Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshpset2N Structured version   Visualization version   GIF version

Theorem lshpset2N 36870
Description: The set of all hyperplanes of a left module or left vector space equals the set of all kernels of nonzero functionals. (Contributed by NM, 17-Jul-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
lshpset2.v 𝑉 = (Base‘𝑊)
lshpset2.d 𝐷 = (Scalar‘𝑊)
lshpset2.z 0 = (0g𝐷)
lshpset2.h 𝐻 = (LSHyp‘𝑊)
lshpset2.f 𝐹 = (LFnl‘𝑊)
lshpset2.k 𝐾 = (LKer‘𝑊)
Assertion
Ref Expression
lshpset2N (𝑊 ∈ LVec → 𝐻 = {𝑠 ∣ ∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔))})
Distinct variable groups:   𝑔,𝐹   𝑔,𝑠,𝐻   𝑔,𝐾   𝑔,𝑉   𝑔,𝑊,𝑠
Allowed substitution hints:   𝐷(𝑔,𝑠)   𝐹(𝑠)   𝐾(𝑠)   𝑉(𝑠)   0 (𝑔,𝑠)

Proof of Theorem lshpset2N
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 lshpset2.h . . . . . 6 𝐻 = (LSHyp‘𝑊)
2 lshpset2.f . . . . . 6 𝐹 = (LFnl‘𝑊)
3 lshpset2.k . . . . . 6 𝐾 = (LKer‘𝑊)
41, 2, 3lshpkrex 36869 . . . . 5 ((𝑊 ∈ LVec ∧ 𝑠𝐻) → ∃𝑔𝐹 (𝐾𝑔) = 𝑠)
5 eleq1 2825 . . . . . . . . . . . 12 ((𝐾𝑔) = 𝑠 → ((𝐾𝑔) ∈ 𝐻𝑠𝐻))
65biimparc 483 . . . . . . . . . . 11 ((𝑠𝐻 ∧ (𝐾𝑔) = 𝑠) → (𝐾𝑔) ∈ 𝐻)
76adantll 714 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ 𝑠𝐻) ∧ (𝐾𝑔) = 𝑠) → (𝐾𝑔) ∈ 𝐻)
87adantlr 715 . . . . . . . . 9 ((((𝑊 ∈ LVec ∧ 𝑠𝐻) ∧ 𝑔𝐹) ∧ (𝐾𝑔) = 𝑠) → (𝐾𝑔) ∈ 𝐻)
9 lshpset2.v . . . . . . . . . 10 𝑉 = (Base‘𝑊)
10 lshpset2.d . . . . . . . . . 10 𝐷 = (Scalar‘𝑊)
11 lshpset2.z . . . . . . . . . 10 0 = (0g𝐷)
12 simplll 775 . . . . . . . . . 10 ((((𝑊 ∈ LVec ∧ 𝑠𝐻) ∧ 𝑔𝐹) ∧ (𝐾𝑔) = 𝑠) → 𝑊 ∈ LVec)
13 simplr 769 . . . . . . . . . 10 ((((𝑊 ∈ LVec ∧ 𝑠𝐻) ∧ 𝑔𝐹) ∧ (𝐾𝑔) = 𝑠) → 𝑔𝐹)
149, 10, 11, 1, 2, 3, 12, 13lkrshp3 36857 . . . . . . . . 9 ((((𝑊 ∈ LVec ∧ 𝑠𝐻) ∧ 𝑔𝐹) ∧ (𝐾𝑔) = 𝑠) → ((𝐾𝑔) ∈ 𝐻𝑔 ≠ (𝑉 × { 0 })))
158, 14mpbid 235 . . . . . . . 8 ((((𝑊 ∈ LVec ∧ 𝑠𝐻) ∧ 𝑔𝐹) ∧ (𝐾𝑔) = 𝑠) → 𝑔 ≠ (𝑉 × { 0 }))
1615ex 416 . . . . . . 7 (((𝑊 ∈ LVec ∧ 𝑠𝐻) ∧ 𝑔𝐹) → ((𝐾𝑔) = 𝑠𝑔 ≠ (𝑉 × { 0 })))
17 eqimss2 3958 . . . . . . . . 9 ((𝐾𝑔) = 𝑠𝑠 ⊆ (𝐾𝑔))
18 eqimss 3957 . . . . . . . . 9 ((𝐾𝑔) = 𝑠 → (𝐾𝑔) ⊆ 𝑠)
1917, 18eqssd 3918 . . . . . . . 8 ((𝐾𝑔) = 𝑠𝑠 = (𝐾𝑔))
2019a1i 11 . . . . . . 7 (((𝑊 ∈ LVec ∧ 𝑠𝐻) ∧ 𝑔𝐹) → ((𝐾𝑔) = 𝑠𝑠 = (𝐾𝑔)))
2116, 20jcad 516 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝑠𝐻) ∧ 𝑔𝐹) → ((𝐾𝑔) = 𝑠 → (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔))))
2221reximdva 3193 . . . . 5 ((𝑊 ∈ LVec ∧ 𝑠𝐻) → (∃𝑔𝐹 (𝐾𝑔) = 𝑠 → ∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔))))
234, 22mpd 15 . . . 4 ((𝑊 ∈ LVec ∧ 𝑠𝐻) → ∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔)))
2423ex 416 . . 3 (𝑊 ∈ LVec → (𝑠𝐻 → ∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔))))
259, 10, 11, 1, 2, 3lkrshp 36856 . . . . . . . 8 ((𝑊 ∈ LVec ∧ 𝑔𝐹𝑔 ≠ (𝑉 × { 0 })) → (𝐾𝑔) ∈ 𝐻)
26253adant3r 1183 . . . . . . 7 ((𝑊 ∈ LVec ∧ 𝑔𝐹 ∧ (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔))) → (𝐾𝑔) ∈ 𝐻)
27 eqid 2737 . . . . . . . . 9 (LSpan‘𝑊) = (LSpan‘𝑊)
28 eqid 2737 . . . . . . . . 9 (LSubSp‘𝑊) = (LSubSp‘𝑊)
299, 27, 28, 1islshp 36730 . . . . . . . 8 (𝑊 ∈ LVec → ((𝐾𝑔) ∈ 𝐻 ↔ ((𝐾𝑔) ∈ (LSubSp‘𝑊) ∧ (𝐾𝑔) ≠ 𝑉 ∧ ∃𝑣𝑉 ((LSpan‘𝑊)‘((𝐾𝑔) ∪ {𝑣})) = 𝑉)))
30293ad2ant1 1135 . . . . . . 7 ((𝑊 ∈ LVec ∧ 𝑔𝐹 ∧ (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔))) → ((𝐾𝑔) ∈ 𝐻 ↔ ((𝐾𝑔) ∈ (LSubSp‘𝑊) ∧ (𝐾𝑔) ≠ 𝑉 ∧ ∃𝑣𝑉 ((LSpan‘𝑊)‘((𝐾𝑔) ∪ {𝑣})) = 𝑉)))
3126, 30mpbid 235 . . . . . 6 ((𝑊 ∈ LVec ∧ 𝑔𝐹 ∧ (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔))) → ((𝐾𝑔) ∈ (LSubSp‘𝑊) ∧ (𝐾𝑔) ≠ 𝑉 ∧ ∃𝑣𝑉 ((LSpan‘𝑊)‘((𝐾𝑔) ∪ {𝑣})) = 𝑉))
32 eleq1 2825 . . . . . . . . 9 (𝑠 = (𝐾𝑔) → (𝑠 ∈ (LSubSp‘𝑊) ↔ (𝐾𝑔) ∈ (LSubSp‘𝑊)))
33 neeq1 3003 . . . . . . . . 9 (𝑠 = (𝐾𝑔) → (𝑠𝑉 ↔ (𝐾𝑔) ≠ 𝑉))
34 uneq1 4070 . . . . . . . . . . 11 (𝑠 = (𝐾𝑔) → (𝑠 ∪ {𝑣}) = ((𝐾𝑔) ∪ {𝑣}))
3534fveqeq2d 6725 . . . . . . . . . 10 (𝑠 = (𝐾𝑔) → (((LSpan‘𝑊)‘(𝑠 ∪ {𝑣})) = 𝑉 ↔ ((LSpan‘𝑊)‘((𝐾𝑔) ∪ {𝑣})) = 𝑉))
3635rexbidv 3216 . . . . . . . . 9 (𝑠 = (𝐾𝑔) → (∃𝑣𝑉 ((LSpan‘𝑊)‘(𝑠 ∪ {𝑣})) = 𝑉 ↔ ∃𝑣𝑉 ((LSpan‘𝑊)‘((𝐾𝑔) ∪ {𝑣})) = 𝑉))
3732, 33, 363anbi123d 1438 . . . . . . . 8 (𝑠 = (𝐾𝑔) → ((𝑠 ∈ (LSubSp‘𝑊) ∧ 𝑠𝑉 ∧ ∃𝑣𝑉 ((LSpan‘𝑊)‘(𝑠 ∪ {𝑣})) = 𝑉) ↔ ((𝐾𝑔) ∈ (LSubSp‘𝑊) ∧ (𝐾𝑔) ≠ 𝑉 ∧ ∃𝑣𝑉 ((LSpan‘𝑊)‘((𝐾𝑔) ∪ {𝑣})) = 𝑉)))
3837adantl 485 . . . . . . 7 ((𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔)) → ((𝑠 ∈ (LSubSp‘𝑊) ∧ 𝑠𝑉 ∧ ∃𝑣𝑉 ((LSpan‘𝑊)‘(𝑠 ∪ {𝑣})) = 𝑉) ↔ ((𝐾𝑔) ∈ (LSubSp‘𝑊) ∧ (𝐾𝑔) ≠ 𝑉 ∧ ∃𝑣𝑉 ((LSpan‘𝑊)‘((𝐾𝑔) ∪ {𝑣})) = 𝑉)))
39383ad2ant3 1137 . . . . . 6 ((𝑊 ∈ LVec ∧ 𝑔𝐹 ∧ (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔))) → ((𝑠 ∈ (LSubSp‘𝑊) ∧ 𝑠𝑉 ∧ ∃𝑣𝑉 ((LSpan‘𝑊)‘(𝑠 ∪ {𝑣})) = 𝑉) ↔ ((𝐾𝑔) ∈ (LSubSp‘𝑊) ∧ (𝐾𝑔) ≠ 𝑉 ∧ ∃𝑣𝑉 ((LSpan‘𝑊)‘((𝐾𝑔) ∪ {𝑣})) = 𝑉)))
4031, 39mpbird 260 . . . . 5 ((𝑊 ∈ LVec ∧ 𝑔𝐹 ∧ (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔))) → (𝑠 ∈ (LSubSp‘𝑊) ∧ 𝑠𝑉 ∧ ∃𝑣𝑉 ((LSpan‘𝑊)‘(𝑠 ∪ {𝑣})) = 𝑉))
4140rexlimdv3a 3205 . . . 4 (𝑊 ∈ LVec → (∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔)) → (𝑠 ∈ (LSubSp‘𝑊) ∧ 𝑠𝑉 ∧ ∃𝑣𝑉 ((LSpan‘𝑊)‘(𝑠 ∪ {𝑣})) = 𝑉)))
429, 27, 28, 1islshp 36730 . . . 4 (𝑊 ∈ LVec → (𝑠𝐻 ↔ (𝑠 ∈ (LSubSp‘𝑊) ∧ 𝑠𝑉 ∧ ∃𝑣𝑉 ((LSpan‘𝑊)‘(𝑠 ∪ {𝑣})) = 𝑉)))
4341, 42sylibrd 262 . . 3 (𝑊 ∈ LVec → (∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔)) → 𝑠𝐻))
4424, 43impbid 215 . 2 (𝑊 ∈ LVec → (𝑠𝐻 ↔ ∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔))))
4544abbi2dv 2874 1 (𝑊 ∈ LVec → 𝐻 = {𝑠 ∣ ∃𝑔𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾𝑔))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  {cab 2714  wne 2940  wrex 3062  cun 3864  {csn 4541   × cxp 5549  cfv 6380  Basecbs 16760  Scalarcsca 16805  0gc0g 16944  LSubSpclss 19968  LSpanclspn 20008  LVecclvec 20139  LSHypclsh 36726  LFnlclfn 36808  LKerclk 36836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-tpos 7968  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-map 8510  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-2 11893  df-3 11894  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-mulr 16816  df-0g 16946  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-submnd 18219  df-grp 18368  df-minusg 18369  df-sbg 18370  df-subg 18540  df-cntz 18711  df-lsm 19025  df-cmn 19172  df-abl 19173  df-mgp 19505  df-ur 19517  df-ring 19564  df-oppr 19641  df-dvdsr 19659  df-unit 19660  df-invr 19690  df-drng 19769  df-lmod 19901  df-lss 19969  df-lsp 20009  df-lvec 20140  df-lshyp 36728  df-lfl 36809  df-lkr 36837
This theorem is referenced by:  islshpkrN  36871
  Copyright terms: Public domain W3C validator