| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > evl1var | Structured version Visualization version GIF version | ||
| Description: Polynomial evaluation maps the variable to the identity function. (Contributed by Mario Carneiro, 12-Jun-2015.) |
| Ref | Expression |
|---|---|
| evl1var.q | ⊢ 𝑂 = (eval1‘𝑅) |
| evl1var.v | ⊢ 𝑋 = (var1‘𝑅) |
| evl1var.b | ⊢ 𝐵 = (Base‘𝑅) |
| Ref | Expression |
|---|---|
| evl1var | ⊢ (𝑅 ∈ CRing → (𝑂‘𝑋) = ( I ↾ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crngring 20161 | . . . 4 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
| 2 | evl1var.v | . . . . 5 ⊢ 𝑋 = (var1‘𝑅) | |
| 3 | eqid 2731 | . . . . 5 ⊢ (Poly1‘𝑅) = (Poly1‘𝑅) | |
| 4 | eqid 2731 | . . . . 5 ⊢ (Base‘(Poly1‘𝑅)) = (Base‘(Poly1‘𝑅)) | |
| 5 | 2, 3, 4 | vr1cl 22128 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑋 ∈ (Base‘(Poly1‘𝑅))) |
| 6 | 1, 5 | syl 17 | . . 3 ⊢ (𝑅 ∈ CRing → 𝑋 ∈ (Base‘(Poly1‘𝑅))) |
| 7 | evl1var.q | . . . 4 ⊢ 𝑂 = (eval1‘𝑅) | |
| 8 | eqid 2731 | . . . 4 ⊢ (1o eval 𝑅) = (1o eval 𝑅) | |
| 9 | evl1var.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 10 | eqid 2731 | . . . 4 ⊢ (1o mPoly 𝑅) = (1o mPoly 𝑅) | |
| 11 | 3, 4 | ply1bas 22105 | . . . 4 ⊢ (Base‘(Poly1‘𝑅)) = (Base‘(1o mPoly 𝑅)) |
| 12 | 7, 8, 9, 10, 11 | evl1val 22242 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ (Base‘(Poly1‘𝑅))) → (𝑂‘𝑋) = (((1o eval 𝑅)‘𝑋) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) |
| 13 | 6, 12 | mpdan 687 | . 2 ⊢ (𝑅 ∈ CRing → (𝑂‘𝑋) = (((1o eval 𝑅)‘𝑋) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) |
| 14 | df1o2 8392 | . . . . 5 ⊢ 1o = {∅} | |
| 15 | 9 | fvexi 6836 | . . . . 5 ⊢ 𝐵 ∈ V |
| 16 | 0ex 5245 | . . . . 5 ⊢ ∅ ∈ V | |
| 17 | eqid 2731 | . . . . 5 ⊢ (𝑧 ∈ (𝐵 ↑m 1o) ↦ (𝑧‘∅)) = (𝑧 ∈ (𝐵 ↑m 1o) ↦ (𝑧‘∅)) | |
| 18 | 14, 15, 16, 17 | mapsncnv 8817 | . . . 4 ⊢ ◡(𝑧 ∈ (𝐵 ↑m 1o) ↦ (𝑧‘∅)) = (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})) |
| 19 | 18 | coeq2i 5800 | . . 3 ⊢ (((1o eval 𝑅)‘𝑋) ∘ ◡(𝑧 ∈ (𝐵 ↑m 1o) ↦ (𝑧‘∅))) = (((1o eval 𝑅)‘𝑋) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))) |
| 20 | 9 | ressid 17152 | . . . . . . . . 9 ⊢ (𝑅 ∈ CRing → (𝑅 ↾s 𝐵) = 𝑅) |
| 21 | 20 | oveq2d 7362 | . . . . . . . 8 ⊢ (𝑅 ∈ CRing → (1o mVar (𝑅 ↾s 𝐵)) = (1o mVar 𝑅)) |
| 22 | 21 | fveq1d 6824 | . . . . . . 7 ⊢ (𝑅 ∈ CRing → ((1o mVar (𝑅 ↾s 𝐵))‘∅) = ((1o mVar 𝑅)‘∅)) |
| 23 | 2 | vr1val 22102 | . . . . . . 7 ⊢ 𝑋 = ((1o mVar 𝑅)‘∅) |
| 24 | 22, 23 | eqtr4di 2784 | . . . . . 6 ⊢ (𝑅 ∈ CRing → ((1o mVar (𝑅 ↾s 𝐵))‘∅) = 𝑋) |
| 25 | 24 | fveq2d 6826 | . . . . 5 ⊢ (𝑅 ∈ CRing → ((1o eval 𝑅)‘((1o mVar (𝑅 ↾s 𝐵))‘∅)) = ((1o eval 𝑅)‘𝑋)) |
| 26 | 8, 9 | evlval 22028 | . . . . . 6 ⊢ (1o eval 𝑅) = ((1o evalSub 𝑅)‘𝐵) |
| 27 | eqid 2731 | . . . . . 6 ⊢ (1o mVar (𝑅 ↾s 𝐵)) = (1o mVar (𝑅 ↾s 𝐵)) | |
| 28 | eqid 2731 | . . . . . 6 ⊢ (𝑅 ↾s 𝐵) = (𝑅 ↾s 𝐵) | |
| 29 | 1on 8397 | . . . . . . 7 ⊢ 1o ∈ On | |
| 30 | 29 | a1i 11 | . . . . . 6 ⊢ (𝑅 ∈ CRing → 1o ∈ On) |
| 31 | id 22 | . . . . . 6 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ CRing) | |
| 32 | 9 | subrgid 20486 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → 𝐵 ∈ (SubRing‘𝑅)) |
| 33 | 1, 32 | syl 17 | . . . . . 6 ⊢ (𝑅 ∈ CRing → 𝐵 ∈ (SubRing‘𝑅)) |
| 34 | 0lt1o 8419 | . . . . . . 7 ⊢ ∅ ∈ 1o | |
| 35 | 34 | a1i 11 | . . . . . 6 ⊢ (𝑅 ∈ CRing → ∅ ∈ 1o) |
| 36 | 26, 27, 28, 9, 30, 31, 33, 35 | evlsvar 22023 | . . . . 5 ⊢ (𝑅 ∈ CRing → ((1o eval 𝑅)‘((1o mVar (𝑅 ↾s 𝐵))‘∅)) = (𝑧 ∈ (𝐵 ↑m 1o) ↦ (𝑧‘∅))) |
| 37 | 25, 36 | eqtr3d 2768 | . . . 4 ⊢ (𝑅 ∈ CRing → ((1o eval 𝑅)‘𝑋) = (𝑧 ∈ (𝐵 ↑m 1o) ↦ (𝑧‘∅))) |
| 38 | 37 | coeq1d 5801 | . . 3 ⊢ (𝑅 ∈ CRing → (((1o eval 𝑅)‘𝑋) ∘ ◡(𝑧 ∈ (𝐵 ↑m 1o) ↦ (𝑧‘∅))) = ((𝑧 ∈ (𝐵 ↑m 1o) ↦ (𝑧‘∅)) ∘ ◡(𝑧 ∈ (𝐵 ↑m 1o) ↦ (𝑧‘∅)))) |
| 39 | 19, 38 | eqtr3id 2780 | . 2 ⊢ (𝑅 ∈ CRing → (((1o eval 𝑅)‘𝑋) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))) = ((𝑧 ∈ (𝐵 ↑m 1o) ↦ (𝑧‘∅)) ∘ ◡(𝑧 ∈ (𝐵 ↑m 1o) ↦ (𝑧‘∅)))) |
| 40 | 14, 15, 16, 17 | mapsnf1o2 8818 | . . 3 ⊢ (𝑧 ∈ (𝐵 ↑m 1o) ↦ (𝑧‘∅)):(𝐵 ↑m 1o)–1-1-onto→𝐵 |
| 41 | f1ococnv2 6790 | . . 3 ⊢ ((𝑧 ∈ (𝐵 ↑m 1o) ↦ (𝑧‘∅)):(𝐵 ↑m 1o)–1-1-onto→𝐵 → ((𝑧 ∈ (𝐵 ↑m 1o) ↦ (𝑧‘∅)) ∘ ◡(𝑧 ∈ (𝐵 ↑m 1o) ↦ (𝑧‘∅))) = ( I ↾ 𝐵)) | |
| 42 | 40, 41 | mp1i 13 | . 2 ⊢ (𝑅 ∈ CRing → ((𝑧 ∈ (𝐵 ↑m 1o) ↦ (𝑧‘∅)) ∘ ◡(𝑧 ∈ (𝐵 ↑m 1o) ↦ (𝑧‘∅))) = ( I ↾ 𝐵)) |
| 43 | 13, 39, 42 | 3eqtrd 2770 | 1 ⊢ (𝑅 ∈ CRing → (𝑂‘𝑋) = ( I ↾ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∅c0 4283 {csn 4576 ↦ cmpt 5172 I cid 5510 × cxp 5614 ◡ccnv 5615 ↾ cres 5618 ∘ ccom 5620 Oncon0 6306 –1-1-onto→wf1o 6480 ‘cfv 6481 (class class class)co 7346 1oc1o 8378 ↑m cmap 8750 Basecbs 17117 ↾s cress 17138 Ringcrg 20149 CRingccrg 20150 SubRingcsubrg 20482 mVar cmvr 21840 mPoly cmpl 21841 eval cevl 22006 var1cv1 22086 Poly1cpl1 22087 eval1ce1 22227 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-ofr 7611 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-sup 9326 df-oi 9396 df-card 9829 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-z 12466 df-dec 12586 df-uz 12730 df-fz 13405 df-fzo 13552 df-seq 13906 df-hash 14235 df-struct 17055 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-ress 17139 df-plusg 17171 df-mulr 17172 df-sca 17174 df-vsca 17175 df-ip 17176 df-tset 17177 df-ple 17178 df-ds 17180 df-hom 17182 df-cco 17183 df-0g 17342 df-gsum 17343 df-prds 17348 df-pws 17350 df-mre 17485 df-mrc 17486 df-acs 17488 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-mhm 18688 df-submnd 18689 df-grp 18846 df-minusg 18847 df-sbg 18848 df-mulg 18978 df-subg 19033 df-ghm 19123 df-cntz 19227 df-cmn 19692 df-abl 19693 df-mgp 20057 df-rng 20069 df-ur 20098 df-srg 20103 df-ring 20151 df-cring 20152 df-rhm 20388 df-subrng 20459 df-subrg 20483 df-lmod 20793 df-lss 20863 df-lsp 20903 df-assa 21788 df-asp 21789 df-ascl 21790 df-psr 21844 df-mvr 21845 df-mpl 21846 df-opsr 21848 df-evls 22007 df-evl 22008 df-psr1 22090 df-vr1 22091 df-ply1 22092 df-evl1 22229 |
| This theorem is referenced by: evl1vard 22250 evls1var 22251 pf1id 22260 fta1blem 26101 |
| Copyright terms: Public domain | W3C validator |