![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > trlsonfval | Structured version Visualization version GIF version |
Description: The set of trails between two vertices. (Contributed by Alexander van der Vekens, 4-Nov-2017.) (Revised by AV, 7-Jan-2021.) (Proof shortened by AV, 15-Jan-2021.) (Revised by AV, 21-Mar-2021.) |
Ref | Expression |
---|---|
trlsonfval.v | β’ π = (VtxβπΊ) |
Ref | Expression |
---|---|
trlsonfval | β’ ((π΄ β π β§ π΅ β π) β (π΄(TrailsOnβπΊ)π΅) = {β¨π, πβ© β£ (π(π΄(WalksOnβπΊ)π΅)π β§ π(TrailsβπΊ)π)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trlsonfval.v | . . . 4 β’ π = (VtxβπΊ) | |
2 | 1 | 1vgrex 28731 | . . 3 β’ (π΄ β π β πΊ β V) |
3 | 2 | adantr 480 | . 2 β’ ((π΄ β π β§ π΅ β π) β πΊ β V) |
4 | simpl 482 | . . 3 β’ ((π΄ β π β§ π΅ β π) β π΄ β π) | |
5 | 4, 1 | eleqtrdi 2835 | . 2 β’ ((π΄ β π β§ π΅ β π) β π΄ β (VtxβπΊ)) |
6 | simpr 484 | . . 3 β’ ((π΄ β π β§ π΅ β π) β π΅ β π) | |
7 | 6, 1 | eleqtrdi 2835 | . 2 β’ ((π΄ β π β§ π΅ β π) β π΅ β (VtxβπΊ)) |
8 | df-trlson 29419 | . 2 β’ TrailsOn = (π β V β¦ (π β (Vtxβπ), π β (Vtxβπ) β¦ {β¨π, πβ© β£ (π(π(WalksOnβπ)π)π β§ π(Trailsβπ)π)})) | |
9 | 3, 5, 7, 8 | mptmpoopabovd 8062 | 1 β’ ((π΄ β π β§ π΅ β π) β (π΄(TrailsOnβπΊ)π΅) = {β¨π, πβ© β£ (π(π΄(WalksOnβπΊ)π΅)π β§ π(TrailsβπΊ)π)}) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1533 β wcel 2098 Vcvv 3466 class class class wbr 5138 {copab 5200 βcfv 6533 (class class class)co 7401 Vtxcvtx 28725 WalksOncwlkson 29323 Trailsctrls 29416 TrailsOnctrlson 29417 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-fv 6541 df-ov 7404 df-oprab 7405 df-mpo 7406 df-1st 7968 df-2nd 7969 df-trlson 29419 |
This theorem is referenced by: istrlson 29433 |
Copyright terms: Public domain | W3C validator |