![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vtxdgval | Structured version Visualization version GIF version |
Description: The degree of a vertex. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 20-Dec-2017.) (Revised by AV, 10-Dec-2020.) (Revised by AV, 22-Mar-2021.) |
Ref | Expression |
---|---|
vtxdgval.v | ⊢ 𝑉 = (Vtx‘𝐺) |
vtxdgval.i | ⊢ 𝐼 = (iEdg‘𝐺) |
vtxdgval.a | ⊢ 𝐴 = dom 𝐼 |
Ref | Expression |
---|---|
vtxdgval | ⊢ (𝑈 ∈ 𝑉 → ((VtxDeg‘𝐺)‘𝑈) = ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtxdgval.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 1 | 1vgrex 29037 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → 𝐺 ∈ V) |
3 | vtxdgval.i | . . . . 5 ⊢ 𝐼 = (iEdg‘𝐺) | |
4 | vtxdgval.a | . . . . 5 ⊢ 𝐴 = dom 𝐼 | |
5 | 1, 3, 4 | vtxdgfval 29503 | . . . 4 ⊢ (𝐺 ∈ V → (VtxDeg‘𝐺) = (𝑢 ∈ 𝑉 ↦ ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑢 ∈ (𝐼‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑢}})))) |
6 | 2, 5 | syl 17 | . . 3 ⊢ (𝑈 ∈ 𝑉 → (VtxDeg‘𝐺) = (𝑢 ∈ 𝑉 ↦ ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑢 ∈ (𝐼‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑢}})))) |
7 | 6 | fveq1d 6922 | . 2 ⊢ (𝑈 ∈ 𝑉 → ((VtxDeg‘𝐺)‘𝑈) = ((𝑢 ∈ 𝑉 ↦ ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑢 ∈ (𝐼‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑢}})))‘𝑈)) |
8 | eleq1 2832 | . . . . . 6 ⊢ (𝑢 = 𝑈 → (𝑢 ∈ (𝐼‘𝑥) ↔ 𝑈 ∈ (𝐼‘𝑥))) | |
9 | 8 | rabbidv 3451 | . . . . 5 ⊢ (𝑢 = 𝑈 → {𝑥 ∈ 𝐴 ∣ 𝑢 ∈ (𝐼‘𝑥)} = {𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) |
10 | 9 | fveq2d 6924 | . . . 4 ⊢ (𝑢 = 𝑈 → (♯‘{𝑥 ∈ 𝐴 ∣ 𝑢 ∈ (𝐼‘𝑥)}) = (♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)})) |
11 | sneq 4658 | . . . . . . 7 ⊢ (𝑢 = 𝑈 → {𝑢} = {𝑈}) | |
12 | 11 | eqeq2d 2751 | . . . . . 6 ⊢ (𝑢 = 𝑈 → ((𝐼‘𝑥) = {𝑢} ↔ (𝐼‘𝑥) = {𝑈})) |
13 | 12 | rabbidv 3451 | . . . . 5 ⊢ (𝑢 = 𝑈 → {𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑢}} = {𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}}) |
14 | 13 | fveq2d 6924 | . . . 4 ⊢ (𝑢 = 𝑈 → (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑢}}) = (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}})) |
15 | 10, 14 | oveq12d 7466 | . . 3 ⊢ (𝑢 = 𝑈 → ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑢 ∈ (𝐼‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑢}})) = ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}}))) |
16 | eqid 2740 | . . 3 ⊢ (𝑢 ∈ 𝑉 ↦ ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑢 ∈ (𝐼‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑢}}))) = (𝑢 ∈ 𝑉 ↦ ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑢 ∈ (𝐼‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑢}}))) | |
17 | ovex 7481 | . . 3 ⊢ ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}})) ∈ V | |
18 | 15, 16, 17 | fvmpt 7029 | . 2 ⊢ (𝑈 ∈ 𝑉 → ((𝑢 ∈ 𝑉 ↦ ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑢 ∈ (𝐼‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑢}})))‘𝑈) = ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}}))) |
19 | 7, 18 | eqtrd 2780 | 1 ⊢ (𝑈 ∈ 𝑉 → ((VtxDeg‘𝐺)‘𝑈) = ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 {crab 3443 Vcvv 3488 {csn 4648 ↦ cmpt 5249 dom cdm 5700 ‘cfv 6573 (class class class)co 7448 +𝑒 cxad 13173 ♯chash 14379 Vtxcvtx 29031 iEdgciedg 29032 VtxDegcvtxdg 29501 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-vtxdg 29502 |
This theorem is referenced by: vtxdgfival 29505 vtxdun 29517 vtxdlfgrval 29521 vtxd0nedgb 29524 vtxdushgrfvedg 29526 vtxdginducedm1 29579 |
Copyright terms: Public domain | W3C validator |