Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0clwlkv | Structured version Visualization version GIF version |
Description: Any vertex (more precisely, a pair of an empty set (of edges) and a singleton function to this vertex) determines a closed walk of length 0. (Contributed by AV, 11-Feb-2022.) |
Ref | Expression |
---|---|
0clwlk.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
0clwlkv | ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐹 = ∅ ∧ 𝑃:{0}⟶{𝑋}) → 𝐹(ClWalks‘𝐺)𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fz0sn 13353 | . . . . . . 7 ⊢ (0...0) = {0} | |
2 | 1 | eqcomi 2749 | . . . . . 6 ⊢ {0} = (0...0) |
3 | 2 | feq2i 6589 | . . . . 5 ⊢ (𝑃:{0}⟶{𝑋} ↔ 𝑃:(0...0)⟶{𝑋}) |
4 | 3 | biimpi 215 | . . . 4 ⊢ (𝑃:{0}⟶{𝑋} → 𝑃:(0...0)⟶{𝑋}) |
5 | 4 | 3ad2ant3 1134 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐹 = ∅ ∧ 𝑃:{0}⟶{𝑋}) → 𝑃:(0...0)⟶{𝑋}) |
6 | snssi 4747 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → {𝑋} ⊆ 𝑉) | |
7 | 6 | 3ad2ant1 1132 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐹 = ∅ ∧ 𝑃:{0}⟶{𝑋}) → {𝑋} ⊆ 𝑉) |
8 | 5, 7 | fssd 6615 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐹 = ∅ ∧ 𝑃:{0}⟶{𝑋}) → 𝑃:(0...0)⟶𝑉) |
9 | breq1 5082 | . . . 4 ⊢ (𝐹 = ∅ → (𝐹(ClWalks‘𝐺)𝑃 ↔ ∅(ClWalks‘𝐺)𝑃)) | |
10 | 9 | 3ad2ant2 1133 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐹 = ∅ ∧ 𝑃:{0}⟶{𝑋}) → (𝐹(ClWalks‘𝐺)𝑃 ↔ ∅(ClWalks‘𝐺)𝑃)) |
11 | 0clwlk.v | . . . . . 6 ⊢ 𝑉 = (Vtx‘𝐺) | |
12 | 11 | 1vgrex 27368 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → 𝐺 ∈ V) |
13 | 11 | 0clwlk 28488 | . . . . 5 ⊢ (𝐺 ∈ V → (∅(ClWalks‘𝐺)𝑃 ↔ 𝑃:(0...0)⟶𝑉)) |
14 | 12, 13 | syl 17 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → (∅(ClWalks‘𝐺)𝑃 ↔ 𝑃:(0...0)⟶𝑉)) |
15 | 14 | 3ad2ant1 1132 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐹 = ∅ ∧ 𝑃:{0}⟶{𝑋}) → (∅(ClWalks‘𝐺)𝑃 ↔ 𝑃:(0...0)⟶𝑉)) |
16 | 10, 15 | bitrd 278 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐹 = ∅ ∧ 𝑃:{0}⟶{𝑋}) → (𝐹(ClWalks‘𝐺)𝑃 ↔ 𝑃:(0...0)⟶𝑉)) |
17 | 8, 16 | mpbird 256 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐹 = ∅ ∧ 𝑃:{0}⟶{𝑋}) → 𝐹(ClWalks‘𝐺)𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1086 = wceq 1542 ∈ wcel 2110 Vcvv 3431 ⊆ wss 3892 ∅c0 4262 {csn 4567 class class class wbr 5079 ⟶wf 6427 ‘cfv 6431 (class class class)co 7269 0cc0 10870 ...cfz 13236 Vtxcvtx 27362 ClWalkscclwlks 28132 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 ax-cnex 10926 ax-resscn 10927 ax-1cn 10928 ax-icn 10929 ax-addcl 10930 ax-addrcl 10931 ax-mulcl 10932 ax-mulrcl 10933 ax-mulcom 10934 ax-addass 10935 ax-mulass 10936 ax-distr 10937 ax-i2m1 10938 ax-1ne0 10939 ax-1rid 10940 ax-rnegex 10941 ax-rrecex 10942 ax-cnre 10943 ax-pre-lttri 10944 ax-pre-lttrn 10945 ax-pre-ltadd 10946 ax-pre-mulgt0 10947 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ifp 1061 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6200 df-ord 6267 df-on 6268 df-lim 6269 df-suc 6270 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-riota 7226 df-ov 7272 df-oprab 7273 df-mpo 7274 df-om 7705 df-1st 7822 df-2nd 7823 df-frecs 8086 df-wrecs 8117 df-recs 8191 df-rdg 8230 df-1o 8286 df-er 8479 df-map 8598 df-pm 8599 df-en 8715 df-dom 8716 df-sdom 8717 df-fin 8718 df-card 9696 df-pnf 11010 df-mnf 11011 df-xr 11012 df-ltxr 11013 df-le 11014 df-sub 11205 df-neg 11206 df-nn 11972 df-n0 12232 df-z 12318 df-uz 12580 df-fz 13237 df-fzo 13380 df-hash 14041 df-word 14214 df-wlks 27962 df-clwlks 28133 |
This theorem is referenced by: wlkl0 28725 |
Copyright terms: Public domain | W3C validator |