Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0clwlkv | Structured version Visualization version GIF version |
Description: Any vertex (more precisely, a pair of an empty set (of edges) and a singleton function to this vertex) determines a closed walk of length 0. (Contributed by AV, 11-Feb-2022.) |
Ref | Expression |
---|---|
0clwlk.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
0clwlkv | ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐹 = ∅ ∧ 𝑃:{0}⟶{𝑋}) → 𝐹(ClWalks‘𝐺)𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fz0sn 13356 | . . . . . . 7 ⊢ (0...0) = {0} | |
2 | 1 | eqcomi 2747 | . . . . . 6 ⊢ {0} = (0...0) |
3 | 2 | feq2i 6592 | . . . . 5 ⊢ (𝑃:{0}⟶{𝑋} ↔ 𝑃:(0...0)⟶{𝑋}) |
4 | 3 | biimpi 215 | . . . 4 ⊢ (𝑃:{0}⟶{𝑋} → 𝑃:(0...0)⟶{𝑋}) |
5 | 4 | 3ad2ant3 1134 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐹 = ∅ ∧ 𝑃:{0}⟶{𝑋}) → 𝑃:(0...0)⟶{𝑋}) |
6 | snssi 4741 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → {𝑋} ⊆ 𝑉) | |
7 | 6 | 3ad2ant1 1132 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐹 = ∅ ∧ 𝑃:{0}⟶{𝑋}) → {𝑋} ⊆ 𝑉) |
8 | 5, 7 | fssd 6618 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐹 = ∅ ∧ 𝑃:{0}⟶{𝑋}) → 𝑃:(0...0)⟶𝑉) |
9 | breq1 5077 | . . . 4 ⊢ (𝐹 = ∅ → (𝐹(ClWalks‘𝐺)𝑃 ↔ ∅(ClWalks‘𝐺)𝑃)) | |
10 | 9 | 3ad2ant2 1133 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐹 = ∅ ∧ 𝑃:{0}⟶{𝑋}) → (𝐹(ClWalks‘𝐺)𝑃 ↔ ∅(ClWalks‘𝐺)𝑃)) |
11 | 0clwlk.v | . . . . . 6 ⊢ 𝑉 = (Vtx‘𝐺) | |
12 | 11 | 1vgrex 27372 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → 𝐺 ∈ V) |
13 | 11 | 0clwlk 28494 | . . . . 5 ⊢ (𝐺 ∈ V → (∅(ClWalks‘𝐺)𝑃 ↔ 𝑃:(0...0)⟶𝑉)) |
14 | 12, 13 | syl 17 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → (∅(ClWalks‘𝐺)𝑃 ↔ 𝑃:(0...0)⟶𝑉)) |
15 | 14 | 3ad2ant1 1132 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐹 = ∅ ∧ 𝑃:{0}⟶{𝑋}) → (∅(ClWalks‘𝐺)𝑃 ↔ 𝑃:(0...0)⟶𝑉)) |
16 | 10, 15 | bitrd 278 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐹 = ∅ ∧ 𝑃:{0}⟶{𝑋}) → (𝐹(ClWalks‘𝐺)𝑃 ↔ 𝑃:(0...0)⟶𝑉)) |
17 | 8, 16 | mpbird 256 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐹 = ∅ ∧ 𝑃:{0}⟶{𝑋}) → 𝐹(ClWalks‘𝐺)𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ⊆ wss 3887 ∅c0 4256 {csn 4561 class class class wbr 5074 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 0cc0 10871 ...cfz 13239 Vtxcvtx 27366 ClWalkscclwlks 28138 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ifp 1061 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-pm 8618 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-fzo 13383 df-hash 14045 df-word 14218 df-wlks 27966 df-clwlks 28139 |
This theorem is referenced by: wlkl0 28731 |
Copyright terms: Public domain | W3C validator |