MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtxdgval Structured version   Visualization version   GIF version

Theorem vtxdgval 29449
Description: The degree of a vertex. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 20-Dec-2017.) (Revised by AV, 10-Dec-2020.) (Revised by AV, 22-Mar-2021.)
Hypotheses
Ref Expression
vtxdgval.v 𝑉 = (Vtx‘𝐺)
vtxdgval.i 𝐼 = (iEdg‘𝐺)
vtxdgval.a 𝐴 = dom 𝐼
Assertion
Ref Expression
vtxdgval (𝑈𝑉 → ((VtxDeg‘𝐺)‘𝑈) = ((♯‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) +𝑒 (♯‘{𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}})))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐺   𝑥,𝑈
Allowed substitution hints:   𝐼(𝑥)   𝑉(𝑥)

Proof of Theorem vtxdgval
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 vtxdgval.v . . . . 5 𝑉 = (Vtx‘𝐺)
211vgrex 28982 . . . 4 (𝑈𝑉𝐺 ∈ V)
3 vtxdgval.i . . . . 5 𝐼 = (iEdg‘𝐺)
4 vtxdgval.a . . . . 5 𝐴 = dom 𝐼
51, 3, 4vtxdgfval 29448 . . . 4 (𝐺 ∈ V → (VtxDeg‘𝐺) = (𝑢𝑉 ↦ ((♯‘{𝑥𝐴𝑢 ∈ (𝐼𝑥)}) +𝑒 (♯‘{𝑥𝐴 ∣ (𝐼𝑥) = {𝑢}}))))
62, 5syl 17 . . 3 (𝑈𝑉 → (VtxDeg‘𝐺) = (𝑢𝑉 ↦ ((♯‘{𝑥𝐴𝑢 ∈ (𝐼𝑥)}) +𝑒 (♯‘{𝑥𝐴 ∣ (𝐼𝑥) = {𝑢}}))))
76fveq1d 6830 . 2 (𝑈𝑉 → ((VtxDeg‘𝐺)‘𝑈) = ((𝑢𝑉 ↦ ((♯‘{𝑥𝐴𝑢 ∈ (𝐼𝑥)}) +𝑒 (♯‘{𝑥𝐴 ∣ (𝐼𝑥) = {𝑢}})))‘𝑈))
8 eleq1 2821 . . . . . 6 (𝑢 = 𝑈 → (𝑢 ∈ (𝐼𝑥) ↔ 𝑈 ∈ (𝐼𝑥)))
98rabbidv 3403 . . . . 5 (𝑢 = 𝑈 → {𝑥𝐴𝑢 ∈ (𝐼𝑥)} = {𝑥𝐴𝑈 ∈ (𝐼𝑥)})
109fveq2d 6832 . . . 4 (𝑢 = 𝑈 → (♯‘{𝑥𝐴𝑢 ∈ (𝐼𝑥)}) = (♯‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}))
11 sneq 4585 . . . . . . 7 (𝑢 = 𝑈 → {𝑢} = {𝑈})
1211eqeq2d 2744 . . . . . 6 (𝑢 = 𝑈 → ((𝐼𝑥) = {𝑢} ↔ (𝐼𝑥) = {𝑈}))
1312rabbidv 3403 . . . . 5 (𝑢 = 𝑈 → {𝑥𝐴 ∣ (𝐼𝑥) = {𝑢}} = {𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}})
1413fveq2d 6832 . . . 4 (𝑢 = 𝑈 → (♯‘{𝑥𝐴 ∣ (𝐼𝑥) = {𝑢}}) = (♯‘{𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}}))
1510, 14oveq12d 7370 . . 3 (𝑢 = 𝑈 → ((♯‘{𝑥𝐴𝑢 ∈ (𝐼𝑥)}) +𝑒 (♯‘{𝑥𝐴 ∣ (𝐼𝑥) = {𝑢}})) = ((♯‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) +𝑒 (♯‘{𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}})))
16 eqid 2733 . . 3 (𝑢𝑉 ↦ ((♯‘{𝑥𝐴𝑢 ∈ (𝐼𝑥)}) +𝑒 (♯‘{𝑥𝐴 ∣ (𝐼𝑥) = {𝑢}}))) = (𝑢𝑉 ↦ ((♯‘{𝑥𝐴𝑢 ∈ (𝐼𝑥)}) +𝑒 (♯‘{𝑥𝐴 ∣ (𝐼𝑥) = {𝑢}})))
17 ovex 7385 . . 3 ((♯‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) +𝑒 (♯‘{𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}})) ∈ V
1815, 16, 17fvmpt 6935 . 2 (𝑈𝑉 → ((𝑢𝑉 ↦ ((♯‘{𝑥𝐴𝑢 ∈ (𝐼𝑥)}) +𝑒 (♯‘{𝑥𝐴 ∣ (𝐼𝑥) = {𝑢}})))‘𝑈) = ((♯‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) +𝑒 (♯‘{𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}})))
197, 18eqtrd 2768 1 (𝑈𝑉 → ((VtxDeg‘𝐺)‘𝑈) = ((♯‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) +𝑒 (♯‘{𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}})))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  {crab 3396  Vcvv 3437  {csn 4575  cmpt 5174  dom cdm 5619  cfv 6486  (class class class)co 7352   +𝑒 cxad 13011  chash 14239  Vtxcvtx 28976  iEdgciedg 28977  VtxDegcvtxdg 29446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-vtxdg 29447
This theorem is referenced by:  vtxdgfival  29450  vtxdun  29462  vtxdlfgrval  29466  vtxd0nedgb  29469  vtxdushgrfvedg  29471  vtxdginducedm1  29524
  Copyright terms: Public domain W3C validator