.r‘𝑃) = (.r‘𝑃) |
31 | 5, 30 | mgpplusg 20165 |
. . . . . . . . . . 11
⊢
(.r‘𝑃) = (+g‘𝑁) |
32 | | eqid 2740 |
. . . . . . . . . . . . 13
⊢
(1o mPoly 𝑅) = (1o mPoly 𝑅) |
33 | 2, 32, 30 | ply1mulr 22248 |
. . . . . . . . . . . 12
⊢
(.r‘𝑃) = (.r‘(1o
mPoly 𝑅)) |
34 | 23, 33 | mgpplusg 20165 |
. . . . . . . . . . 11
⊢
(.r‘𝑃) =
(+g‘(mulGrp‘(1o mPoly 𝑅))) |
35 | 31, 34 | eqtr3i 2770 |
. . . . . . . . . 10
⊢
(+g‘𝑁) =
(+g‘(mulGrp‘(1o mPoly 𝑅))) |
36 | 35 | a1i 11 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring →
(+g‘𝑁) =
(+g‘(mulGrp‘(1o mPoly 𝑅)))) |
37 | 36 | oveqdr 7476 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥(+g‘𝑁)𝑦) = (𝑥(+g‘(mulGrp‘(1o
mPoly 𝑅)))𝑦)) |
38 | 6, 20, 22, 26, 28, 29, 37 | mulgpropd 19156 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → ↑ =
(.g‘(mulGrp‘(1o mPoly 𝑅)))) |
39 | 38 | 3ad2ant1 1133 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) → ↑ =
(.g‘(mulGrp‘(1o mPoly 𝑅)))) |
40 | | eqidd 2741 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) → 𝐷 = 𝐷) |
41 | 3 | vr1val 22214 |
. . . . . . 7
⊢ 𝑋 = ((1o mVar 𝑅)‘∅) |
42 | 41 | a1i 11 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) → 𝑋 = ((1o mVar 𝑅)‘∅)) |
43 | 39, 40, 42 | oveq123d 7469 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) → (𝐷 ↑ 𝑋) = (𝐷(.g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘∅))) |
44 | 43 | oveq2d 7464 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) → (𝐶 · (𝐷 ↑ 𝑋)) = (𝐶 · (𝐷(.g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘∅)))) |
45 | | psr1baslem 22207 |
. . . . . 6
⊢
(ℕ0 ↑m 1o) = {𝑎 ∈ (ℕ0
↑m 1o) ∣ (◡𝑎 “ ℕ) ∈
Fin} |
46 | | coe1tm.z |
. . . . . 6
⊢ 0 =
(0g‘𝑅) |
47 | | eqid 2740 |
. . . . . 6
⊢
(1r‘𝑅) = (1r‘𝑅) |
48 | | 1on 8534 |
. . . . . . 7
⊢
1o ∈ On |
49 | 48 | a1i 11 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) →
1o ∈ On) |
50 | | eqid 2740 |
. . . . . 6
⊢
(1o mVar 𝑅) = (1o mVar 𝑅) |
51 | | simp1 1136 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) → 𝑅 ∈ Ring) |
52 | | 0lt1o 8560 |
. . . . . . 7
⊢ ∅
∈ 1o |
53 | 52 | a1i 11 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) → ∅
∈ 1o) |
54 | | simp3 1138 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) → 𝐷 ∈
ℕ0) |
55 | 32, 45, 46, 47, 49, 23, 20, 50, 51, 53, 54 | mplcoe3 22079 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) → (𝑦 ∈ (ℕ0
↑m 1o) ↦ if(𝑦 = (𝑏 ∈ 1o ↦ if(𝑏 = ∅, 𝐷, 0)), (1r‘𝑅), 0 )) = (𝐷(.g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘∅))) |
56 | 55 | oveq2d 7464 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) → (𝐶 · (𝑦 ∈ (ℕ0
↑m 1o) ↦ if(𝑦 = (𝑏 ∈ 1o ↦ if(𝑏 = ∅, 𝐷, 0)), (1r‘𝑅), 0 ))) = (𝐶 · (𝐷(.g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘∅)))) |
57 | 2, 32, 4 | ply1vsca 22247 |
. . . . 5
⊢ · = (
·𝑠 ‘(1o mPoly 𝑅)) |
58 | | elsni 4665 |
. . . . . . . . . . 11
⊢ (𝑏 ∈ {∅} → 𝑏 = ∅) |
59 | | df1o2 8529 |
. . . . . . . . . . 11
⊢
1o = {∅} |
60 | 58, 59 | eleq2s 2862 |
. . . . . . . . . 10
⊢ (𝑏 ∈ 1o →
𝑏 =
∅) |
61 | 60 | iftrued 4556 |
. . . . . . . . 9
⊢ (𝑏 ∈ 1o →
if(𝑏 = ∅, 𝐷, 0) = 𝐷) |
62 | 61 | adantl 481 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) ∧ 𝑏 ∈ 1o) →
if(𝑏 = ∅, 𝐷, 0) = 𝐷) |
63 | 62 | mpteq2dva 5266 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) → (𝑏 ∈ 1o ↦
if(𝑏 = ∅, 𝐷, 0)) = (𝑏 ∈ 1o ↦ 𝐷)) |
64 | | fconstmpt 5762 |
. . . . . . 7
⊢
(1o × {𝐷}) = (𝑏 ∈ 1o ↦ 𝐷) |
65 | 63, 64 | eqtr4di 2798 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) → (𝑏 ∈ 1o ↦
if(𝑏 = ∅, 𝐷, 0)) = (1o ×
{𝐷})) |
66 | | fconst6g 6810 |
. . . . . . . 8
⊢ (𝐷 ∈ ℕ0
→ (1o × {𝐷}):1o⟶ℕ0) |
67 | 14, 15 | elmap 8929 |
. . . . . . . 8
⊢
((1o × {𝐷}) ∈ (ℕ0
↑m 1o) ↔ (1o × {𝐷}):1o⟶ℕ0) |
68 | 66, 67 | sylibr 234 |
. . . . . . 7
⊢ (𝐷 ∈ ℕ0
→ (1o × {𝐷}) ∈ (ℕ0
↑m 1o)) |
69 | 68 | 3ad2ant3 1135 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) →
(1o × {𝐷})
∈ (ℕ0 ↑m 1o)) |
70 | 65, 69 | eqeltrd 2844 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) → (𝑏 ∈ 1o ↦
if(𝑏 = ∅, 𝐷, 0)) ∈
(ℕ0 ↑m 1o)) |
71 | | simp2 1137 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) → 𝐶 ∈ 𝐾) |
72 | 32, 57, 45, 47, 46, 1, 49, 51, 70, 71 | mplmon2 22108 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) → (𝐶 · (𝑦 ∈ (ℕ0
↑m 1o) ↦ if(𝑦 = (𝑏 ∈ 1o ↦ if(𝑏 = ∅, 𝐷, 0)), (1r‘𝑅), 0 ))) = (𝑦 ∈ (ℕ0
↑m 1o) ↦ if(𝑦 = (𝑏 ∈ 1o ↦ if(𝑏 = ∅, 𝐷, 0)), 𝐶, 0 ))) |
73 | 44, 56, 72 | 3eqtr2d 2786 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) → (𝐶 · (𝐷 ↑ 𝑋)) = (𝑦 ∈ (ℕ0
↑m 1o) ↦ if(𝑦 = (𝑏 ∈ 1o ↦ if(𝑏 = ∅, 𝐷, 0)), 𝐶, 0 ))) |
74 | | eqeq1 2744 |
. . . 4
⊢ (𝑦 = (1o × {𝑥}) → (𝑦 = (𝑏 ∈ 1o ↦ if(𝑏 = ∅, 𝐷, 0)) ↔ (1o × {𝑥}) = (𝑏 ∈ 1o ↦ if(𝑏 = ∅, 𝐷, 0)))) |
75 | 74 | ifbid 4571 |
. . 3
⊢ (𝑦 = (1o × {𝑥}) → if(𝑦 = (𝑏 ∈ 1o ↦ if(𝑏 = ∅, 𝐷, 0)), 𝐶, 0 ) = if((1o
× {𝑥}) = (𝑏 ∈ 1o ↦
if(𝑏 = ∅, 𝐷, 0)), 𝐶, 0 )) |
76 | 18, 19, 73, 75 | fmptco 7163 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) → ((𝐶 · (𝐷 ↑ 𝑋)) ∘ (𝑥 ∈ ℕ0 ↦
(1o × {𝑥}))) = (𝑥 ∈ ℕ0 ↦
if((1o × {𝑥}) = (𝑏 ∈ 1o ↦ if(𝑏 = ∅, 𝐷, 0)), 𝐶, 0 ))) |
77 | 65 | adantr 480 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0)
→ (𝑏 ∈
1o ↦ if(𝑏
= ∅, 𝐷, 0)) =
(1o × {𝐷})) |
78 | 77 | eqeq2d 2751 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0)
→ ((1o × {𝑥}) = (𝑏 ∈ 1o ↦ if(𝑏 = ∅, 𝐷, 0)) ↔ (1o × {𝑥}) = (1o ×
{𝐷}))) |
79 | | fveq1 6919 |
. . . . . . 7
⊢
((1o × {𝑥}) = (1o × {𝐷}) → ((1o
× {𝑥})‘∅)
= ((1o × {𝐷})‘∅)) |
80 | | vex 3492 |
. . . . . . . . . 10
⊢ 𝑥 ∈ V |
81 | 80 | fvconst2 7241 |
. . . . . . . . 9
⊢ (∅
∈ 1o → ((1o × {𝑥})‘∅) = 𝑥) |
82 | 52, 81 | mp1i 13 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0)
→ ((1o × {𝑥})‘∅) = 𝑥) |
83 | | simpl3 1193 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0)
→ 𝐷 ∈
ℕ0) |
84 | | fvconst2g 7239 |
. . . . . . . . 9
⊢ ((𝐷 ∈ ℕ0
∧ ∅ ∈ 1o) → ((1o × {𝐷})‘∅) = 𝐷) |
85 | 83, 52, 84 | sylancl 585 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0)
→ ((1o × {𝐷})‘∅) = 𝐷) |
86 | 82, 85 | eqeq12d 2756 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0)
→ (((1o × {𝑥})‘∅) = ((1o ×
{𝐷})‘∅) ↔
𝑥 = 𝐷)) |
87 | 79, 86 | imbitrid 244 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0)
→ ((1o × {𝑥}) = (1o × {𝐷}) → 𝑥 = 𝐷)) |
88 | | sneq 4658 |
. . . . . . 7
⊢ (𝑥 = 𝐷 → {𝑥} = {𝐷}) |
89 | 88 | xpeq2d 5730 |
. . . . . 6
⊢ (𝑥 = 𝐷 → (1o × {𝑥}) = (1o ×
{𝐷})) |
90 | 87, 89 | impbid1 225 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0)
→ ((1o × {𝑥}) = (1o × {𝐷}) ↔ 𝑥 = 𝐷)) |
91 | 78, 90 | bitrd 279 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0)
→ ((1o × {𝑥}) = (𝑏 ∈ 1o ↦ if(𝑏 = ∅, 𝐷, 0)) ↔ 𝑥 = 𝐷)) |
92 | 91 | ifbid 4571 |
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0)
→ if((1o × {𝑥}) = (𝑏 ∈ 1o ↦ if(𝑏 = ∅, 𝐷, 0)), 𝐶, 0 ) = if(𝑥 = 𝐷, 𝐶, 0 )) |
93 | 92 | mpteq2dva 5266 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) → (𝑥 ∈ ℕ0
↦ if((1o × {𝑥}) = (𝑏 ∈ 1o ↦ if(𝑏 = ∅, 𝐷, 0)), 𝐶, 0 )) = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 𝐷, 𝐶, 0 ))) |
94 | 12, 76, 93 | 3eqtrd 2784 |
1
⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) →
(coe1‘(𝐶
·
(𝐷 ↑ 𝑋))) = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 𝐷, 𝐶, 0 ))) |