|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > vtxdgval | Structured version Visualization version GIF version | ||
| Description: The degree of a vertex. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 20-Dec-2017.) (Revised by AV, 10-Dec-2020.) (Revised by AV, 22-Mar-2021.) | 
| Ref | Expression | 
|---|---|
| vtxdgval.v | ⊢ 𝑉 = (Vtx‘𝐺) | 
| vtxdgval.i | ⊢ 𝐼 = (iEdg‘𝐺) | 
| vtxdgval.a | ⊢ 𝐴 = dom 𝐼 | 
| Ref | Expression | 
|---|---|
| vtxdgval | ⊢ (𝑈 ∈ 𝑉 → ((VtxDeg‘𝐺)‘𝑈) = ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}}))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | vtxdgval.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | 1 | 1vgrex 29020 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → 𝐺 ∈ V) | 
| 3 | vtxdgval.i | . . . . 5 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 4 | vtxdgval.a | . . . . 5 ⊢ 𝐴 = dom 𝐼 | |
| 5 | 1, 3, 4 | vtxdgfval 29486 | . . . 4 ⊢ (𝐺 ∈ V → (VtxDeg‘𝐺) = (𝑢 ∈ 𝑉 ↦ ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑢 ∈ (𝐼‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑢}})))) | 
| 6 | 2, 5 | syl 17 | . . 3 ⊢ (𝑈 ∈ 𝑉 → (VtxDeg‘𝐺) = (𝑢 ∈ 𝑉 ↦ ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑢 ∈ (𝐼‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑢}})))) | 
| 7 | 6 | fveq1d 6907 | . 2 ⊢ (𝑈 ∈ 𝑉 → ((VtxDeg‘𝐺)‘𝑈) = ((𝑢 ∈ 𝑉 ↦ ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑢 ∈ (𝐼‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑢}})))‘𝑈)) | 
| 8 | eleq1 2828 | . . . . . 6 ⊢ (𝑢 = 𝑈 → (𝑢 ∈ (𝐼‘𝑥) ↔ 𝑈 ∈ (𝐼‘𝑥))) | |
| 9 | 8 | rabbidv 3443 | . . . . 5 ⊢ (𝑢 = 𝑈 → {𝑥 ∈ 𝐴 ∣ 𝑢 ∈ (𝐼‘𝑥)} = {𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) | 
| 10 | 9 | fveq2d 6909 | . . . 4 ⊢ (𝑢 = 𝑈 → (♯‘{𝑥 ∈ 𝐴 ∣ 𝑢 ∈ (𝐼‘𝑥)}) = (♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)})) | 
| 11 | sneq 4635 | . . . . . . 7 ⊢ (𝑢 = 𝑈 → {𝑢} = {𝑈}) | |
| 12 | 11 | eqeq2d 2747 | . . . . . 6 ⊢ (𝑢 = 𝑈 → ((𝐼‘𝑥) = {𝑢} ↔ (𝐼‘𝑥) = {𝑈})) | 
| 13 | 12 | rabbidv 3443 | . . . . 5 ⊢ (𝑢 = 𝑈 → {𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑢}} = {𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}}) | 
| 14 | 13 | fveq2d 6909 | . . . 4 ⊢ (𝑢 = 𝑈 → (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑢}}) = (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}})) | 
| 15 | 10, 14 | oveq12d 7450 | . . 3 ⊢ (𝑢 = 𝑈 → ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑢 ∈ (𝐼‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑢}})) = ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}}))) | 
| 16 | eqid 2736 | . . 3 ⊢ (𝑢 ∈ 𝑉 ↦ ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑢 ∈ (𝐼‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑢}}))) = (𝑢 ∈ 𝑉 ↦ ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑢 ∈ (𝐼‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑢}}))) | |
| 17 | ovex 7465 | . . 3 ⊢ ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}})) ∈ V | |
| 18 | 15, 16, 17 | fvmpt 7015 | . 2 ⊢ (𝑈 ∈ 𝑉 → ((𝑢 ∈ 𝑉 ↦ ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑢 ∈ (𝐼‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑢}})))‘𝑈) = ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}}))) | 
| 19 | 7, 18 | eqtrd 2776 | 1 ⊢ (𝑈 ∈ 𝑉 → ((VtxDeg‘𝐺)‘𝑈) = ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}}))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 {crab 3435 Vcvv 3479 {csn 4625 ↦ cmpt 5224 dom cdm 5684 ‘cfv 6560 (class class class)co 7432 +𝑒 cxad 13153 ♯chash 14370 Vtxcvtx 29014 iEdgciedg 29015 VtxDegcvtxdg 29484 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pr 5431 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-ov 7435 df-vtxdg 29485 | 
| This theorem is referenced by: vtxdgfival 29488 vtxdun 29500 vtxdlfgrval 29504 vtxd0nedgb 29507 vtxdushgrfvedg 29509 vtxdginducedm1 29562 | 
| Copyright terms: Public domain | W3C validator |