| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mapval | Structured version Visualization version GIF version | ||
| Description: The value of set exponentiation (inference version). (𝐴 ↑m 𝐵) is the set of all functions that map from 𝐵 to 𝐴. Definition 10.24 of [Kunen] p. 24. (Contributed by NM, 8-Dec-2003.) |
| Ref | Expression |
|---|---|
| mapval.1 | ⊢ 𝐴 ∈ V |
| mapval.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| mapval | ⊢ (𝐴 ↑m 𝐵) = {𝑓 ∣ 𝑓:𝐵⟶𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapval.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | mapval.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | mapvalg 8760 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ↑m 𝐵) = {𝑓 ∣ 𝑓:𝐵⟶𝐴}) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 ↑m 𝐵) = {𝑓 ∣ 𝑓:𝐵⟶𝐴} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 {cab 2709 Vcvv 3436 ⟶wf 6477 (class class class)co 7346 ↑m cmap 8750 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-map 8752 |
| This theorem is referenced by: 0map0sn0 8809 maprnin 32709 poimirlem4 37663 poimirlem9 37668 poimirlem26 37685 poimirlem27 37686 poimirlem28 37687 poimirlem32 37691 lautset 40120 pautsetN 40136 tendoset 40797 |
| Copyright terms: Public domain | W3C validator |