MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trlsonfval Structured version   Visualization version   GIF version

Theorem trlsonfval 29432
Description: The set of trails between two vertices. (Contributed by Alexander van der Vekens, 4-Nov-2017.) (Revised by AV, 7-Jan-2021.) (Proof shortened by AV, 15-Jan-2021.) (Revised by AV, 21-Mar-2021.)
Hypothesis
Ref Expression
trlsonfval.v 𝑉 = (Vtxβ€˜πΊ)
Assertion
Ref Expression
trlsonfval ((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉) β†’ (𝐴(TrailsOnβ€˜πΊ)𝐡) = {βŸ¨π‘“, π‘βŸ© ∣ (𝑓(𝐴(WalksOnβ€˜πΊ)𝐡)𝑝 ∧ 𝑓(Trailsβ€˜πΊ)𝑝)})
Distinct variable groups:   𝐴,𝑓,𝑝   𝐡,𝑓,𝑝   𝑓,𝐺,𝑝   𝑓,𝑉,𝑝

Proof of Theorem trlsonfval
Dummy variables π‘Ž 𝑏 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 trlsonfval.v . . . 4 𝑉 = (Vtxβ€˜πΊ)
211vgrex 28731 . . 3 (𝐴 ∈ 𝑉 β†’ 𝐺 ∈ V)
32adantr 480 . 2 ((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉) β†’ 𝐺 ∈ V)
4 simpl 482 . . 3 ((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉) β†’ 𝐴 ∈ 𝑉)
54, 1eleqtrdi 2835 . 2 ((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉) β†’ 𝐴 ∈ (Vtxβ€˜πΊ))
6 simpr 484 . . 3 ((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉) β†’ 𝐡 ∈ 𝑉)
76, 1eleqtrdi 2835 . 2 ((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉) β†’ 𝐡 ∈ (Vtxβ€˜πΊ))
8 df-trlson 29419 . 2 TrailsOn = (𝑔 ∈ V ↦ (π‘Ž ∈ (Vtxβ€˜π‘”), 𝑏 ∈ (Vtxβ€˜π‘”) ↦ {βŸ¨π‘“, π‘βŸ© ∣ (𝑓(π‘Ž(WalksOnβ€˜π‘”)𝑏)𝑝 ∧ 𝑓(Trailsβ€˜π‘”)𝑝)}))
93, 5, 7, 8mptmpoopabovd 8062 1 ((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉) β†’ (𝐴(TrailsOnβ€˜πΊ)𝐡) = {βŸ¨π‘“, π‘βŸ© ∣ (𝑓(𝐴(WalksOnβ€˜πΊ)𝐡)𝑝 ∧ 𝑓(Trailsβ€˜πΊ)𝑝)})
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1533   ∈ wcel 2098  Vcvv 3466   class class class wbr 5138  {copab 5200  β€˜cfv 6533  (class class class)co 7401  Vtxcvtx 28725  WalksOncwlkson 29323  Trailsctrls 29416  TrailsOnctrlson 29417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-fv 6541  df-ov 7404  df-oprab 7405  df-mpo 7406  df-1st 7968  df-2nd 7969  df-trlson 29419
This theorem is referenced by:  istrlson  29433
  Copyright terms: Public domain W3C validator