Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0pthon | Structured version Visualization version GIF version |
Description: A path of length 0 from a vertex to itself. (Contributed by Alexander van der Vekens, 3-Dec-2017.) (Revised by AV, 20-Jan-2021.) (Revised by AV, 30-Oct-2021.) |
Ref | Expression |
---|---|
0pthon.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
0pthon | ⊢ ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) → ∅(𝑁(PathsOn‘𝐺)𝑁)𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0pthon.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 1 | 0trlon 28596 | . 2 ⊢ ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) → ∅(𝑁(TrailsOn‘𝐺)𝑁)𝑃) |
3 | simpl 483 | . . 3 ⊢ ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) → 𝑃:(0...0)⟶𝑉) | |
4 | id 22 | . . . . . . 7 ⊢ (𝑃:(0...0)⟶𝑉 → 𝑃:(0...0)⟶𝑉) | |
5 | 0z 12400 | . . . . . . . 8 ⊢ 0 ∈ ℤ | |
6 | elfz3 13336 | . . . . . . . 8 ⊢ (0 ∈ ℤ → 0 ∈ (0...0)) | |
7 | 5, 6 | mp1i 13 | . . . . . . 7 ⊢ (𝑃:(0...0)⟶𝑉 → 0 ∈ (0...0)) |
8 | 4, 7 | ffvelcdmd 6999 | . . . . . 6 ⊢ (𝑃:(0...0)⟶𝑉 → (𝑃‘0) ∈ 𝑉) |
9 | 8 | adantr 481 | . . . . 5 ⊢ ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) → (𝑃‘0) ∈ 𝑉) |
10 | eleq1 2825 | . . . . . 6 ⊢ ((𝑃‘0) = 𝑁 → ((𝑃‘0) ∈ 𝑉 ↔ 𝑁 ∈ 𝑉)) | |
11 | 10 | adantl 482 | . . . . 5 ⊢ ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) → ((𝑃‘0) ∈ 𝑉 ↔ 𝑁 ∈ 𝑉)) |
12 | 9, 11 | mpbid 231 | . . . 4 ⊢ ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) → 𝑁 ∈ 𝑉) |
13 | 1 | 1vgrex 27480 | . . . 4 ⊢ (𝑁 ∈ 𝑉 → 𝐺 ∈ V) |
14 | 1 | 0pth 28597 | . . . 4 ⊢ (𝐺 ∈ V → (∅(Paths‘𝐺)𝑃 ↔ 𝑃:(0...0)⟶𝑉)) |
15 | 12, 13, 14 | 3syl 18 | . . 3 ⊢ ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) → (∅(Paths‘𝐺)𝑃 ↔ 𝑃:(0...0)⟶𝑉)) |
16 | 3, 15 | mpbird 256 | . 2 ⊢ ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) → ∅(Paths‘𝐺)𝑃) |
17 | 1 | 0wlkonlem1 28590 | . . 3 ⊢ ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) → (𝑁 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉)) |
18 | 1 | 0wlkonlem2 28591 | . . . 4 ⊢ ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) → 𝑃 ∈ (𝑉 ↑pm (0...0))) |
19 | 0ex 5244 | . . . 4 ⊢ ∅ ∈ V | |
20 | 18, 19 | jctil 520 | . . 3 ⊢ ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) → (∅ ∈ V ∧ 𝑃 ∈ (𝑉 ↑pm (0...0)))) |
21 | 1 | ispthson 28218 | . . 3 ⊢ (((𝑁 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ∧ (∅ ∈ V ∧ 𝑃 ∈ (𝑉 ↑pm (0...0)))) → (∅(𝑁(PathsOn‘𝐺)𝑁)𝑃 ↔ (∅(𝑁(TrailsOn‘𝐺)𝑁)𝑃 ∧ ∅(Paths‘𝐺)𝑃))) |
22 | 17, 20, 21 | syl2anc 584 | . 2 ⊢ ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) → (∅(𝑁(PathsOn‘𝐺)𝑁)𝑃 ↔ (∅(𝑁(TrailsOn‘𝐺)𝑁)𝑃 ∧ ∅(Paths‘𝐺)𝑃))) |
23 | 2, 16, 22 | mpbir2and 710 | 1 ⊢ ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) → ∅(𝑁(PathsOn‘𝐺)𝑁)𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 Vcvv 3441 ∅c0 4266 class class class wbr 5085 ⟶wf 6459 ‘cfv 6463 (class class class)co 7313 ↑pm cpm 8662 0cc0 10941 ℤcz 12389 ...cfz 13309 Vtxcvtx 27474 TrailsOnctrlson 28167 Pathscpths 28188 PathsOncpthson 28190 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5222 ax-sep 5236 ax-nul 5243 ax-pow 5301 ax-pr 5365 ax-un 7626 ax-cnex 10997 ax-resscn 10998 ax-1cn 10999 ax-icn 11000 ax-addcl 11001 ax-addrcl 11002 ax-mulcl 11003 ax-mulrcl 11004 ax-mulcom 11005 ax-addass 11006 ax-mulass 11007 ax-distr 11008 ax-i2m1 11009 ax-1ne0 11010 ax-1rid 11011 ax-rnegex 11012 ax-rrecex 11013 ax-cnre 11014 ax-pre-lttri 11015 ax-pre-lttrn 11016 ax-pre-ltadd 11017 ax-pre-mulgt0 11018 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ifp 1061 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-int 4891 df-iun 4937 df-br 5086 df-opab 5148 df-mpt 5169 df-tr 5203 df-id 5505 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5560 df-we 5562 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-pred 6222 df-ord 6289 df-on 6290 df-lim 6291 df-suc 6292 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-f1 6468 df-fo 6469 df-f1o 6470 df-fv 6471 df-riota 7270 df-ov 7316 df-oprab 7317 df-mpo 7318 df-om 7756 df-1st 7874 df-2nd 7875 df-frecs 8142 df-wrecs 8173 df-recs 8247 df-rdg 8286 df-1o 8342 df-er 8544 df-map 8663 df-pm 8664 df-en 8780 df-dom 8781 df-sdom 8782 df-fin 8783 df-card 9765 df-pnf 11081 df-mnf 11082 df-xr 11083 df-ltxr 11084 df-le 11085 df-sub 11277 df-neg 11278 df-nn 12044 df-n0 12304 df-z 12390 df-uz 12653 df-fz 13310 df-fzo 13453 df-hash 14115 df-word 14287 df-wlks 28074 df-wlkson 28075 df-trls 28168 df-trlson 28169 df-pths 28192 df-pthson 28194 |
This theorem is referenced by: 0pthon1 28600 |
Copyright terms: Public domain | W3C validator |