| Step | Hyp | Ref
| Expression |
| 1 | | lshpset2.h |
. . . . . 6
⊢ 𝐻 = (LSHyp‘𝑊) |
| 2 | | lshpset2.f |
. . . . . 6
⊢ 𝐹 = (LFnl‘𝑊) |
| 3 | | lshpset2.k |
. . . . . 6
⊢ 𝐾 = (LKer‘𝑊) |
| 4 | 1, 2, 3 | lshpkrex 39141 |
. . . . 5
⊢ ((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝐻) → ∃𝑔 ∈ 𝐹 (𝐾‘𝑔) = 𝑠) |
| 5 | | eleq1 2823 |
. . . . . . . . . . . 12
⊢ ((𝐾‘𝑔) = 𝑠 → ((𝐾‘𝑔) ∈ 𝐻 ↔ 𝑠 ∈ 𝐻)) |
| 6 | 5 | biimparc 479 |
. . . . . . . . . . 11
⊢ ((𝑠 ∈ 𝐻 ∧ (𝐾‘𝑔) = 𝑠) → (𝐾‘𝑔) ∈ 𝐻) |
| 7 | 6 | adantll 714 |
. . . . . . . . . 10
⊢ (((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝐻) ∧ (𝐾‘𝑔) = 𝑠) → (𝐾‘𝑔) ∈ 𝐻) |
| 8 | 7 | adantlr 715 |
. . . . . . . . 9
⊢ ((((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝐻) ∧ 𝑔 ∈ 𝐹) ∧ (𝐾‘𝑔) = 𝑠) → (𝐾‘𝑔) ∈ 𝐻) |
| 9 | | lshpset2.v |
. . . . . . . . . 10
⊢ 𝑉 = (Base‘𝑊) |
| 10 | | lshpset2.d |
. . . . . . . . . 10
⊢ 𝐷 = (Scalar‘𝑊) |
| 11 | | lshpset2.z |
. . . . . . . . . 10
⊢ 0 =
(0g‘𝐷) |
| 12 | | simplll 774 |
. . . . . . . . . 10
⊢ ((((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝐻) ∧ 𝑔 ∈ 𝐹) ∧ (𝐾‘𝑔) = 𝑠) → 𝑊 ∈ LVec) |
| 13 | | simplr 768 |
. . . . . . . . . 10
⊢ ((((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝐻) ∧ 𝑔 ∈ 𝐹) ∧ (𝐾‘𝑔) = 𝑠) → 𝑔 ∈ 𝐹) |
| 14 | 9, 10, 11, 1, 2, 3,
12, 13 | lkrshp3 39129 |
. . . . . . . . 9
⊢ ((((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝐻) ∧ 𝑔 ∈ 𝐹) ∧ (𝐾‘𝑔) = 𝑠) → ((𝐾‘𝑔) ∈ 𝐻 ↔ 𝑔 ≠ (𝑉 × { 0 }))) |
| 15 | 8, 14 | mpbid 232 |
. . . . . . . 8
⊢ ((((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝐻) ∧ 𝑔 ∈ 𝐹) ∧ (𝐾‘𝑔) = 𝑠) → 𝑔 ≠ (𝑉 × { 0 })) |
| 16 | 15 | ex 412 |
. . . . . . 7
⊢ (((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝐻) ∧ 𝑔 ∈ 𝐹) → ((𝐾‘𝑔) = 𝑠 → 𝑔 ≠ (𝑉 × { 0 }))) |
| 17 | | eqimss2 4023 |
. . . . . . . . 9
⊢ ((𝐾‘𝑔) = 𝑠 → 𝑠 ⊆ (𝐾‘𝑔)) |
| 18 | | eqimss 4022 |
. . . . . . . . 9
⊢ ((𝐾‘𝑔) = 𝑠 → (𝐾‘𝑔) ⊆ 𝑠) |
| 19 | 17, 18 | eqssd 3981 |
. . . . . . . 8
⊢ ((𝐾‘𝑔) = 𝑠 → 𝑠 = (𝐾‘𝑔)) |
| 20 | 19 | a1i 11 |
. . . . . . 7
⊢ (((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝐻) ∧ 𝑔 ∈ 𝐹) → ((𝐾‘𝑔) = 𝑠 → 𝑠 = (𝐾‘𝑔))) |
| 21 | 16, 20 | jcad 512 |
. . . . . 6
⊢ (((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝐻) ∧ 𝑔 ∈ 𝐹) → ((𝐾‘𝑔) = 𝑠 → (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾‘𝑔)))) |
| 22 | 21 | reximdva 3154 |
. . . . 5
⊢ ((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝐻) → (∃𝑔 ∈ 𝐹 (𝐾‘𝑔) = 𝑠 → ∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾‘𝑔)))) |
| 23 | 4, 22 | mpd 15 |
. . . 4
⊢ ((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝐻) → ∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾‘𝑔))) |
| 24 | 23 | ex 412 |
. . 3
⊢ (𝑊 ∈ LVec → (𝑠 ∈ 𝐻 → ∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾‘𝑔)))) |
| 25 | 9, 10, 11, 1, 2, 3 | lkrshp 39128 |
. . . . . . . 8
⊢ ((𝑊 ∈ LVec ∧ 𝑔 ∈ 𝐹 ∧ 𝑔 ≠ (𝑉 × { 0 })) → (𝐾‘𝑔) ∈ 𝐻) |
| 26 | 25 | 3adant3r 1182 |
. . . . . . 7
⊢ ((𝑊 ∈ LVec ∧ 𝑔 ∈ 𝐹 ∧ (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾‘𝑔))) → (𝐾‘𝑔) ∈ 𝐻) |
| 27 | | eqid 2736 |
. . . . . . . . 9
⊢
(LSpan‘𝑊) =
(LSpan‘𝑊) |
| 28 | | eqid 2736 |
. . . . . . . . 9
⊢
(LSubSp‘𝑊) =
(LSubSp‘𝑊) |
| 29 | 9, 27, 28, 1 | islshp 39002 |
. . . . . . . 8
⊢ (𝑊 ∈ LVec → ((𝐾‘𝑔) ∈ 𝐻 ↔ ((𝐾‘𝑔) ∈ (LSubSp‘𝑊) ∧ (𝐾‘𝑔) ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 ((LSpan‘𝑊)‘((𝐾‘𝑔) ∪ {𝑣})) = 𝑉))) |
| 30 | 29 | 3ad2ant1 1133 |
. . . . . . 7
⊢ ((𝑊 ∈ LVec ∧ 𝑔 ∈ 𝐹 ∧ (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾‘𝑔))) → ((𝐾‘𝑔) ∈ 𝐻 ↔ ((𝐾‘𝑔) ∈ (LSubSp‘𝑊) ∧ (𝐾‘𝑔) ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 ((LSpan‘𝑊)‘((𝐾‘𝑔) ∪ {𝑣})) = 𝑉))) |
| 31 | 26, 30 | mpbid 232 |
. . . . . 6
⊢ ((𝑊 ∈ LVec ∧ 𝑔 ∈ 𝐹 ∧ (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾‘𝑔))) → ((𝐾‘𝑔) ∈ (LSubSp‘𝑊) ∧ (𝐾‘𝑔) ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 ((LSpan‘𝑊)‘((𝐾‘𝑔) ∪ {𝑣})) = 𝑉)) |
| 32 | | eleq1 2823 |
. . . . . . . . 9
⊢ (𝑠 = (𝐾‘𝑔) → (𝑠 ∈ (LSubSp‘𝑊) ↔ (𝐾‘𝑔) ∈ (LSubSp‘𝑊))) |
| 33 | | neeq1 2995 |
. . . . . . . . 9
⊢ (𝑠 = (𝐾‘𝑔) → (𝑠 ≠ 𝑉 ↔ (𝐾‘𝑔) ≠ 𝑉)) |
| 34 | | uneq1 4141 |
. . . . . . . . . . 11
⊢ (𝑠 = (𝐾‘𝑔) → (𝑠 ∪ {𝑣}) = ((𝐾‘𝑔) ∪ {𝑣})) |
| 35 | 34 | fveqeq2d 6889 |
. . . . . . . . . 10
⊢ (𝑠 = (𝐾‘𝑔) → (((LSpan‘𝑊)‘(𝑠 ∪ {𝑣})) = 𝑉 ↔ ((LSpan‘𝑊)‘((𝐾‘𝑔) ∪ {𝑣})) = 𝑉)) |
| 36 | 35 | rexbidv 3165 |
. . . . . . . . 9
⊢ (𝑠 = (𝐾‘𝑔) → (∃𝑣 ∈ 𝑉 ((LSpan‘𝑊)‘(𝑠 ∪ {𝑣})) = 𝑉 ↔ ∃𝑣 ∈ 𝑉 ((LSpan‘𝑊)‘((𝐾‘𝑔) ∪ {𝑣})) = 𝑉)) |
| 37 | 32, 33, 36 | 3anbi123d 1438 |
. . . . . . . 8
⊢ (𝑠 = (𝐾‘𝑔) → ((𝑠 ∈ (LSubSp‘𝑊) ∧ 𝑠 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 ((LSpan‘𝑊)‘(𝑠 ∪ {𝑣})) = 𝑉) ↔ ((𝐾‘𝑔) ∈ (LSubSp‘𝑊) ∧ (𝐾‘𝑔) ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 ((LSpan‘𝑊)‘((𝐾‘𝑔) ∪ {𝑣})) = 𝑉))) |
| 38 | 37 | adantl 481 |
. . . . . . 7
⊢ ((𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾‘𝑔)) → ((𝑠 ∈ (LSubSp‘𝑊) ∧ 𝑠 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 ((LSpan‘𝑊)‘(𝑠 ∪ {𝑣})) = 𝑉) ↔ ((𝐾‘𝑔) ∈ (LSubSp‘𝑊) ∧ (𝐾‘𝑔) ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 ((LSpan‘𝑊)‘((𝐾‘𝑔) ∪ {𝑣})) = 𝑉))) |
| 39 | 38 | 3ad2ant3 1135 |
. . . . . 6
⊢ ((𝑊 ∈ LVec ∧ 𝑔 ∈ 𝐹 ∧ (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾‘𝑔))) → ((𝑠 ∈ (LSubSp‘𝑊) ∧ 𝑠 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 ((LSpan‘𝑊)‘(𝑠 ∪ {𝑣})) = 𝑉) ↔ ((𝐾‘𝑔) ∈ (LSubSp‘𝑊) ∧ (𝐾‘𝑔) ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 ((LSpan‘𝑊)‘((𝐾‘𝑔) ∪ {𝑣})) = 𝑉))) |
| 40 | 31, 39 | mpbird 257 |
. . . . 5
⊢ ((𝑊 ∈ LVec ∧ 𝑔 ∈ 𝐹 ∧ (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾‘𝑔))) → (𝑠 ∈ (LSubSp‘𝑊) ∧ 𝑠 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 ((LSpan‘𝑊)‘(𝑠 ∪ {𝑣})) = 𝑉)) |
| 41 | 40 | rexlimdv3a 3146 |
. . . 4
⊢ (𝑊 ∈ LVec →
(∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾‘𝑔)) → (𝑠 ∈ (LSubSp‘𝑊) ∧ 𝑠 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 ((LSpan‘𝑊)‘(𝑠 ∪ {𝑣})) = 𝑉))) |
| 42 | 9, 27, 28, 1 | islshp 39002 |
. . . 4
⊢ (𝑊 ∈ LVec → (𝑠 ∈ 𝐻 ↔ (𝑠 ∈ (LSubSp‘𝑊) ∧ 𝑠 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 ((LSpan‘𝑊)‘(𝑠 ∪ {𝑣})) = 𝑉))) |
| 43 | 41, 42 | sylibrd 259 |
. . 3
⊢ (𝑊 ∈ LVec →
(∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾‘𝑔)) → 𝑠 ∈ 𝐻)) |
| 44 | 24, 43 | impbid 212 |
. 2
⊢ (𝑊 ∈ LVec → (𝑠 ∈ 𝐻 ↔ ∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾‘𝑔)))) |
| 45 | 44 | eqabdv 2869 |
1
⊢ (𝑊 ∈ LVec → 𝐻 = {𝑠 ∣ ∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾‘𝑔))}) |