Step | Hyp | Ref
| Expression |
1 | | lshpset2.h |
. . . . . 6
⊢ 𝐻 = (LSHyp‘𝑊) |
2 | | lshpset2.f |
. . . . . 6
⊢ 𝐹 = (LFnl‘𝑊) |
3 | | lshpset2.k |
. . . . . 6
⊢ 𝐾 = (LKer‘𝑊) |
4 | 1, 2, 3 | lshpkrex 36869 |
. . . . 5
⊢ ((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝐻) → ∃𝑔 ∈ 𝐹 (𝐾‘𝑔) = 𝑠) |
5 | | eleq1 2825 |
. . . . . . . . . . . 12
⊢ ((𝐾‘𝑔) = 𝑠 → ((𝐾‘𝑔) ∈ 𝐻 ↔ 𝑠 ∈ 𝐻)) |
6 | 5 | biimparc 483 |
. . . . . . . . . . 11
⊢ ((𝑠 ∈ 𝐻 ∧ (𝐾‘𝑔) = 𝑠) → (𝐾‘𝑔) ∈ 𝐻) |
7 | 6 | adantll 714 |
. . . . . . . . . 10
⊢ (((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝐻) ∧ (𝐾‘𝑔) = 𝑠) → (𝐾‘𝑔) ∈ 𝐻) |
8 | 7 | adantlr 715 |
. . . . . . . . 9
⊢ ((((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝐻) ∧ 𝑔 ∈ 𝐹) ∧ (𝐾‘𝑔) = 𝑠) → (𝐾‘𝑔) ∈ 𝐻) |
9 | | lshpset2.v |
. . . . . . . . . 10
⊢ 𝑉 = (Base‘𝑊) |
10 | | lshpset2.d |
. . . . . . . . . 10
⊢ 𝐷 = (Scalar‘𝑊) |
11 | | lshpset2.z |
. . . . . . . . . 10
⊢ 0 =
(0g‘𝐷) |
12 | | simplll 775 |
. . . . . . . . . 10
⊢ ((((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝐻) ∧ 𝑔 ∈ 𝐹) ∧ (𝐾‘𝑔) = 𝑠) → 𝑊 ∈ LVec) |
13 | | simplr 769 |
. . . . . . . . . 10
⊢ ((((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝐻) ∧ 𝑔 ∈ 𝐹) ∧ (𝐾‘𝑔) = 𝑠) → 𝑔 ∈ 𝐹) |
14 | 9, 10, 11, 1, 2, 3,
12, 13 | lkrshp3 36857 |
. . . . . . . . 9
⊢ ((((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝐻) ∧ 𝑔 ∈ 𝐹) ∧ (𝐾‘𝑔) = 𝑠) → ((𝐾‘𝑔) ∈ 𝐻 ↔ 𝑔 ≠ (𝑉 × { 0 }))) |
15 | 8, 14 | mpbid 235 |
. . . . . . . 8
⊢ ((((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝐻) ∧ 𝑔 ∈ 𝐹) ∧ (𝐾‘𝑔) = 𝑠) → 𝑔 ≠ (𝑉 × { 0 })) |
16 | 15 | ex 416 |
. . . . . . 7
⊢ (((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝐻) ∧ 𝑔 ∈ 𝐹) → ((𝐾‘𝑔) = 𝑠 → 𝑔 ≠ (𝑉 × { 0 }))) |
17 | | eqimss2 3958 |
. . . . . . . . 9
⊢ ((𝐾‘𝑔) = 𝑠 → 𝑠 ⊆ (𝐾‘𝑔)) |
18 | | eqimss 3957 |
. . . . . . . . 9
⊢ ((𝐾‘𝑔) = 𝑠 → (𝐾‘𝑔) ⊆ 𝑠) |
19 | 17, 18 | eqssd 3918 |
. . . . . . . 8
⊢ ((𝐾‘𝑔) = 𝑠 → 𝑠 = (𝐾‘𝑔)) |
20 | 19 | a1i 11 |
. . . . . . 7
⊢ (((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝐻) ∧ 𝑔 ∈ 𝐹) → ((𝐾‘𝑔) = 𝑠 → 𝑠 = (𝐾‘𝑔))) |
21 | 16, 20 | jcad 516 |
. . . . . 6
⊢ (((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝐻) ∧ 𝑔 ∈ 𝐹) → ((𝐾‘𝑔) = 𝑠 → (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾‘𝑔)))) |
22 | 21 | reximdva 3193 |
. . . . 5
⊢ ((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝐻) → (∃𝑔 ∈ 𝐹 (𝐾‘𝑔) = 𝑠 → ∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾‘𝑔)))) |
23 | 4, 22 | mpd 15 |
. . . 4
⊢ ((𝑊 ∈ LVec ∧ 𝑠 ∈ 𝐻) → ∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾‘𝑔))) |
24 | 23 | ex 416 |
. . 3
⊢ (𝑊 ∈ LVec → (𝑠 ∈ 𝐻 → ∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾‘𝑔)))) |
25 | 9, 10, 11, 1, 2, 3 | lkrshp 36856 |
. . . . . . . 8
⊢ ((𝑊 ∈ LVec ∧ 𝑔 ∈ 𝐹 ∧ 𝑔 ≠ (𝑉 × { 0 })) → (𝐾‘𝑔) ∈ 𝐻) |
26 | 25 | 3adant3r 1183 |
. . . . . . 7
⊢ ((𝑊 ∈ LVec ∧ 𝑔 ∈ 𝐹 ∧ (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾‘𝑔))) → (𝐾‘𝑔) ∈ 𝐻) |
27 | | eqid 2737 |
. . . . . . . . 9
⊢
(LSpan‘𝑊) =
(LSpan‘𝑊) |
28 | | eqid 2737 |
. . . . . . . . 9
⊢
(LSubSp‘𝑊) =
(LSubSp‘𝑊) |
29 | 9, 27, 28, 1 | islshp 36730 |
. . . . . . . 8
⊢ (𝑊 ∈ LVec → ((𝐾‘𝑔) ∈ 𝐻 ↔ ((𝐾‘𝑔) ∈ (LSubSp‘𝑊) ∧ (𝐾‘𝑔) ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 ((LSpan‘𝑊)‘((𝐾‘𝑔) ∪ {𝑣})) = 𝑉))) |
30 | 29 | 3ad2ant1 1135 |
. . . . . . 7
⊢ ((𝑊 ∈ LVec ∧ 𝑔 ∈ 𝐹 ∧ (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾‘𝑔))) → ((𝐾‘𝑔) ∈ 𝐻 ↔ ((𝐾‘𝑔) ∈ (LSubSp‘𝑊) ∧ (𝐾‘𝑔) ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 ((LSpan‘𝑊)‘((𝐾‘𝑔) ∪ {𝑣})) = 𝑉))) |
31 | 26, 30 | mpbid 235 |
. . . . . 6
⊢ ((𝑊 ∈ LVec ∧ 𝑔 ∈ 𝐹 ∧ (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾‘𝑔))) → ((𝐾‘𝑔) ∈ (LSubSp‘𝑊) ∧ (𝐾‘𝑔) ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 ((LSpan‘𝑊)‘((𝐾‘𝑔) ∪ {𝑣})) = 𝑉)) |
32 | | eleq1 2825 |
. . . . . . . . 9
⊢ (𝑠 = (𝐾‘𝑔) → (𝑠 ∈ (LSubSp‘𝑊) ↔ (𝐾‘𝑔) ∈ (LSubSp‘𝑊))) |
33 | | neeq1 3003 |
. . . . . . . . 9
⊢ (𝑠 = (𝐾‘𝑔) → (𝑠 ≠ 𝑉 ↔ (𝐾‘𝑔) ≠ 𝑉)) |
34 | | uneq1 4070 |
. . . . . . . . . . 11
⊢ (𝑠 = (𝐾‘𝑔) → (𝑠 ∪ {𝑣}) = ((𝐾‘𝑔) ∪ {𝑣})) |
35 | 34 | fveqeq2d 6725 |
. . . . . . . . . 10
⊢ (𝑠 = (𝐾‘𝑔) → (((LSpan‘𝑊)‘(𝑠 ∪ {𝑣})) = 𝑉 ↔ ((LSpan‘𝑊)‘((𝐾‘𝑔) ∪ {𝑣})) = 𝑉)) |
36 | 35 | rexbidv 3216 |
. . . . . . . . 9
⊢ (𝑠 = (𝐾‘𝑔) → (∃𝑣 ∈ 𝑉 ((LSpan‘𝑊)‘(𝑠 ∪ {𝑣})) = 𝑉 ↔ ∃𝑣 ∈ 𝑉 ((LSpan‘𝑊)‘((𝐾‘𝑔) ∪ {𝑣})) = 𝑉)) |
37 | 32, 33, 36 | 3anbi123d 1438 |
. . . . . . . 8
⊢ (𝑠 = (𝐾‘𝑔) → ((𝑠 ∈ (LSubSp‘𝑊) ∧ 𝑠 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 ((LSpan‘𝑊)‘(𝑠 ∪ {𝑣})) = 𝑉) ↔ ((𝐾‘𝑔) ∈ (LSubSp‘𝑊) ∧ (𝐾‘𝑔) ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 ((LSpan‘𝑊)‘((𝐾‘𝑔) ∪ {𝑣})) = 𝑉))) |
38 | 37 | adantl 485 |
. . . . . . 7
⊢ ((𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾‘𝑔)) → ((𝑠 ∈ (LSubSp‘𝑊) ∧ 𝑠 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 ((LSpan‘𝑊)‘(𝑠 ∪ {𝑣})) = 𝑉) ↔ ((𝐾‘𝑔) ∈ (LSubSp‘𝑊) ∧ (𝐾‘𝑔) ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 ((LSpan‘𝑊)‘((𝐾‘𝑔) ∪ {𝑣})) = 𝑉))) |
39 | 38 | 3ad2ant3 1137 |
. . . . . 6
⊢ ((𝑊 ∈ LVec ∧ 𝑔 ∈ 𝐹 ∧ (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾‘𝑔))) → ((𝑠 ∈ (LSubSp‘𝑊) ∧ 𝑠 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 ((LSpan‘𝑊)‘(𝑠 ∪ {𝑣})) = 𝑉) ↔ ((𝐾‘𝑔) ∈ (LSubSp‘𝑊) ∧ (𝐾‘𝑔) ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 ((LSpan‘𝑊)‘((𝐾‘𝑔) ∪ {𝑣})) = 𝑉))) |
40 | 31, 39 | mpbird 260 |
. . . . 5
⊢ ((𝑊 ∈ LVec ∧ 𝑔 ∈ 𝐹 ∧ (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾‘𝑔))) → (𝑠 ∈ (LSubSp‘𝑊) ∧ 𝑠 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 ((LSpan‘𝑊)‘(𝑠 ∪ {𝑣})) = 𝑉)) |
41 | 40 | rexlimdv3a 3205 |
. . . 4
⊢ (𝑊 ∈ LVec →
(∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾‘𝑔)) → (𝑠 ∈ (LSubSp‘𝑊) ∧ 𝑠 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 ((LSpan‘𝑊)‘(𝑠 ∪ {𝑣})) = 𝑉))) |
42 | 9, 27, 28, 1 | islshp 36730 |
. . . 4
⊢ (𝑊 ∈ LVec → (𝑠 ∈ 𝐻 ↔ (𝑠 ∈ (LSubSp‘𝑊) ∧ 𝑠 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 ((LSpan‘𝑊)‘(𝑠 ∪ {𝑣})) = 𝑉))) |
43 | 41, 42 | sylibrd 262 |
. . 3
⊢ (𝑊 ∈ LVec →
(∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾‘𝑔)) → 𝑠 ∈ 𝐻)) |
44 | 24, 43 | impbid 215 |
. 2
⊢ (𝑊 ∈ LVec → (𝑠 ∈ 𝐻 ↔ ∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾‘𝑔)))) |
45 | 44 | abbi2dv 2874 |
1
⊢ (𝑊 ∈ LVec → 𝐻 = {𝑠 ∣ ∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾‘𝑔))}) |