Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapval Structured version   Visualization version   GIF version

Theorem mapval 8417
 Description: The value of set exponentiation (inference version). (𝐴 ↑m 𝐵) is the set of all functions that map from 𝐵 to 𝐴. Definition 10.24 of [Kunen] p. 24. (Contributed by NM, 8-Dec-2003.)
Hypotheses
Ref Expression
mapval.1 𝐴 ∈ V
mapval.2 𝐵 ∈ V
Assertion
Ref Expression
mapval (𝐴m 𝐵) = {𝑓𝑓:𝐵𝐴}
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓

Proof of Theorem mapval
StepHypRef Expression
1 mapval.1 . 2 𝐴 ∈ V
2 mapval.2 . 2 𝐵 ∈ V
3 mapvalg 8415 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴m 𝐵) = {𝑓𝑓:𝐵𝐴})
41, 2, 3mp2an 690 1 (𝐴m 𝐵) = {𝑓𝑓:𝐵𝐴}
 Colors of variables: wff setvar class Syntax hints:   = wceq 1533   ∈ wcel 2110  {cab 2799  Vcvv 3494  ⟶wf 6350  (class class class)co 7155   ↑m cmap 8405 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-br 5066  df-opab 5128  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-fv 6362  df-ov 7158  df-oprab 7159  df-mpo 7160  df-map 8407 This theorem is referenced by:  0map0sn0  8448  maprnin  30466  poimirlem4  34895  poimirlem9  34900  poimirlem26  34917  poimirlem27  34918  poimirlem28  34919  poimirlem32  34923  lautset  37217  pautsetN  37233  tendoset  37894
 Copyright terms: Public domain W3C validator