![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0pthon | Structured version Visualization version GIF version |
Description: A path of length 0 from a vertex to itself. (Contributed by Alexander van der Vekens, 3-Dec-2017.) (Revised by AV, 20-Jan-2021.) (Revised by AV, 30-Oct-2021.) |
Ref | Expression |
---|---|
0pthon.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
0pthon | ⊢ ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) → ∅(𝑁(PathsOn‘𝐺)𝑁)𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0pthon.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 1 | 0trlon 30006 | . 2 ⊢ ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) → ∅(𝑁(TrailsOn‘𝐺)𝑁)𝑃) |
3 | simpl 481 | . . 3 ⊢ ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) → 𝑃:(0...0)⟶𝑉) | |
4 | id 22 | . . . . . . 7 ⊢ (𝑃:(0...0)⟶𝑉 → 𝑃:(0...0)⟶𝑉) | |
5 | 0z 12602 | . . . . . . . 8 ⊢ 0 ∈ ℤ | |
6 | elfz3 13546 | . . . . . . . 8 ⊢ (0 ∈ ℤ → 0 ∈ (0...0)) | |
7 | 5, 6 | mp1i 13 | . . . . . . 7 ⊢ (𝑃:(0...0)⟶𝑉 → 0 ∈ (0...0)) |
8 | 4, 7 | ffvelcdmd 7094 | . . . . . 6 ⊢ (𝑃:(0...0)⟶𝑉 → (𝑃‘0) ∈ 𝑉) |
9 | 8 | adantr 479 | . . . . 5 ⊢ ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) → (𝑃‘0) ∈ 𝑉) |
10 | eleq1 2813 | . . . . . 6 ⊢ ((𝑃‘0) = 𝑁 → ((𝑃‘0) ∈ 𝑉 ↔ 𝑁 ∈ 𝑉)) | |
11 | 10 | adantl 480 | . . . . 5 ⊢ ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) → ((𝑃‘0) ∈ 𝑉 ↔ 𝑁 ∈ 𝑉)) |
12 | 9, 11 | mpbid 231 | . . . 4 ⊢ ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) → 𝑁 ∈ 𝑉) |
13 | 1 | 1vgrex 28887 | . . . 4 ⊢ (𝑁 ∈ 𝑉 → 𝐺 ∈ V) |
14 | 1 | 0pth 30007 | . . . 4 ⊢ (𝐺 ∈ V → (∅(Paths‘𝐺)𝑃 ↔ 𝑃:(0...0)⟶𝑉)) |
15 | 12, 13, 14 | 3syl 18 | . . 3 ⊢ ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) → (∅(Paths‘𝐺)𝑃 ↔ 𝑃:(0...0)⟶𝑉)) |
16 | 3, 15 | mpbird 256 | . 2 ⊢ ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) → ∅(Paths‘𝐺)𝑃) |
17 | 1 | 0wlkonlem1 30000 | . . 3 ⊢ ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) → (𝑁 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉)) |
18 | 1 | 0wlkonlem2 30001 | . . . 4 ⊢ ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) → 𝑃 ∈ (𝑉 ↑pm (0...0))) |
19 | 0ex 5308 | . . . 4 ⊢ ∅ ∈ V | |
20 | 18, 19 | jctil 518 | . . 3 ⊢ ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) → (∅ ∈ V ∧ 𝑃 ∈ (𝑉 ↑pm (0...0)))) |
21 | 1 | ispthson 29628 | . . 3 ⊢ (((𝑁 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ∧ (∅ ∈ V ∧ 𝑃 ∈ (𝑉 ↑pm (0...0)))) → (∅(𝑁(PathsOn‘𝐺)𝑁)𝑃 ↔ (∅(𝑁(TrailsOn‘𝐺)𝑁)𝑃 ∧ ∅(Paths‘𝐺)𝑃))) |
22 | 17, 20, 21 | syl2anc 582 | . 2 ⊢ ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) → (∅(𝑁(PathsOn‘𝐺)𝑁)𝑃 ↔ (∅(𝑁(TrailsOn‘𝐺)𝑁)𝑃 ∧ ∅(Paths‘𝐺)𝑃))) |
23 | 2, 16, 22 | mpbir2and 711 | 1 ⊢ ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) → ∅(𝑁(PathsOn‘𝐺)𝑁)𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 Vcvv 3461 ∅c0 4322 class class class wbr 5149 ⟶wf 6545 ‘cfv 6549 (class class class)co 7419 ↑pm cpm 8846 0cc0 11140 ℤcz 12591 ...cfz 13519 Vtxcvtx 28881 TrailsOnctrlson 29577 Pathscpths 29598 PathsOncpthson 29600 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-ifp 1061 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-map 8847 df-pm 8848 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-card 9964 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-nn 12246 df-n0 12506 df-z 12592 df-uz 12856 df-fz 13520 df-fzo 13663 df-hash 14326 df-word 14501 df-wlks 29485 df-wlkson 29486 df-trls 29578 df-trlson 29579 df-pths 29602 df-pthson 29604 |
This theorem is referenced by: 0pthon1 30010 |
Copyright terms: Public domain | W3C validator |