MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapfien2 Structured version   Visualization version   GIF version

Theorem mapfien2 9168
Description: Equinumerousity relation for sets of finitely supported functions. (Contributed by Stefan O'Rear, 9-Jul-2015.) (Revised by AV, 7-Jul-2019.)
Hypotheses
Ref Expression
mapfien2.s 𝑆 = {𝑥 ∈ (𝐵m 𝐴) ∣ 𝑥 finSupp 0 }
mapfien2.t 𝑇 = {𝑥 ∈ (𝐷m 𝐶) ∣ 𝑥 finSupp 𝑊}
mapfien2.ac (𝜑𝐴𝐶)
mapfien2.bd (𝜑𝐵𝐷)
mapfien2.z (𝜑0𝐵)
mapfien2.w (𝜑𝑊𝐷)
Assertion
Ref Expression
mapfien2 (𝜑𝑆𝑇)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷   𝑥, 0   𝑥,𝑊
Allowed substitution hints:   𝜑(𝑥)   𝑆(𝑥)   𝑇(𝑥)

Proof of Theorem mapfien2
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mapfien2.z . . 3 (𝜑0𝐵)
2 mapfien2.w . . 3 (𝜑𝑊𝐷)
3 mapfien2.bd . . 3 (𝜑𝐵𝐷)
4 enfixsn 8868 . . 3 (( 0𝐵𝑊𝐷𝐵𝐷) → ∃𝑦(𝑦:𝐵1-1-onto𝐷 ∧ (𝑦0 ) = 𝑊))
51, 2, 3, 4syl3anc 1370 . 2 (𝜑 → ∃𝑦(𝑦:𝐵1-1-onto𝐷 ∧ (𝑦0 ) = 𝑊))
6 mapfien2.ac . . . . 5 (𝜑𝐴𝐶)
7 bren 8743 . . . . 5 (𝐴𝐶 ↔ ∃𝑧 𝑧:𝐴1-1-onto𝐶)
86, 7sylib 217 . . . 4 (𝜑 → ∃𝑧 𝑧:𝐴1-1-onto𝐶)
9 mapfien2.s . . . . . . . . . 10 𝑆 = {𝑥 ∈ (𝐵m 𝐴) ∣ 𝑥 finSupp 0 }
10 eqid 2738 . . . . . . . . . 10 {𝑥 ∈ (𝐷m 𝐶) ∣ 𝑥 finSupp (𝑦0 )} = {𝑥 ∈ (𝐷m 𝐶) ∣ 𝑥 finSupp (𝑦0 )}
11 eqid 2738 . . . . . . . . . 10 (𝑦0 ) = (𝑦0 )
12 f1ocnv 6728 . . . . . . . . . . 11 (𝑧:𝐴1-1-onto𝐶𝑧:𝐶1-1-onto𝐴)
13123ad2ant2 1133 . . . . . . . . . 10 ((𝜑𝑧:𝐴1-1-onto𝐶𝑦:𝐵1-1-onto𝐷) → 𝑧:𝐶1-1-onto𝐴)
14 simp3 1137 . . . . . . . . . 10 ((𝜑𝑧:𝐴1-1-onto𝐶𝑦:𝐵1-1-onto𝐷) → 𝑦:𝐵1-1-onto𝐷)
1563ad2ant1 1132 . . . . . . . . . . 11 ((𝜑𝑧:𝐴1-1-onto𝐶𝑦:𝐵1-1-onto𝐷) → 𝐴𝐶)
16 relen 8738 . . . . . . . . . . . 12 Rel ≈
1716brrelex1i 5643 . . . . . . . . . . 11 (𝐴𝐶𝐴 ∈ V)
1815, 17syl 17 . . . . . . . . . 10 ((𝜑𝑧:𝐴1-1-onto𝐶𝑦:𝐵1-1-onto𝐷) → 𝐴 ∈ V)
1933ad2ant1 1132 . . . . . . . . . . 11 ((𝜑𝑧:𝐴1-1-onto𝐶𝑦:𝐵1-1-onto𝐷) → 𝐵𝐷)
2016brrelex1i 5643 . . . . . . . . . . 11 (𝐵𝐷𝐵 ∈ V)
2119, 20syl 17 . . . . . . . . . 10 ((𝜑𝑧:𝐴1-1-onto𝐶𝑦:𝐵1-1-onto𝐷) → 𝐵 ∈ V)
2216brrelex2i 5644 . . . . . . . . . . 11 (𝐴𝐶𝐶 ∈ V)
2315, 22syl 17 . . . . . . . . . 10 ((𝜑𝑧:𝐴1-1-onto𝐶𝑦:𝐵1-1-onto𝐷) → 𝐶 ∈ V)
2416brrelex2i 5644 . . . . . . . . . . 11 (𝐵𝐷𝐷 ∈ V)
2519, 24syl 17 . . . . . . . . . 10 ((𝜑𝑧:𝐴1-1-onto𝐶𝑦:𝐵1-1-onto𝐷) → 𝐷 ∈ V)
2613ad2ant1 1132 . . . . . . . . . 10 ((𝜑𝑧:𝐴1-1-onto𝐶𝑦:𝐵1-1-onto𝐷) → 0𝐵)
279, 10, 11, 13, 14, 18, 21, 23, 25, 26mapfien 9167 . . . . . . . . 9 ((𝜑𝑧:𝐴1-1-onto𝐶𝑦:𝐵1-1-onto𝐷) → (𝑤𝑆 ↦ (𝑦 ∘ (𝑤𝑧))):𝑆1-1-onto→{𝑥 ∈ (𝐷m 𝐶) ∣ 𝑥 finSupp (𝑦0 )})
28 ovex 7308 . . . . . . . . . . 11 (𝐵m 𝐴) ∈ V
299, 28rabex2 5258 . . . . . . . . . 10 𝑆 ∈ V
3029f1oen 8761 . . . . . . . . 9 ((𝑤𝑆 ↦ (𝑦 ∘ (𝑤𝑧))):𝑆1-1-onto→{𝑥 ∈ (𝐷m 𝐶) ∣ 𝑥 finSupp (𝑦0 )} → 𝑆 ≈ {𝑥 ∈ (𝐷m 𝐶) ∣ 𝑥 finSupp (𝑦0 )})
3127, 30syl 17 . . . . . . . 8 ((𝜑𝑧:𝐴1-1-onto𝐶𝑦:𝐵1-1-onto𝐷) → 𝑆 ≈ {𝑥 ∈ (𝐷m 𝐶) ∣ 𝑥 finSupp (𝑦0 )})
32313adant3r 1180 . . . . . . 7 ((𝜑𝑧:𝐴1-1-onto𝐶 ∧ (𝑦:𝐵1-1-onto𝐷 ∧ (𝑦0 ) = 𝑊)) → 𝑆 ≈ {𝑥 ∈ (𝐷m 𝐶) ∣ 𝑥 finSupp (𝑦0 )})
33 breq2 5078 . . . . . . . . . . 11 ((𝑦0 ) = 𝑊 → (𝑥 finSupp (𝑦0 ) ↔ 𝑥 finSupp 𝑊))
3433rabbidv 3414 . . . . . . . . . 10 ((𝑦0 ) = 𝑊 → {𝑥 ∈ (𝐷m 𝐶) ∣ 𝑥 finSupp (𝑦0 )} = {𝑥 ∈ (𝐷m 𝐶) ∣ 𝑥 finSupp 𝑊})
35 mapfien2.t . . . . . . . . . 10 𝑇 = {𝑥 ∈ (𝐷m 𝐶) ∣ 𝑥 finSupp 𝑊}
3634, 35eqtr4di 2796 . . . . . . . . 9 ((𝑦0 ) = 𝑊 → {𝑥 ∈ (𝐷m 𝐶) ∣ 𝑥 finSupp (𝑦0 )} = 𝑇)
3736adantl 482 . . . . . . . 8 ((𝑦:𝐵1-1-onto𝐷 ∧ (𝑦0 ) = 𝑊) → {𝑥 ∈ (𝐷m 𝐶) ∣ 𝑥 finSupp (𝑦0 )} = 𝑇)
38373ad2ant3 1134 . . . . . . 7 ((𝜑𝑧:𝐴1-1-onto𝐶 ∧ (𝑦:𝐵1-1-onto𝐷 ∧ (𝑦0 ) = 𝑊)) → {𝑥 ∈ (𝐷m 𝐶) ∣ 𝑥 finSupp (𝑦0 )} = 𝑇)
3932, 38breqtrd 5100 . . . . . 6 ((𝜑𝑧:𝐴1-1-onto𝐶 ∧ (𝑦:𝐵1-1-onto𝐷 ∧ (𝑦0 ) = 𝑊)) → 𝑆𝑇)
40393exp 1118 . . . . 5 (𝜑 → (𝑧:𝐴1-1-onto𝐶 → ((𝑦:𝐵1-1-onto𝐷 ∧ (𝑦0 ) = 𝑊) → 𝑆𝑇)))
4140exlimdv 1936 . . . 4 (𝜑 → (∃𝑧 𝑧:𝐴1-1-onto𝐶 → ((𝑦:𝐵1-1-onto𝐷 ∧ (𝑦0 ) = 𝑊) → 𝑆𝑇)))
428, 41mpd 15 . . 3 (𝜑 → ((𝑦:𝐵1-1-onto𝐷 ∧ (𝑦0 ) = 𝑊) → 𝑆𝑇))
4342exlimdv 1936 . 2 (𝜑 → (∃𝑦(𝑦:𝐵1-1-onto𝐷 ∧ (𝑦0 ) = 𝑊) → 𝑆𝑇))
445, 43mpd 15 1 (𝜑𝑆𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wex 1782  wcel 2106  {crab 3068  Vcvv 3432   class class class wbr 5074  cmpt 5157  ccnv 5588  ccom 5593  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275  m cmap 8615  cen 8730   finSupp cfsupp 9128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-1o 8297  df-map 8617  df-en 8734  df-fin 8737  df-fsupp 9129
This theorem is referenced by:  frlmpwfi  40923
  Copyright terms: Public domain W3C validator