MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evl1var Structured version   Visualization version   GIF version

Theorem evl1var 22239
Description: Polynomial evaluation maps the variable to the identity function. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
evl1var.q 𝑂 = (eval1𝑅)
evl1var.v 𝑋 = (var1𝑅)
evl1var.b 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
evl1var (𝑅 ∈ CRing → (𝑂𝑋) = ( I ↾ 𝐵))

Proof of Theorem evl1var
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 crngring 20148 . . . 4 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
2 evl1var.v . . . . 5 𝑋 = (var1𝑅)
3 eqid 2729 . . . . 5 (Poly1𝑅) = (Poly1𝑅)
4 eqid 2729 . . . . 5 (Base‘(Poly1𝑅)) = (Base‘(Poly1𝑅))
52, 3, 4vr1cl 22118 . . . 4 (𝑅 ∈ Ring → 𝑋 ∈ (Base‘(Poly1𝑅)))
61, 5syl 17 . . 3 (𝑅 ∈ CRing → 𝑋 ∈ (Base‘(Poly1𝑅)))
7 evl1var.q . . . 4 𝑂 = (eval1𝑅)
8 eqid 2729 . . . 4 (1o eval 𝑅) = (1o eval 𝑅)
9 evl1var.b . . . 4 𝐵 = (Base‘𝑅)
10 eqid 2729 . . . 4 (1o mPoly 𝑅) = (1o mPoly 𝑅)
113, 4ply1bas 22095 . . . 4 (Base‘(Poly1𝑅)) = (Base‘(1o mPoly 𝑅))
127, 8, 9, 10, 11evl1val 22232 . . 3 ((𝑅 ∈ CRing ∧ 𝑋 ∈ (Base‘(Poly1𝑅))) → (𝑂𝑋) = (((1o eval 𝑅)‘𝑋) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
136, 12mpdan 687 . 2 (𝑅 ∈ CRing → (𝑂𝑋) = (((1o eval 𝑅)‘𝑋) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
14 df1o2 8402 . . . . 5 1o = {∅}
159fvexi 6840 . . . . 5 𝐵 ∈ V
16 0ex 5249 . . . . 5 ∅ ∈ V
17 eqid 2729 . . . . 5 (𝑧 ∈ (𝐵m 1o) ↦ (𝑧‘∅)) = (𝑧 ∈ (𝐵m 1o) ↦ (𝑧‘∅))
1814, 15, 16, 17mapsncnv 8827 . . . 4 (𝑧 ∈ (𝐵m 1o) ↦ (𝑧‘∅)) = (𝑦𝐵 ↦ (1o × {𝑦}))
1918coeq2i 5807 . . 3 (((1o eval 𝑅)‘𝑋) ∘ (𝑧 ∈ (𝐵m 1o) ↦ (𝑧‘∅))) = (((1o eval 𝑅)‘𝑋) ∘ (𝑦𝐵 ↦ (1o × {𝑦})))
209ressid 17173 . . . . . . . . 9 (𝑅 ∈ CRing → (𝑅s 𝐵) = 𝑅)
2120oveq2d 7369 . . . . . . . 8 (𝑅 ∈ CRing → (1o mVar (𝑅s 𝐵)) = (1o mVar 𝑅))
2221fveq1d 6828 . . . . . . 7 (𝑅 ∈ CRing → ((1o mVar (𝑅s 𝐵))‘∅) = ((1o mVar 𝑅)‘∅))
232vr1val 22092 . . . . . . 7 𝑋 = ((1o mVar 𝑅)‘∅)
2422, 23eqtr4di 2782 . . . . . 6 (𝑅 ∈ CRing → ((1o mVar (𝑅s 𝐵))‘∅) = 𝑋)
2524fveq2d 6830 . . . . 5 (𝑅 ∈ CRing → ((1o eval 𝑅)‘((1o mVar (𝑅s 𝐵))‘∅)) = ((1o eval 𝑅)‘𝑋))
268, 9evlval 22018 . . . . . 6 (1o eval 𝑅) = ((1o evalSub 𝑅)‘𝐵)
27 eqid 2729 . . . . . 6 (1o mVar (𝑅s 𝐵)) = (1o mVar (𝑅s 𝐵))
28 eqid 2729 . . . . . 6 (𝑅s 𝐵) = (𝑅s 𝐵)
29 1on 8407 . . . . . . 7 1o ∈ On
3029a1i 11 . . . . . 6 (𝑅 ∈ CRing → 1o ∈ On)
31 id 22 . . . . . 6 (𝑅 ∈ CRing → 𝑅 ∈ CRing)
329subrgid 20476 . . . . . . 7 (𝑅 ∈ Ring → 𝐵 ∈ (SubRing‘𝑅))
331, 32syl 17 . . . . . 6 (𝑅 ∈ CRing → 𝐵 ∈ (SubRing‘𝑅))
34 0lt1o 8429 . . . . . . 7 ∅ ∈ 1o
3534a1i 11 . . . . . 6 (𝑅 ∈ CRing → ∅ ∈ 1o)
3626, 27, 28, 9, 30, 31, 33, 35evlsvar 22013 . . . . 5 (𝑅 ∈ CRing → ((1o eval 𝑅)‘((1o mVar (𝑅s 𝐵))‘∅)) = (𝑧 ∈ (𝐵m 1o) ↦ (𝑧‘∅)))
3725, 36eqtr3d 2766 . . . 4 (𝑅 ∈ CRing → ((1o eval 𝑅)‘𝑋) = (𝑧 ∈ (𝐵m 1o) ↦ (𝑧‘∅)))
3837coeq1d 5808 . . 3 (𝑅 ∈ CRing → (((1o eval 𝑅)‘𝑋) ∘ (𝑧 ∈ (𝐵m 1o) ↦ (𝑧‘∅))) = ((𝑧 ∈ (𝐵m 1o) ↦ (𝑧‘∅)) ∘ (𝑧 ∈ (𝐵m 1o) ↦ (𝑧‘∅))))
3919, 38eqtr3id 2778 . 2 (𝑅 ∈ CRing → (((1o eval 𝑅)‘𝑋) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))) = ((𝑧 ∈ (𝐵m 1o) ↦ (𝑧‘∅)) ∘ (𝑧 ∈ (𝐵m 1o) ↦ (𝑧‘∅))))
4014, 15, 16, 17mapsnf1o2 8828 . . 3 (𝑧 ∈ (𝐵m 1o) ↦ (𝑧‘∅)):(𝐵m 1o)–1-1-onto𝐵
41 f1ococnv2 6795 . . 3 ((𝑧 ∈ (𝐵m 1o) ↦ (𝑧‘∅)):(𝐵m 1o)–1-1-onto𝐵 → ((𝑧 ∈ (𝐵m 1o) ↦ (𝑧‘∅)) ∘ (𝑧 ∈ (𝐵m 1o) ↦ (𝑧‘∅))) = ( I ↾ 𝐵))
4240, 41mp1i 13 . 2 (𝑅 ∈ CRing → ((𝑧 ∈ (𝐵m 1o) ↦ (𝑧‘∅)) ∘ (𝑧 ∈ (𝐵m 1o) ↦ (𝑧‘∅))) = ( I ↾ 𝐵))
4313, 39, 423eqtrd 2768 1 (𝑅 ∈ CRing → (𝑂𝑋) = ( I ↾ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  c0 4286  {csn 4579  cmpt 5176   I cid 5517   × cxp 5621  ccnv 5622  cres 5625  ccom 5627  Oncon0 6311  1-1-ontowf1o 6485  cfv 6486  (class class class)co 7353  1oc1o 8388  m cmap 8760  Basecbs 17138  s cress 17159  Ringcrg 20136  CRingccrg 20137  SubRingcsubrg 20472   mVar cmvr 21830   mPoly cmpl 21831   eval cevl 21996  var1cv1 22076  Poly1cpl1 22077  eval1ce1 22217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-ofr 7618  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-sup 9351  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-fz 13429  df-fzo 13576  df-seq 13927  df-hash 14256  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-hom 17203  df-cco 17204  df-0g 17363  df-gsum 17364  df-prds 17369  df-pws 17371  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-mhm 18675  df-submnd 18676  df-grp 18833  df-minusg 18834  df-sbg 18835  df-mulg 18965  df-subg 19020  df-ghm 19110  df-cntz 19214  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-srg 20090  df-ring 20138  df-cring 20139  df-rhm 20375  df-subrng 20449  df-subrg 20473  df-lmod 20783  df-lss 20853  df-lsp 20893  df-assa 21778  df-asp 21779  df-ascl 21780  df-psr 21834  df-mvr 21835  df-mpl 21836  df-opsr 21838  df-evls 21997  df-evl 21998  df-psr1 22080  df-vr1 22081  df-ply1 22082  df-evl1 22219
This theorem is referenced by:  evl1vard  22240  evls1var  22241  pf1id  22250  fta1blem  26092
  Copyright terms: Public domain W3C validator