MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtxdgval Structured version   Visualization version   GIF version

Theorem vtxdgval 29310
Description: The degree of a vertex. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 20-Dec-2017.) (Revised by AV, 10-Dec-2020.) (Revised by AV, 22-Mar-2021.)
Hypotheses
Ref Expression
vtxdgval.v 𝑉 = (Vtxβ€˜πΊ)
vtxdgval.i 𝐼 = (iEdgβ€˜πΊ)
vtxdgval.a 𝐴 = dom 𝐼
Assertion
Ref Expression
vtxdgval (π‘ˆ ∈ 𝑉 β†’ ((VtxDegβ€˜πΊ)β€˜π‘ˆ) = ((β™―β€˜{π‘₯ ∈ 𝐴 ∣ π‘ˆ ∈ (πΌβ€˜π‘₯)}) +𝑒 (β™―β€˜{π‘₯ ∈ 𝐴 ∣ (πΌβ€˜π‘₯) = {π‘ˆ}})))
Distinct variable groups:   π‘₯,𝐴   π‘₯,𝐺   π‘₯,π‘ˆ
Allowed substitution hints:   𝐼(π‘₯)   𝑉(π‘₯)

Proof of Theorem vtxdgval
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 vtxdgval.v . . . . 5 𝑉 = (Vtxβ€˜πΊ)
211vgrex 28843 . . . 4 (π‘ˆ ∈ 𝑉 β†’ 𝐺 ∈ V)
3 vtxdgval.i . . . . 5 𝐼 = (iEdgβ€˜πΊ)
4 vtxdgval.a . . . . 5 𝐴 = dom 𝐼
51, 3, 4vtxdgfval 29309 . . . 4 (𝐺 ∈ V β†’ (VtxDegβ€˜πΊ) = (𝑒 ∈ 𝑉 ↦ ((β™―β€˜{π‘₯ ∈ 𝐴 ∣ 𝑒 ∈ (πΌβ€˜π‘₯)}) +𝑒 (β™―β€˜{π‘₯ ∈ 𝐴 ∣ (πΌβ€˜π‘₯) = {𝑒}}))))
62, 5syl 17 . . 3 (π‘ˆ ∈ 𝑉 β†’ (VtxDegβ€˜πΊ) = (𝑒 ∈ 𝑉 ↦ ((β™―β€˜{π‘₯ ∈ 𝐴 ∣ 𝑒 ∈ (πΌβ€˜π‘₯)}) +𝑒 (β™―β€˜{π‘₯ ∈ 𝐴 ∣ (πΌβ€˜π‘₯) = {𝑒}}))))
76fveq1d 6904 . 2 (π‘ˆ ∈ 𝑉 β†’ ((VtxDegβ€˜πΊ)β€˜π‘ˆ) = ((𝑒 ∈ 𝑉 ↦ ((β™―β€˜{π‘₯ ∈ 𝐴 ∣ 𝑒 ∈ (πΌβ€˜π‘₯)}) +𝑒 (β™―β€˜{π‘₯ ∈ 𝐴 ∣ (πΌβ€˜π‘₯) = {𝑒}})))β€˜π‘ˆ))
8 eleq1 2817 . . . . . 6 (𝑒 = π‘ˆ β†’ (𝑒 ∈ (πΌβ€˜π‘₯) ↔ π‘ˆ ∈ (πΌβ€˜π‘₯)))
98rabbidv 3438 . . . . 5 (𝑒 = π‘ˆ β†’ {π‘₯ ∈ 𝐴 ∣ 𝑒 ∈ (πΌβ€˜π‘₯)} = {π‘₯ ∈ 𝐴 ∣ π‘ˆ ∈ (πΌβ€˜π‘₯)})
109fveq2d 6906 . . . 4 (𝑒 = π‘ˆ β†’ (β™―β€˜{π‘₯ ∈ 𝐴 ∣ 𝑒 ∈ (πΌβ€˜π‘₯)}) = (β™―β€˜{π‘₯ ∈ 𝐴 ∣ π‘ˆ ∈ (πΌβ€˜π‘₯)}))
11 sneq 4642 . . . . . . 7 (𝑒 = π‘ˆ β†’ {𝑒} = {π‘ˆ})
1211eqeq2d 2739 . . . . . 6 (𝑒 = π‘ˆ β†’ ((πΌβ€˜π‘₯) = {𝑒} ↔ (πΌβ€˜π‘₯) = {π‘ˆ}))
1312rabbidv 3438 . . . . 5 (𝑒 = π‘ˆ β†’ {π‘₯ ∈ 𝐴 ∣ (πΌβ€˜π‘₯) = {𝑒}} = {π‘₯ ∈ 𝐴 ∣ (πΌβ€˜π‘₯) = {π‘ˆ}})
1413fveq2d 6906 . . . 4 (𝑒 = π‘ˆ β†’ (β™―β€˜{π‘₯ ∈ 𝐴 ∣ (πΌβ€˜π‘₯) = {𝑒}}) = (β™―β€˜{π‘₯ ∈ 𝐴 ∣ (πΌβ€˜π‘₯) = {π‘ˆ}}))
1510, 14oveq12d 7444 . . 3 (𝑒 = π‘ˆ β†’ ((β™―β€˜{π‘₯ ∈ 𝐴 ∣ 𝑒 ∈ (πΌβ€˜π‘₯)}) +𝑒 (β™―β€˜{π‘₯ ∈ 𝐴 ∣ (πΌβ€˜π‘₯) = {𝑒}})) = ((β™―β€˜{π‘₯ ∈ 𝐴 ∣ π‘ˆ ∈ (πΌβ€˜π‘₯)}) +𝑒 (β™―β€˜{π‘₯ ∈ 𝐴 ∣ (πΌβ€˜π‘₯) = {π‘ˆ}})))
16 eqid 2728 . . 3 (𝑒 ∈ 𝑉 ↦ ((β™―β€˜{π‘₯ ∈ 𝐴 ∣ 𝑒 ∈ (πΌβ€˜π‘₯)}) +𝑒 (β™―β€˜{π‘₯ ∈ 𝐴 ∣ (πΌβ€˜π‘₯) = {𝑒}}))) = (𝑒 ∈ 𝑉 ↦ ((β™―β€˜{π‘₯ ∈ 𝐴 ∣ 𝑒 ∈ (πΌβ€˜π‘₯)}) +𝑒 (β™―β€˜{π‘₯ ∈ 𝐴 ∣ (πΌβ€˜π‘₯) = {𝑒}})))
17 ovex 7459 . . 3 ((β™―β€˜{π‘₯ ∈ 𝐴 ∣ π‘ˆ ∈ (πΌβ€˜π‘₯)}) +𝑒 (β™―β€˜{π‘₯ ∈ 𝐴 ∣ (πΌβ€˜π‘₯) = {π‘ˆ}})) ∈ V
1815, 16, 17fvmpt 7010 . 2 (π‘ˆ ∈ 𝑉 β†’ ((𝑒 ∈ 𝑉 ↦ ((β™―β€˜{π‘₯ ∈ 𝐴 ∣ 𝑒 ∈ (πΌβ€˜π‘₯)}) +𝑒 (β™―β€˜{π‘₯ ∈ 𝐴 ∣ (πΌβ€˜π‘₯) = {𝑒}})))β€˜π‘ˆ) = ((β™―β€˜{π‘₯ ∈ 𝐴 ∣ π‘ˆ ∈ (πΌβ€˜π‘₯)}) +𝑒 (β™―β€˜{π‘₯ ∈ 𝐴 ∣ (πΌβ€˜π‘₯) = {π‘ˆ}})))
197, 18eqtrd 2768 1 (π‘ˆ ∈ 𝑉 β†’ ((VtxDegβ€˜πΊ)β€˜π‘ˆ) = ((β™―β€˜{π‘₯ ∈ 𝐴 ∣ π‘ˆ ∈ (πΌβ€˜π‘₯)}) +𝑒 (β™―β€˜{π‘₯ ∈ 𝐴 ∣ (πΌβ€˜π‘₯) = {π‘ˆ}})))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1533   ∈ wcel 2098  {crab 3430  Vcvv 3473  {csn 4632   ↦ cmpt 5235  dom cdm 5682  β€˜cfv 6553  (class class class)co 7426   +𝑒 cxad 13132  β™―chash 14331  Vtxcvtx 28837  iEdgciedg 28838  VtxDegcvtxdg 29307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-ov 7429  df-vtxdg 29308
This theorem is referenced by:  vtxdgfival  29311  vtxdun  29323  vtxdlfgrval  29327  vtxd0nedgb  29330  vtxdushgrfvedg  29332  vtxdginducedm1  29385
  Copyright terms: Public domain W3C validator