| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3wlkd | Structured version Visualization version GIF version | ||
| Description: Construction of a walk from two given edges in a graph. (Contributed by AV, 7-Feb-2021.) (Revised by AV, 24-Mar-2021.) |
| Ref | Expression |
|---|---|
| 3wlkd.p | ⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 |
| 3wlkd.f | ⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 |
| 3wlkd.s | ⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) |
| 3wlkd.n | ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) |
| 3wlkd.e | ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼‘𝐿))) |
| 3wlkd.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| 3wlkd.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| Ref | Expression |
|---|---|
| 3wlkd | ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3wlkd.p | . . . 4 ⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 | |
| 2 | s4cli 14888 | . . . 4 ⊢ 〈“𝐴𝐵𝐶𝐷”〉 ∈ Word V | |
| 3 | 1, 2 | eqeltri 2829 | . . 3 ⊢ 𝑃 ∈ Word V |
| 4 | 3 | a1i 11 | . 2 ⊢ (𝜑 → 𝑃 ∈ Word V) |
| 5 | 3wlkd.f | . . . 4 ⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 | |
| 6 | s3cli 14887 | . . . 4 ⊢ 〈“𝐽𝐾𝐿”〉 ∈ Word V | |
| 7 | 5, 6 | eqeltri 2829 | . . 3 ⊢ 𝐹 ∈ Word V |
| 8 | 7 | a1i 11 | . 2 ⊢ (𝜑 → 𝐹 ∈ Word V) |
| 9 | 1, 5 | 3wlkdlem1 30072 | . . 3 ⊢ (♯‘𝑃) = ((♯‘𝐹) + 1) |
| 10 | 9 | a1i 11 | . 2 ⊢ (𝜑 → (♯‘𝑃) = ((♯‘𝐹) + 1)) |
| 11 | 3wlkd.s | . . 3 ⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) | |
| 12 | 3wlkd.n | . . 3 ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) | |
| 13 | 3wlkd.e | . . 3 ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼‘𝐿))) | |
| 14 | 1, 5, 11, 12, 13 | 3wlkdlem10 30082 | . 2 ⊢ (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) |
| 15 | 1, 5, 11, 12 | 3wlkdlem5 30076 | . 2 ⊢ (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1))) |
| 16 | 3wlkd.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 17 | 16 | 1vgrex 28913 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐺 ∈ V) |
| 18 | 17 | ad2antrr 726 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → 𝐺 ∈ V) |
| 19 | 11, 18 | syl 17 | . 2 ⊢ (𝜑 → 𝐺 ∈ V) |
| 20 | 3wlkd.i | . 2 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 21 | 1, 5, 11 | 3wlkdlem4 30075 | . 2 ⊢ (𝜑 → ∀𝑘 ∈ (0...(♯‘𝐹))(𝑃‘𝑘) ∈ 𝑉) |
| 22 | 4, 8, 10, 14, 15, 19, 16, 20, 21 | wlkd 29598 | 1 ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 Vcvv 3457 ⊆ wss 3924 {cpr 4601 class class class wbr 5116 ‘cfv 6527 (class class class)co 7399 1c1 11122 + caddc 11124 ♯chash 14336 Word cword 14519 〈“cs3 14848 〈“cs4 14849 Vtxcvtx 28907 iEdgciedg 28908 Walkscwlks 29508 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5246 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 ax-cnex 11177 ax-resscn 11178 ax-1cn 11179 ax-icn 11180 ax-addcl 11181 ax-addrcl 11182 ax-mulcl 11183 ax-mulrcl 11184 ax-mulcom 11185 ax-addass 11186 ax-mulass 11187 ax-distr 11188 ax-i2m1 11189 ax-1ne0 11190 ax-1rid 11191 ax-rnegex 11192 ax-rrecex 11193 ax-cnre 11194 ax-pre-lttri 11195 ax-pre-lttrn 11196 ax-pre-ltadd 11197 ax-pre-mulgt0 11198 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-tp 4604 df-op 4606 df-uni 4881 df-int 4920 df-iun 4966 df-br 5117 df-opab 5179 df-mpt 5199 df-tr 5227 df-id 5545 df-eprel 5550 df-po 5558 df-so 5559 df-fr 5603 df-we 5605 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-pred 6287 df-ord 6352 df-on 6353 df-lim 6354 df-suc 6355 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-riota 7356 df-ov 7402 df-oprab 7403 df-mpo 7404 df-om 7856 df-1st 7982 df-2nd 7983 df-frecs 8274 df-wrecs 8305 df-recs 8379 df-rdg 8418 df-1o 8474 df-er 8713 df-map 8836 df-en 8954 df-dom 8955 df-sdom 8956 df-fin 8957 df-card 9945 df-pnf 11263 df-mnf 11264 df-xr 11265 df-ltxr 11266 df-le 11267 df-sub 11460 df-neg 11461 df-nn 12233 df-2 12295 df-3 12296 df-4 12297 df-n0 12494 df-z 12581 df-uz 12845 df-fz 13514 df-fzo 13661 df-hash 14337 df-word 14520 df-concat 14576 df-s1 14601 df-s2 14854 df-s3 14855 df-s4 14856 df-wlks 29511 |
| This theorem is referenced by: 3wlkond 30084 3trld 30085 |
| Copyright terms: Public domain | W3C validator |