![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0wlkon | Structured version Visualization version GIF version |
Description: A walk of length 0 from a vertex to itself. (Contributed by Alexander van der Vekens, 2-Dec-2017.) (Revised by AV, 3-Jan-2021.) (Revised by AV, 23-Mar-2021.) (Proof shortened by AV, 30-Oct-2021.) |
Ref | Expression |
---|---|
0wlk.v | β’ π = (VtxβπΊ) |
Ref | Expression |
---|---|
0wlkon | β’ ((π:(0...0)βΆπ β§ (πβ0) = π) β β (π(WalksOnβπΊ)π)π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 481 | . . 3 β’ ((π:(0...0)βΆπ β§ (πβ0) = π) β π:(0...0)βΆπ) | |
2 | 0wlk.v | . . . . 5 β’ π = (VtxβπΊ) | |
3 | 2 | 0wlkonlem1 29638 | . . . 4 β’ ((π:(0...0)βΆπ β§ (πβ0) = π) β (π β π β§ π β π)) |
4 | 2 | 1vgrex 28529 | . . . . 5 β’ (π β π β πΊ β V) |
5 | 4 | adantr 479 | . . . 4 β’ ((π β π β§ π β π) β πΊ β V) |
6 | 2 | 0wlk 29636 | . . . 4 β’ (πΊ β V β (β (WalksβπΊ)π β π:(0...0)βΆπ)) |
7 | 3, 5, 6 | 3syl 18 | . . 3 β’ ((π:(0...0)βΆπ β§ (πβ0) = π) β (β (WalksβπΊ)π β π:(0...0)βΆπ)) |
8 | 1, 7 | mpbird 256 | . 2 β’ ((π:(0...0)βΆπ β§ (πβ0) = π) β β (WalksβπΊ)π) |
9 | simpr 483 | . 2 β’ ((π:(0...0)βΆπ β§ (πβ0) = π) β (πβ0) = π) | |
10 | hash0 14331 | . . . 4 β’ (β―ββ ) = 0 | |
11 | 10 | fveq2i 6893 | . . 3 β’ (πβ(β―ββ )) = (πβ0) |
12 | 11, 9 | eqtrid 2782 | . 2 β’ ((π:(0...0)βΆπ β§ (πβ0) = π) β (πβ(β―ββ )) = π) |
13 | 0ex 5306 | . . . 4 β’ β β V | |
14 | 13 | a1i 11 | . . 3 β’ ((π:(0...0)βΆπ β§ (πβ0) = π) β β β V) |
15 | 2 | 0wlkonlem2 29639 | . . 3 β’ ((π:(0...0)βΆπ β§ (πβ0) = π) β π β (π βpm (0...0))) |
16 | 2 | iswlkon 29181 | . . 3 β’ (((π β π β§ π β π) β§ (β β V β§ π β (π βpm (0...0)))) β (β (π(WalksOnβπΊ)π)π β (β (WalksβπΊ)π β§ (πβ0) = π β§ (πβ(β―ββ )) = π))) |
17 | 3, 14, 15, 16 | syl12anc 833 | . 2 β’ ((π:(0...0)βΆπ β§ (πβ0) = π) β (β (π(WalksOnβπΊ)π)π β (β (WalksβπΊ)π β§ (πβ0) = π β§ (πβ(β―ββ )) = π))) |
18 | 8, 9, 12, 17 | mpbir3and 1340 | 1 β’ ((π:(0...0)βΆπ β§ (πβ0) = π) β β (π(WalksOnβπΊ)π)π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 394 β§ w3a 1085 = wceq 1539 β wcel 2104 Vcvv 3472 β c0 4321 class class class wbr 5147 βΆwf 6538 βcfv 6542 (class class class)co 7411 βpm cpm 8823 0cc0 11112 ...cfz 13488 β―chash 14294 Vtxcvtx 28523 Walkscwlks 29120 WalksOncwlkson 29121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-ifp 1060 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-er 8705 df-map 8824 df-pm 8825 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-n0 12477 df-z 12563 df-uz 12827 df-fz 13489 df-fzo 13632 df-hash 14295 df-word 14469 df-wlks 29123 df-wlkson 29124 |
This theorem is referenced by: 0wlkons1 29641 0trlon 29644 |
Copyright terms: Public domain | W3C validator |