Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > vtxdgval | Structured version Visualization version GIF version |
Description: The degree of a vertex. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 20-Dec-2017.) (Revised by AV, 10-Dec-2020.) (Revised by AV, 22-Mar-2021.) |
Ref | Expression |
---|---|
vtxdgval.v | ⊢ 𝑉 = (Vtx‘𝐺) |
vtxdgval.i | ⊢ 𝐼 = (iEdg‘𝐺) |
vtxdgval.a | ⊢ 𝐴 = dom 𝐼 |
Ref | Expression |
---|---|
vtxdgval | ⊢ (𝑈 ∈ 𝑉 → ((VtxDeg‘𝐺)‘𝑈) = ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtxdgval.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 1 | 1vgrex 27275 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → 𝐺 ∈ V) |
3 | vtxdgval.i | . . . . 5 ⊢ 𝐼 = (iEdg‘𝐺) | |
4 | vtxdgval.a | . . . . 5 ⊢ 𝐴 = dom 𝐼 | |
5 | 1, 3, 4 | vtxdgfval 27737 | . . . 4 ⊢ (𝐺 ∈ V → (VtxDeg‘𝐺) = (𝑢 ∈ 𝑉 ↦ ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑢 ∈ (𝐼‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑢}})))) |
6 | 2, 5 | syl 17 | . . 3 ⊢ (𝑈 ∈ 𝑉 → (VtxDeg‘𝐺) = (𝑢 ∈ 𝑉 ↦ ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑢 ∈ (𝐼‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑢}})))) |
7 | 6 | fveq1d 6758 | . 2 ⊢ (𝑈 ∈ 𝑉 → ((VtxDeg‘𝐺)‘𝑈) = ((𝑢 ∈ 𝑉 ↦ ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑢 ∈ (𝐼‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑢}})))‘𝑈)) |
8 | eleq1 2826 | . . . . . 6 ⊢ (𝑢 = 𝑈 → (𝑢 ∈ (𝐼‘𝑥) ↔ 𝑈 ∈ (𝐼‘𝑥))) | |
9 | 8 | rabbidv 3404 | . . . . 5 ⊢ (𝑢 = 𝑈 → {𝑥 ∈ 𝐴 ∣ 𝑢 ∈ (𝐼‘𝑥)} = {𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) |
10 | 9 | fveq2d 6760 | . . . 4 ⊢ (𝑢 = 𝑈 → (♯‘{𝑥 ∈ 𝐴 ∣ 𝑢 ∈ (𝐼‘𝑥)}) = (♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)})) |
11 | sneq 4568 | . . . . . . 7 ⊢ (𝑢 = 𝑈 → {𝑢} = {𝑈}) | |
12 | 11 | eqeq2d 2749 | . . . . . 6 ⊢ (𝑢 = 𝑈 → ((𝐼‘𝑥) = {𝑢} ↔ (𝐼‘𝑥) = {𝑈})) |
13 | 12 | rabbidv 3404 | . . . . 5 ⊢ (𝑢 = 𝑈 → {𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑢}} = {𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}}) |
14 | 13 | fveq2d 6760 | . . . 4 ⊢ (𝑢 = 𝑈 → (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑢}}) = (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}})) |
15 | 10, 14 | oveq12d 7273 | . . 3 ⊢ (𝑢 = 𝑈 → ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑢 ∈ (𝐼‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑢}})) = ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}}))) |
16 | eqid 2738 | . . 3 ⊢ (𝑢 ∈ 𝑉 ↦ ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑢 ∈ (𝐼‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑢}}))) = (𝑢 ∈ 𝑉 ↦ ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑢 ∈ (𝐼‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑢}}))) | |
17 | ovex 7288 | . . 3 ⊢ ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}})) ∈ V | |
18 | 15, 16, 17 | fvmpt 6857 | . 2 ⊢ (𝑈 ∈ 𝑉 → ((𝑢 ∈ 𝑉 ↦ ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑢 ∈ (𝐼‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑢}})))‘𝑈) = ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}}))) |
19 | 7, 18 | eqtrd 2778 | 1 ⊢ (𝑈 ∈ 𝑉 → ((VtxDeg‘𝐺)‘𝑈) = ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 {crab 3067 Vcvv 3422 {csn 4558 ↦ cmpt 5153 dom cdm 5580 ‘cfv 6418 (class class class)co 7255 +𝑒 cxad 12775 ♯chash 13972 Vtxcvtx 27269 iEdgciedg 27270 VtxDegcvtxdg 27735 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-vtxdg 27736 |
This theorem is referenced by: vtxdgfival 27739 vtxdun 27751 vtxdlfgrval 27755 vtxd0nedgb 27758 vtxdushgrfvedg 27760 vtxdginducedm1 27813 |
Copyright terms: Public domain | W3C validator |