![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0clwlkv | Structured version Visualization version GIF version |
Description: Any vertex (more precisely, a pair of an empty set (of edges) and a singleton function to this vertex) determines a closed walk of length 0. (Contributed by AV, 11-Feb-2022.) |
Ref | Expression |
---|---|
0clwlk.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
0clwlkv | ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐹 = ∅ ∧ 𝑃:{0}⟶{𝑋}) → 𝐹(ClWalks‘𝐺)𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fz0sn 13646 | . . . . . . 7 ⊢ (0...0) = {0} | |
2 | 1 | eqcomi 2735 | . . . . . 6 ⊢ {0} = (0...0) |
3 | 2 | feq2i 6709 | . . . . 5 ⊢ (𝑃:{0}⟶{𝑋} ↔ 𝑃:(0...0)⟶{𝑋}) |
4 | 3 | biimpi 215 | . . . 4 ⊢ (𝑃:{0}⟶{𝑋} → 𝑃:(0...0)⟶{𝑋}) |
5 | 4 | 3ad2ant3 1132 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐹 = ∅ ∧ 𝑃:{0}⟶{𝑋}) → 𝑃:(0...0)⟶{𝑋}) |
6 | snssi 4807 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → {𝑋} ⊆ 𝑉) | |
7 | 6 | 3ad2ant1 1130 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐹 = ∅ ∧ 𝑃:{0}⟶{𝑋}) → {𝑋} ⊆ 𝑉) |
8 | 5, 7 | fssd 6734 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐹 = ∅ ∧ 𝑃:{0}⟶{𝑋}) → 𝑃:(0...0)⟶𝑉) |
9 | breq1 5146 | . . . 4 ⊢ (𝐹 = ∅ → (𝐹(ClWalks‘𝐺)𝑃 ↔ ∅(ClWalks‘𝐺)𝑃)) | |
10 | 9 | 3ad2ant2 1131 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐹 = ∅ ∧ 𝑃:{0}⟶{𝑋}) → (𝐹(ClWalks‘𝐺)𝑃 ↔ ∅(ClWalks‘𝐺)𝑃)) |
11 | 0clwlk.v | . . . . . 6 ⊢ 𝑉 = (Vtx‘𝐺) | |
12 | 11 | 1vgrex 28932 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → 𝐺 ∈ V) |
13 | 11 | 0clwlk 30057 | . . . . 5 ⊢ (𝐺 ∈ V → (∅(ClWalks‘𝐺)𝑃 ↔ 𝑃:(0...0)⟶𝑉)) |
14 | 12, 13 | syl 17 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → (∅(ClWalks‘𝐺)𝑃 ↔ 𝑃:(0...0)⟶𝑉)) |
15 | 14 | 3ad2ant1 1130 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐹 = ∅ ∧ 𝑃:{0}⟶{𝑋}) → (∅(ClWalks‘𝐺)𝑃 ↔ 𝑃:(0...0)⟶𝑉)) |
16 | 10, 15 | bitrd 278 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐹 = ∅ ∧ 𝑃:{0}⟶{𝑋}) → (𝐹(ClWalks‘𝐺)𝑃 ↔ 𝑃:(0...0)⟶𝑉)) |
17 | 8, 16 | mpbird 256 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐹 = ∅ ∧ 𝑃:{0}⟶{𝑋}) → 𝐹(ClWalks‘𝐺)𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 Vcvv 3462 ⊆ wss 3946 ∅c0 4322 {csn 4623 class class class wbr 5143 ⟶wf 6539 ‘cfv 6543 (class class class)co 7413 0cc0 11146 ...cfz 13529 Vtxcvtx 28926 ClWalkscclwlks 29701 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7735 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-ifp 1061 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-int 4947 df-iun 4995 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6302 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7866 df-1st 7992 df-2nd 7993 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8723 df-map 8846 df-pm 8847 df-en 8964 df-dom 8965 df-sdom 8966 df-fin 8967 df-card 9972 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-nn 12256 df-n0 12516 df-z 12602 df-uz 12866 df-fz 13530 df-fzo 13673 df-hash 14340 df-word 14515 df-wlks 29530 df-clwlks 29702 |
This theorem is referenced by: wlkl0 30294 |
Copyright terms: Public domain | W3C validator |