|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > 0pthon | Structured version Visualization version GIF version | ||
| Description: A path of length 0 from a vertex to itself. (Contributed by Alexander van der Vekens, 3-Dec-2017.) (Revised by AV, 20-Jan-2021.) (Revised by AV, 30-Oct-2021.) | 
| Ref | Expression | 
|---|---|
| 0pthon.v | ⊢ 𝑉 = (Vtx‘𝐺) | 
| Ref | Expression | 
|---|---|
| 0pthon | ⊢ ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) → ∅(𝑁(PathsOn‘𝐺)𝑁)𝑃) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 0pthon.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | 1 | 0trlon 30144 | . 2 ⊢ ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) → ∅(𝑁(TrailsOn‘𝐺)𝑁)𝑃) | 
| 3 | simpl 482 | . . 3 ⊢ ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) → 𝑃:(0...0)⟶𝑉) | |
| 4 | id 22 | . . . . . . 7 ⊢ (𝑃:(0...0)⟶𝑉 → 𝑃:(0...0)⟶𝑉) | |
| 5 | 0z 12626 | . . . . . . . 8 ⊢ 0 ∈ ℤ | |
| 6 | elfz3 13575 | . . . . . . . 8 ⊢ (0 ∈ ℤ → 0 ∈ (0...0)) | |
| 7 | 5, 6 | mp1i 13 | . . . . . . 7 ⊢ (𝑃:(0...0)⟶𝑉 → 0 ∈ (0...0)) | 
| 8 | 4, 7 | ffvelcdmd 7104 | . . . . . 6 ⊢ (𝑃:(0...0)⟶𝑉 → (𝑃‘0) ∈ 𝑉) | 
| 9 | 8 | adantr 480 | . . . . 5 ⊢ ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) → (𝑃‘0) ∈ 𝑉) | 
| 10 | eleq1 2828 | . . . . . 6 ⊢ ((𝑃‘0) = 𝑁 → ((𝑃‘0) ∈ 𝑉 ↔ 𝑁 ∈ 𝑉)) | |
| 11 | 10 | adantl 481 | . . . . 5 ⊢ ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) → ((𝑃‘0) ∈ 𝑉 ↔ 𝑁 ∈ 𝑉)) | 
| 12 | 9, 11 | mpbid 232 | . . . 4 ⊢ ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) → 𝑁 ∈ 𝑉) | 
| 13 | 1 | 1vgrex 29020 | . . . 4 ⊢ (𝑁 ∈ 𝑉 → 𝐺 ∈ V) | 
| 14 | 1 | 0pth 30145 | . . . 4 ⊢ (𝐺 ∈ V → (∅(Paths‘𝐺)𝑃 ↔ 𝑃:(0...0)⟶𝑉)) | 
| 15 | 12, 13, 14 | 3syl 18 | . . 3 ⊢ ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) → (∅(Paths‘𝐺)𝑃 ↔ 𝑃:(0...0)⟶𝑉)) | 
| 16 | 3, 15 | mpbird 257 | . 2 ⊢ ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) → ∅(Paths‘𝐺)𝑃) | 
| 17 | 1 | 0wlkonlem1 30138 | . . 3 ⊢ ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) → (𝑁 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉)) | 
| 18 | 1 | 0wlkonlem2 30139 | . . . 4 ⊢ ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) → 𝑃 ∈ (𝑉 ↑pm (0...0))) | 
| 19 | 0ex 5306 | . . . 4 ⊢ ∅ ∈ V | |
| 20 | 18, 19 | jctil 519 | . . 3 ⊢ ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) → (∅ ∈ V ∧ 𝑃 ∈ (𝑉 ↑pm (0...0)))) | 
| 21 | 1 | ispthson 29763 | . . 3 ⊢ (((𝑁 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ∧ (∅ ∈ V ∧ 𝑃 ∈ (𝑉 ↑pm (0...0)))) → (∅(𝑁(PathsOn‘𝐺)𝑁)𝑃 ↔ (∅(𝑁(TrailsOn‘𝐺)𝑁)𝑃 ∧ ∅(Paths‘𝐺)𝑃))) | 
| 22 | 17, 20, 21 | syl2anc 584 | . 2 ⊢ ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) → (∅(𝑁(PathsOn‘𝐺)𝑁)𝑃 ↔ (∅(𝑁(TrailsOn‘𝐺)𝑁)𝑃 ∧ ∅(Paths‘𝐺)𝑃))) | 
| 23 | 2, 16, 22 | mpbir2and 713 | 1 ⊢ ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) → ∅(𝑁(PathsOn‘𝐺)𝑁)𝑃) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3479 ∅c0 4332 class class class wbr 5142 ⟶wf 6556 ‘cfv 6560 (class class class)co 7432 ↑pm cpm 8868 0cc0 11156 ℤcz 12615 ...cfz 13548 Vtxcvtx 29014 TrailsOnctrlson 29710 Pathscpths 29731 PathsOncpthson 29733 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-er 8746 df-map 8869 df-pm 8870 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-card 9980 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-n0 12529 df-z 12616 df-uz 12880 df-fz 13549 df-fzo 13696 df-hash 14371 df-word 14554 df-wlks 29618 df-wlkson 29619 df-trls 29711 df-trlson 29712 df-pths 29735 df-pthson 29737 | 
| This theorem is referenced by: 0pthon1 30148 | 
| Copyright terms: Public domain | W3C validator |