|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > evl1var | Structured version Visualization version GIF version | ||
| Description: Polynomial evaluation maps the variable to the identity function. (Contributed by Mario Carneiro, 12-Jun-2015.) | 
| Ref | Expression | 
|---|---|
| evl1var.q | ⊢ 𝑂 = (eval1‘𝑅) | 
| evl1var.v | ⊢ 𝑋 = (var1‘𝑅) | 
| evl1var.b | ⊢ 𝐵 = (Base‘𝑅) | 
| Ref | Expression | 
|---|---|
| evl1var | ⊢ (𝑅 ∈ CRing → (𝑂‘𝑋) = ( I ↾ 𝐵)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | crngring 20243 | . . . 4 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
| 2 | evl1var.v | . . . . 5 ⊢ 𝑋 = (var1‘𝑅) | |
| 3 | eqid 2736 | . . . . 5 ⊢ (Poly1‘𝑅) = (Poly1‘𝑅) | |
| 4 | eqid 2736 | . . . . 5 ⊢ (Base‘(Poly1‘𝑅)) = (Base‘(Poly1‘𝑅)) | |
| 5 | 2, 3, 4 | vr1cl 22220 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑋 ∈ (Base‘(Poly1‘𝑅))) | 
| 6 | 1, 5 | syl 17 | . . 3 ⊢ (𝑅 ∈ CRing → 𝑋 ∈ (Base‘(Poly1‘𝑅))) | 
| 7 | evl1var.q | . . . 4 ⊢ 𝑂 = (eval1‘𝑅) | |
| 8 | eqid 2736 | . . . 4 ⊢ (1o eval 𝑅) = (1o eval 𝑅) | |
| 9 | evl1var.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 10 | eqid 2736 | . . . 4 ⊢ (1o mPoly 𝑅) = (1o mPoly 𝑅) | |
| 11 | 3, 4 | ply1bas 22197 | . . . 4 ⊢ (Base‘(Poly1‘𝑅)) = (Base‘(1o mPoly 𝑅)) | 
| 12 | 7, 8, 9, 10, 11 | evl1val 22334 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ (Base‘(Poly1‘𝑅))) → (𝑂‘𝑋) = (((1o eval 𝑅)‘𝑋) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) | 
| 13 | 6, 12 | mpdan 687 | . 2 ⊢ (𝑅 ∈ CRing → (𝑂‘𝑋) = (((1o eval 𝑅)‘𝑋) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) | 
| 14 | df1o2 8514 | . . . . 5 ⊢ 1o = {∅} | |
| 15 | 9 | fvexi 6919 | . . . . 5 ⊢ 𝐵 ∈ V | 
| 16 | 0ex 5306 | . . . . 5 ⊢ ∅ ∈ V | |
| 17 | eqid 2736 | . . . . 5 ⊢ (𝑧 ∈ (𝐵 ↑m 1o) ↦ (𝑧‘∅)) = (𝑧 ∈ (𝐵 ↑m 1o) ↦ (𝑧‘∅)) | |
| 18 | 14, 15, 16, 17 | mapsncnv 8934 | . . . 4 ⊢ ◡(𝑧 ∈ (𝐵 ↑m 1o) ↦ (𝑧‘∅)) = (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})) | 
| 19 | 18 | coeq2i 5870 | . . 3 ⊢ (((1o eval 𝑅)‘𝑋) ∘ ◡(𝑧 ∈ (𝐵 ↑m 1o) ↦ (𝑧‘∅))) = (((1o eval 𝑅)‘𝑋) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))) | 
| 20 | 9 | ressid 17291 | . . . . . . . . 9 ⊢ (𝑅 ∈ CRing → (𝑅 ↾s 𝐵) = 𝑅) | 
| 21 | 20 | oveq2d 7448 | . . . . . . . 8 ⊢ (𝑅 ∈ CRing → (1o mVar (𝑅 ↾s 𝐵)) = (1o mVar 𝑅)) | 
| 22 | 21 | fveq1d 6907 | . . . . . . 7 ⊢ (𝑅 ∈ CRing → ((1o mVar (𝑅 ↾s 𝐵))‘∅) = ((1o mVar 𝑅)‘∅)) | 
| 23 | 2 | vr1val 22194 | . . . . . . 7 ⊢ 𝑋 = ((1o mVar 𝑅)‘∅) | 
| 24 | 22, 23 | eqtr4di 2794 | . . . . . 6 ⊢ (𝑅 ∈ CRing → ((1o mVar (𝑅 ↾s 𝐵))‘∅) = 𝑋) | 
| 25 | 24 | fveq2d 6909 | . . . . 5 ⊢ (𝑅 ∈ CRing → ((1o eval 𝑅)‘((1o mVar (𝑅 ↾s 𝐵))‘∅)) = ((1o eval 𝑅)‘𝑋)) | 
| 26 | 8, 9 | evlval 22120 | . . . . . 6 ⊢ (1o eval 𝑅) = ((1o evalSub 𝑅)‘𝐵) | 
| 27 | eqid 2736 | . . . . . 6 ⊢ (1o mVar (𝑅 ↾s 𝐵)) = (1o mVar (𝑅 ↾s 𝐵)) | |
| 28 | eqid 2736 | . . . . . 6 ⊢ (𝑅 ↾s 𝐵) = (𝑅 ↾s 𝐵) | |
| 29 | 1on 8519 | . . . . . . 7 ⊢ 1o ∈ On | |
| 30 | 29 | a1i 11 | . . . . . 6 ⊢ (𝑅 ∈ CRing → 1o ∈ On) | 
| 31 | id 22 | . . . . . 6 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ CRing) | |
| 32 | 9 | subrgid 20574 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → 𝐵 ∈ (SubRing‘𝑅)) | 
| 33 | 1, 32 | syl 17 | . . . . . 6 ⊢ (𝑅 ∈ CRing → 𝐵 ∈ (SubRing‘𝑅)) | 
| 34 | 0lt1o 8543 | . . . . . . 7 ⊢ ∅ ∈ 1o | |
| 35 | 34 | a1i 11 | . . . . . 6 ⊢ (𝑅 ∈ CRing → ∅ ∈ 1o) | 
| 36 | 26, 27, 28, 9, 30, 31, 33, 35 | evlsvar 22115 | . . . . 5 ⊢ (𝑅 ∈ CRing → ((1o eval 𝑅)‘((1o mVar (𝑅 ↾s 𝐵))‘∅)) = (𝑧 ∈ (𝐵 ↑m 1o) ↦ (𝑧‘∅))) | 
| 37 | 25, 36 | eqtr3d 2778 | . . . 4 ⊢ (𝑅 ∈ CRing → ((1o eval 𝑅)‘𝑋) = (𝑧 ∈ (𝐵 ↑m 1o) ↦ (𝑧‘∅))) | 
| 38 | 37 | coeq1d 5871 | . . 3 ⊢ (𝑅 ∈ CRing → (((1o eval 𝑅)‘𝑋) ∘ ◡(𝑧 ∈ (𝐵 ↑m 1o) ↦ (𝑧‘∅))) = ((𝑧 ∈ (𝐵 ↑m 1o) ↦ (𝑧‘∅)) ∘ ◡(𝑧 ∈ (𝐵 ↑m 1o) ↦ (𝑧‘∅)))) | 
| 39 | 19, 38 | eqtr3id 2790 | . 2 ⊢ (𝑅 ∈ CRing → (((1o eval 𝑅)‘𝑋) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))) = ((𝑧 ∈ (𝐵 ↑m 1o) ↦ (𝑧‘∅)) ∘ ◡(𝑧 ∈ (𝐵 ↑m 1o) ↦ (𝑧‘∅)))) | 
| 40 | 14, 15, 16, 17 | mapsnf1o2 8935 | . . 3 ⊢ (𝑧 ∈ (𝐵 ↑m 1o) ↦ (𝑧‘∅)):(𝐵 ↑m 1o)–1-1-onto→𝐵 | 
| 41 | f1ococnv2 6874 | . . 3 ⊢ ((𝑧 ∈ (𝐵 ↑m 1o) ↦ (𝑧‘∅)):(𝐵 ↑m 1o)–1-1-onto→𝐵 → ((𝑧 ∈ (𝐵 ↑m 1o) ↦ (𝑧‘∅)) ∘ ◡(𝑧 ∈ (𝐵 ↑m 1o) ↦ (𝑧‘∅))) = ( I ↾ 𝐵)) | |
| 42 | 40, 41 | mp1i 13 | . 2 ⊢ (𝑅 ∈ CRing → ((𝑧 ∈ (𝐵 ↑m 1o) ↦ (𝑧‘∅)) ∘ ◡(𝑧 ∈ (𝐵 ↑m 1o) ↦ (𝑧‘∅))) = ( I ↾ 𝐵)) | 
| 43 | 13, 39, 42 | 3eqtrd 2780 | 1 ⊢ (𝑅 ∈ CRing → (𝑂‘𝑋) = ( I ↾ 𝐵)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ∅c0 4332 {csn 4625 ↦ cmpt 5224 I cid 5576 × cxp 5682 ◡ccnv 5683 ↾ cres 5686 ∘ ccom 5688 Oncon0 6383 –1-1-onto→wf1o 6559 ‘cfv 6560 (class class class)co 7432 1oc1o 8500 ↑m cmap 8867 Basecbs 17248 ↾s cress 17275 Ringcrg 20231 CRingccrg 20232 SubRingcsubrg 20570 mVar cmvr 21926 mPoly cmpl 21927 eval cevl 22098 var1cv1 22178 Poly1cpl1 22179 eval1ce1 22319 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-iin 4993 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-se 5637 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-isom 6569 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-of 7698 df-ofr 7699 df-om 7889 df-1st 8015 df-2nd 8016 df-supp 8187 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-2o 8508 df-er 8746 df-map 8869 df-pm 8870 df-ixp 8939 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-fsupp 9403 df-sup 9483 df-oi 9551 df-card 9980 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-2 12330 df-3 12331 df-4 12332 df-5 12333 df-6 12334 df-7 12335 df-8 12336 df-9 12337 df-n0 12529 df-z 12616 df-dec 12736 df-uz 12880 df-fz 13549 df-fzo 13696 df-seq 14044 df-hash 14371 df-struct 17185 df-sets 17202 df-slot 17220 df-ndx 17232 df-base 17249 df-ress 17276 df-plusg 17311 df-mulr 17312 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-hom 17322 df-cco 17323 df-0g 17487 df-gsum 17488 df-prds 17493 df-pws 17495 df-mre 17630 df-mrc 17631 df-acs 17633 df-mgm 18654 df-sgrp 18733 df-mnd 18749 df-mhm 18797 df-submnd 18798 df-grp 18955 df-minusg 18956 df-sbg 18957 df-mulg 19087 df-subg 19142 df-ghm 19232 df-cntz 19336 df-cmn 19801 df-abl 19802 df-mgp 20139 df-rng 20151 df-ur 20180 df-srg 20185 df-ring 20233 df-cring 20234 df-rhm 20473 df-subrng 20547 df-subrg 20571 df-lmod 20861 df-lss 20931 df-lsp 20971 df-assa 21874 df-asp 21875 df-ascl 21876 df-psr 21930 df-mvr 21931 df-mpl 21932 df-opsr 21934 df-evls 22099 df-evl 22100 df-psr1 22182 df-vr1 22183 df-ply1 22184 df-evl1 22321 | 
| This theorem is referenced by: evl1vard 22342 evls1var 22343 pf1id 22352 fta1blem 26211 | 
| Copyright terms: Public domain | W3C validator |