![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0trlon | Structured version Visualization version GIF version |
Description: A trail of length 0 from a vertex to itself. (Contributed by Alexander van der Vekens, 2-Dec-2017.) (Revised by AV, 8-Jan-2021.) (Revised by AV, 23-Mar-2021.) (Proof shortened by AV, 30-Oct-2021.) |
Ref | Expression |
---|---|
0wlk.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
0trlon | ⊢ ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) → ∅(𝑁(TrailsOn‘𝐺)𝑁)𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0wlk.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 1 | 0wlkon 27586 | . 2 ⊢ ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) → ∅(𝑁(WalksOn‘𝐺)𝑁)𝑃) |
3 | simpl 483 | . . 3 ⊢ ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) → 𝑃:(0...0)⟶𝑉) | |
4 | 1 | 0wlkonlem1 27584 | . . . 4 ⊢ ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) → (𝑁 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉)) |
5 | 1 | 1vgrex 26470 | . . . . 5 ⊢ (𝑁 ∈ 𝑉 → 𝐺 ∈ V) |
6 | 5 | adantr 481 | . . . 4 ⊢ ((𝑁 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) → 𝐺 ∈ V) |
7 | 1 | 0trl 27588 | . . . 4 ⊢ (𝐺 ∈ V → (∅(Trails‘𝐺)𝑃 ↔ 𝑃:(0...0)⟶𝑉)) |
8 | 4, 6, 7 | 3syl 18 | . . 3 ⊢ ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) → (∅(Trails‘𝐺)𝑃 ↔ 𝑃:(0...0)⟶𝑉)) |
9 | 3, 8 | mpbird 258 | . 2 ⊢ ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) → ∅(Trails‘𝐺)𝑃) |
10 | 0ex 5102 | . . . 4 ⊢ ∅ ∈ V | |
11 | 10 | a1i 11 | . . 3 ⊢ ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) → ∅ ∈ V) |
12 | 1 | 0wlkonlem2 27585 | . . 3 ⊢ ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) → 𝑃 ∈ (𝑉 ↑pm (0...0))) |
13 | 1 | istrlson 27175 | . . 3 ⊢ (((𝑁 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ∧ (∅ ∈ V ∧ 𝑃 ∈ (𝑉 ↑pm (0...0)))) → (∅(𝑁(TrailsOn‘𝐺)𝑁)𝑃 ↔ (∅(𝑁(WalksOn‘𝐺)𝑁)𝑃 ∧ ∅(Trails‘𝐺)𝑃))) |
14 | 4, 11, 12, 13 | syl12anc 833 | . 2 ⊢ ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) → (∅(𝑁(TrailsOn‘𝐺)𝑁)𝑃 ↔ (∅(𝑁(WalksOn‘𝐺)𝑁)𝑃 ∧ ∅(Trails‘𝐺)𝑃))) |
15 | 2, 9, 14 | mpbir2and 709 | 1 ⊢ ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) → ∅(𝑁(TrailsOn‘𝐺)𝑁)𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 = wceq 1522 ∈ wcel 2081 Vcvv 3437 ∅c0 4211 class class class wbr 4962 ⟶wf 6221 ‘cfv 6225 (class class class)co 7016 ↑pm cpm 8257 0cc0 10383 ...cfz 12742 Vtxcvtx 26464 WalksOncwlkson 27062 Trailsctrls 27157 TrailsOnctrlson 27158 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-rep 5081 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 ax-cnex 10439 ax-resscn 10440 ax-1cn 10441 ax-icn 10442 ax-addcl 10443 ax-addrcl 10444 ax-mulcl 10445 ax-mulrcl 10446 ax-mulcom 10447 ax-addass 10448 ax-mulass 10449 ax-distr 10450 ax-i2m1 10451 ax-1ne0 10452 ax-1rid 10453 ax-rnegex 10454 ax-rrecex 10455 ax-cnre 10456 ax-pre-lttri 10457 ax-pre-lttrn 10458 ax-pre-ltadd 10459 ax-pre-mulgt0 10460 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-ifp 1056 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-nel 3091 df-ral 3110 df-rex 3111 df-reu 3112 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-pss 3876 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-tp 4477 df-op 4479 df-uni 4746 df-int 4783 df-iun 4827 df-br 4963 df-opab 5025 df-mpt 5042 df-tr 5064 df-id 5348 df-eprel 5353 df-po 5362 df-so 5363 df-fr 5402 df-we 5404 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-pred 6023 df-ord 6069 df-on 6070 df-lim 6071 df-suc 6072 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-riota 6977 df-ov 7019 df-oprab 7020 df-mpo 7021 df-om 7437 df-1st 7545 df-2nd 7546 df-wrecs 7798 df-recs 7860 df-rdg 7898 df-1o 7953 df-er 8139 df-map 8258 df-pm 8259 df-en 8358 df-dom 8359 df-sdom 8360 df-fin 8361 df-card 9214 df-pnf 10523 df-mnf 10524 df-xr 10525 df-ltxr 10526 df-le 10527 df-sub 10719 df-neg 10720 df-nn 11487 df-n0 11746 df-z 11830 df-uz 12094 df-fz 12743 df-fzo 12884 df-hash 13541 df-word 13708 df-wlks 27064 df-wlkson 27065 df-trls 27159 df-trlson 27160 |
This theorem is referenced by: 0pthon 27593 |
Copyright terms: Public domain | W3C validator |