| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vtxdgval | Structured version Visualization version GIF version | ||
| Description: The degree of a vertex. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 20-Dec-2017.) (Revised by AV, 10-Dec-2020.) (Revised by AV, 22-Mar-2021.) |
| Ref | Expression |
|---|---|
| vtxdgval.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| vtxdgval.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| vtxdgval.a | ⊢ 𝐴 = dom 𝐼 |
| Ref | Expression |
|---|---|
| vtxdgval | ⊢ (𝑈 ∈ 𝑉 → ((VtxDeg‘𝐺)‘𝑈) = ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtxdgval.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | 1 | 1vgrex 28986 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → 𝐺 ∈ V) |
| 3 | vtxdgval.i | . . . . 5 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 4 | vtxdgval.a | . . . . 5 ⊢ 𝐴 = dom 𝐼 | |
| 5 | 1, 3, 4 | vtxdgfval 29452 | . . . 4 ⊢ (𝐺 ∈ V → (VtxDeg‘𝐺) = (𝑢 ∈ 𝑉 ↦ ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑢 ∈ (𝐼‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑢}})))) |
| 6 | 2, 5 | syl 17 | . . 3 ⊢ (𝑈 ∈ 𝑉 → (VtxDeg‘𝐺) = (𝑢 ∈ 𝑉 ↦ ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑢 ∈ (𝐼‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑢}})))) |
| 7 | 6 | fveq1d 6883 | . 2 ⊢ (𝑈 ∈ 𝑉 → ((VtxDeg‘𝐺)‘𝑈) = ((𝑢 ∈ 𝑉 ↦ ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑢 ∈ (𝐼‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑢}})))‘𝑈)) |
| 8 | eleq1 2823 | . . . . . 6 ⊢ (𝑢 = 𝑈 → (𝑢 ∈ (𝐼‘𝑥) ↔ 𝑈 ∈ (𝐼‘𝑥))) | |
| 9 | 8 | rabbidv 3428 | . . . . 5 ⊢ (𝑢 = 𝑈 → {𝑥 ∈ 𝐴 ∣ 𝑢 ∈ (𝐼‘𝑥)} = {𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) |
| 10 | 9 | fveq2d 6885 | . . . 4 ⊢ (𝑢 = 𝑈 → (♯‘{𝑥 ∈ 𝐴 ∣ 𝑢 ∈ (𝐼‘𝑥)}) = (♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)})) |
| 11 | sneq 4616 | . . . . . . 7 ⊢ (𝑢 = 𝑈 → {𝑢} = {𝑈}) | |
| 12 | 11 | eqeq2d 2747 | . . . . . 6 ⊢ (𝑢 = 𝑈 → ((𝐼‘𝑥) = {𝑢} ↔ (𝐼‘𝑥) = {𝑈})) |
| 13 | 12 | rabbidv 3428 | . . . . 5 ⊢ (𝑢 = 𝑈 → {𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑢}} = {𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}}) |
| 14 | 13 | fveq2d 6885 | . . . 4 ⊢ (𝑢 = 𝑈 → (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑢}}) = (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}})) |
| 15 | 10, 14 | oveq12d 7428 | . . 3 ⊢ (𝑢 = 𝑈 → ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑢 ∈ (𝐼‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑢}})) = ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}}))) |
| 16 | eqid 2736 | . . 3 ⊢ (𝑢 ∈ 𝑉 ↦ ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑢 ∈ (𝐼‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑢}}))) = (𝑢 ∈ 𝑉 ↦ ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑢 ∈ (𝐼‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑢}}))) | |
| 17 | ovex 7443 | . . 3 ⊢ ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}})) ∈ V | |
| 18 | 15, 16, 17 | fvmpt 6991 | . 2 ⊢ (𝑈 ∈ 𝑉 → ((𝑢 ∈ 𝑉 ↦ ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑢 ∈ (𝐼‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑢}})))‘𝑈) = ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}}))) |
| 19 | 7, 18 | eqtrd 2771 | 1 ⊢ (𝑈 ∈ 𝑉 → ((VtxDeg‘𝐺)‘𝑈) = ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3420 Vcvv 3464 {csn 4606 ↦ cmpt 5206 dom cdm 5659 ‘cfv 6536 (class class class)co 7410 +𝑒 cxad 13131 ♯chash 14353 Vtxcvtx 28980 iEdgciedg 28981 VtxDegcvtxdg 29450 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-vtxdg 29451 |
| This theorem is referenced by: vtxdgfival 29454 vtxdun 29466 vtxdlfgrval 29470 vtxd0nedgb 29473 vtxdushgrfvedg 29475 vtxdginducedm1 29528 |
| Copyright terms: Public domain | W3C validator |