![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mapval | Structured version Visualization version GIF version |
Description: The value of set exponentiation (inference version). (𝐴 ↑m 𝐵) is the set of all functions that map from 𝐵 to 𝐴. Definition 10.24 of [Kunen] p. 24. (Contributed by NM, 8-Dec-2003.) |
Ref | Expression |
---|---|
mapval.1 | ⊢ 𝐴 ∈ V |
mapval.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
mapval | ⊢ (𝐴 ↑m 𝐵) = {𝑓 ∣ 𝑓:𝐵⟶𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapval.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | mapval.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | mapvalg 8875 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ↑m 𝐵) = {𝑓 ∣ 𝑓:𝐵⟶𝐴}) | |
4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 ↑m 𝐵) = {𝑓 ∣ 𝑓:𝐵⟶𝐴} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2106 {cab 2712 Vcvv 3478 ⟶wf 6559 (class class class)co 7431 ↑m cmap 8865 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-map 8867 |
This theorem is referenced by: 0map0sn0 8924 maprnin 32749 poimirlem4 37611 poimirlem9 37616 poimirlem26 37633 poimirlem27 37634 poimirlem28 37635 poimirlem32 37639 lautset 40065 pautsetN 40081 tendoset 40742 |
Copyright terms: Public domain | W3C validator |