MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0clwlkv Structured version   Visualization version   GIF version

Theorem 0clwlkv 27304
Description: Any vertex (more precisely, a pair of an empty set (of edges) and a singleton function to this vertex) determines a closed walk of length 0. (Contributed by AV, 11-Feb-2022.)
Hypothesis
Ref Expression
0clwlk.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
0clwlkv ((𝑋𝑉𝐹 = ∅ ∧ 𝑃:{0}⟶{𝑋}) → 𝐹(ClWalks‘𝐺)𝑃)

Proof of Theorem 0clwlkv
StepHypRef Expression
1 fz0sn 12663 . . . . . . 7 (0...0) = {0}
21eqcomi 2815 . . . . . 6 {0} = (0...0)
32feq2i 6248 . . . . 5 (𝑃:{0}⟶{𝑋} ↔ 𝑃:(0...0)⟶{𝑋})
43biimpi 207 . . . 4 (𝑃:{0}⟶{𝑋} → 𝑃:(0...0)⟶{𝑋})
543ad2ant3 1158 . . 3 ((𝑋𝑉𝐹 = ∅ ∧ 𝑃:{0}⟶{𝑋}) → 𝑃:(0...0)⟶{𝑋})
6 snssi 4529 . . . 4 (𝑋𝑉 → {𝑋} ⊆ 𝑉)
763ad2ant1 1156 . . 3 ((𝑋𝑉𝐹 = ∅ ∧ 𝑃:{0}⟶{𝑋}) → {𝑋} ⊆ 𝑉)
85, 7fssd 6270 . 2 ((𝑋𝑉𝐹 = ∅ ∧ 𝑃:{0}⟶{𝑋}) → 𝑃:(0...0)⟶𝑉)
9 breq1 4847 . . . 4 (𝐹 = ∅ → (𝐹(ClWalks‘𝐺)𝑃 ↔ ∅(ClWalks‘𝐺)𝑃))
1093ad2ant2 1157 . . 3 ((𝑋𝑉𝐹 = ∅ ∧ 𝑃:{0}⟶{𝑋}) → (𝐹(ClWalks‘𝐺)𝑃 ↔ ∅(ClWalks‘𝐺)𝑃))
11 0clwlk.v . . . . . 6 𝑉 = (Vtx‘𝐺)
12111vgrex 26096 . . . . 5 (𝑋𝑉𝐺 ∈ V)
13110clwlk 27303 . . . . 5 (𝐺 ∈ V → (∅(ClWalks‘𝐺)𝑃𝑃:(0...0)⟶𝑉))
1412, 13syl 17 . . . 4 (𝑋𝑉 → (∅(ClWalks‘𝐺)𝑃𝑃:(0...0)⟶𝑉))
15143ad2ant1 1156 . . 3 ((𝑋𝑉𝐹 = ∅ ∧ 𝑃:{0}⟶{𝑋}) → (∅(ClWalks‘𝐺)𝑃𝑃:(0...0)⟶𝑉))
1610, 15bitrd 270 . 2 ((𝑋𝑉𝐹 = ∅ ∧ 𝑃:{0}⟶{𝑋}) → (𝐹(ClWalks‘𝐺)𝑃𝑃:(0...0)⟶𝑉))
178, 16mpbird 248 1 ((𝑋𝑉𝐹 = ∅ ∧ 𝑃:{0}⟶{𝑋}) → 𝐹(ClWalks‘𝐺)𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  w3a 1100   = wceq 1637  wcel 2156  Vcvv 3391  wss 3769  c0 4116  {csn 4370   class class class wbr 4844  wf 6097  cfv 6101  (class class class)co 6874  0cc0 10221  ...cfz 12549  Vtxcvtx 26088  ClWalkscclwlks 26894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5096  ax-un 7179  ax-cnex 10277  ax-resscn 10278  ax-1cn 10279  ax-icn 10280  ax-addcl 10281  ax-addrcl 10282  ax-mulcl 10283  ax-mulrcl 10284  ax-mulcom 10285  ax-addass 10286  ax-mulass 10287  ax-distr 10288  ax-i2m1 10289  ax-1ne0 10290  ax-1rid 10291  ax-rnegex 10292  ax-rrecex 10293  ax-cnre 10294  ax-pre-lttri 10295  ax-pre-lttrn 10296  ax-pre-ltadd 10297  ax-pre-mulgt0 10298
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-ifp 1079  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ne 2979  df-nel 3082  df-ral 3101  df-rex 3102  df-reu 3103  df-rab 3105  df-v 3393  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4117  df-if 4280  df-pw 4353  df-sn 4371  df-pr 4373  df-tp 4375  df-op 4377  df-uni 4631  df-int 4670  df-iun 4714  df-br 4845  df-opab 4907  df-mpt 4924  df-tr 4947  df-id 5219  df-eprel 5224  df-po 5232  df-so 5233  df-fr 5270  df-we 5272  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-pred 5893  df-ord 5939  df-on 5940  df-lim 5941  df-suc 5942  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6835  df-ov 6877  df-oprab 6878  df-mpt2 6879  df-om 7296  df-1st 7398  df-2nd 7399  df-wrecs 7642  df-recs 7704  df-rdg 7742  df-1o 7796  df-er 7979  df-map 8094  df-pm 8095  df-en 8193  df-dom 8194  df-sdom 8195  df-fin 8196  df-card 9048  df-pnf 10361  df-mnf 10362  df-xr 10363  df-ltxr 10364  df-le 10365  df-sub 10553  df-neg 10554  df-nn 11306  df-n0 11560  df-z 11644  df-uz 11905  df-fz 12550  df-fzo 12690  df-hash 13338  df-word 13510  df-wlks 26723  df-clwlks 26895
This theorem is referenced by:  wlkl0  27547
  Copyright terms: Public domain W3C validator