MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtxdgval Structured version   Visualization version   GIF version

Theorem vtxdgval 27510
Description: The degree of a vertex. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 20-Dec-2017.) (Revised by AV, 10-Dec-2020.) (Revised by AV, 22-Mar-2021.)
Hypotheses
Ref Expression
vtxdgval.v 𝑉 = (Vtx‘𝐺)
vtxdgval.i 𝐼 = (iEdg‘𝐺)
vtxdgval.a 𝐴 = dom 𝐼
Assertion
Ref Expression
vtxdgval (𝑈𝑉 → ((VtxDeg‘𝐺)‘𝑈) = ((♯‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) +𝑒 (♯‘{𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}})))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐺   𝑥,𝑈
Allowed substitution hints:   𝐼(𝑥)   𝑉(𝑥)

Proof of Theorem vtxdgval
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 vtxdgval.v . . . . 5 𝑉 = (Vtx‘𝐺)
211vgrex 27047 . . . 4 (𝑈𝑉𝐺 ∈ V)
3 vtxdgval.i . . . . 5 𝐼 = (iEdg‘𝐺)
4 vtxdgval.a . . . . 5 𝐴 = dom 𝐼
51, 3, 4vtxdgfval 27509 . . . 4 (𝐺 ∈ V → (VtxDeg‘𝐺) = (𝑢𝑉 ↦ ((♯‘{𝑥𝐴𝑢 ∈ (𝐼𝑥)}) +𝑒 (♯‘{𝑥𝐴 ∣ (𝐼𝑥) = {𝑢}}))))
62, 5syl 17 . . 3 (𝑈𝑉 → (VtxDeg‘𝐺) = (𝑢𝑉 ↦ ((♯‘{𝑥𝐴𝑢 ∈ (𝐼𝑥)}) +𝑒 (♯‘{𝑥𝐴 ∣ (𝐼𝑥) = {𝑢}}))))
76fveq1d 6697 . 2 (𝑈𝑉 → ((VtxDeg‘𝐺)‘𝑈) = ((𝑢𝑉 ↦ ((♯‘{𝑥𝐴𝑢 ∈ (𝐼𝑥)}) +𝑒 (♯‘{𝑥𝐴 ∣ (𝐼𝑥) = {𝑢}})))‘𝑈))
8 eleq1 2818 . . . . . 6 (𝑢 = 𝑈 → (𝑢 ∈ (𝐼𝑥) ↔ 𝑈 ∈ (𝐼𝑥)))
98rabbidv 3380 . . . . 5 (𝑢 = 𝑈 → {𝑥𝐴𝑢 ∈ (𝐼𝑥)} = {𝑥𝐴𝑈 ∈ (𝐼𝑥)})
109fveq2d 6699 . . . 4 (𝑢 = 𝑈 → (♯‘{𝑥𝐴𝑢 ∈ (𝐼𝑥)}) = (♯‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}))
11 sneq 4537 . . . . . . 7 (𝑢 = 𝑈 → {𝑢} = {𝑈})
1211eqeq2d 2747 . . . . . 6 (𝑢 = 𝑈 → ((𝐼𝑥) = {𝑢} ↔ (𝐼𝑥) = {𝑈}))
1312rabbidv 3380 . . . . 5 (𝑢 = 𝑈 → {𝑥𝐴 ∣ (𝐼𝑥) = {𝑢}} = {𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}})
1413fveq2d 6699 . . . 4 (𝑢 = 𝑈 → (♯‘{𝑥𝐴 ∣ (𝐼𝑥) = {𝑢}}) = (♯‘{𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}}))
1510, 14oveq12d 7209 . . 3 (𝑢 = 𝑈 → ((♯‘{𝑥𝐴𝑢 ∈ (𝐼𝑥)}) +𝑒 (♯‘{𝑥𝐴 ∣ (𝐼𝑥) = {𝑢}})) = ((♯‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) +𝑒 (♯‘{𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}})))
16 eqid 2736 . . 3 (𝑢𝑉 ↦ ((♯‘{𝑥𝐴𝑢 ∈ (𝐼𝑥)}) +𝑒 (♯‘{𝑥𝐴 ∣ (𝐼𝑥) = {𝑢}}))) = (𝑢𝑉 ↦ ((♯‘{𝑥𝐴𝑢 ∈ (𝐼𝑥)}) +𝑒 (♯‘{𝑥𝐴 ∣ (𝐼𝑥) = {𝑢}})))
17 ovex 7224 . . 3 ((♯‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) +𝑒 (♯‘{𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}})) ∈ V
1815, 16, 17fvmpt 6796 . 2 (𝑈𝑉 → ((𝑢𝑉 ↦ ((♯‘{𝑥𝐴𝑢 ∈ (𝐼𝑥)}) +𝑒 (♯‘{𝑥𝐴 ∣ (𝐼𝑥) = {𝑢}})))‘𝑈) = ((♯‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) +𝑒 (♯‘{𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}})))
197, 18eqtrd 2771 1 (𝑈𝑉 → ((VtxDeg‘𝐺)‘𝑈) = ((♯‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) +𝑒 (♯‘{𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}})))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  wcel 2112  {crab 3055  Vcvv 3398  {csn 4527  cmpt 5120  dom cdm 5536  cfv 6358  (class class class)co 7191   +𝑒 cxad 12667  chash 13861  Vtxcvtx 27041  iEdgciedg 27042  VtxDegcvtxdg 27507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pr 5307
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7194  df-vtxdg 27508
This theorem is referenced by:  vtxdgfival  27511  vtxdun  27523  vtxdlfgrval  27527  vtxd0nedgb  27530  vtxdushgrfvedg  27532  vtxdginducedm1  27585
  Copyright terms: Public domain W3C validator