HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvmulcan2 Structured version   Visualization version   GIF version

Theorem hvmulcan2 31105
Description: Cancellation law for scalar multiplication. (Contributed by NM, 19-May-2005.) (New usage is discouraged.)
Assertion
Ref Expression
hvmulcan2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℋ ∧ 𝐶 ≠ 0)) → ((𝐴 · 𝐶) = (𝐵 · 𝐶) ↔ 𝐴 = 𝐵))

Proof of Theorem hvmulcan2
StepHypRef Expression
1 hvmulcl 31045 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐴 · 𝐶) ∈ ℋ)
213adant2 1131 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐴 · 𝐶) ∈ ℋ)
3 hvmulcl 31045 . . . . 5 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐵 · 𝐶) ∈ ℋ)
433adant1 1130 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐵 · 𝐶) ∈ ℋ)
5 hvsubeq0 31100 . . . 4 (((𝐴 · 𝐶) ∈ ℋ ∧ (𝐵 · 𝐶) ∈ ℋ) → (((𝐴 · 𝐶) − (𝐵 · 𝐶)) = 0 ↔ (𝐴 · 𝐶) = (𝐵 · 𝐶)))
62, 4, 5syl2anc 583 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (((𝐴 · 𝐶) − (𝐵 · 𝐶)) = 0 ↔ (𝐴 · 𝐶) = (𝐵 · 𝐶)))
763adant3r 1181 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℋ ∧ 𝐶 ≠ 0)) → (((𝐴 · 𝐶) − (𝐵 · 𝐶)) = 0 ↔ (𝐴 · 𝐶) = (𝐵 · 𝐶)))
8 hvsubdistr2 31082 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴𝐵) · 𝐶) = ((𝐴 · 𝐶) − (𝐵 · 𝐶)))
98eqeq1d 2742 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (((𝐴𝐵) · 𝐶) = 0 ↔ ((𝐴 · 𝐶) − (𝐵 · 𝐶)) = 0))
10 subcl 11535 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐵) ∈ ℂ)
11 hvmul0or 31057 . . . . . 6 (((𝐴𝐵) ∈ ℂ ∧ 𝐶 ∈ ℋ) → (((𝐴𝐵) · 𝐶) = 0 ↔ ((𝐴𝐵) = 0 ∨ 𝐶 = 0)))
1210, 11stoic3 1774 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (((𝐴𝐵) · 𝐶) = 0 ↔ ((𝐴𝐵) = 0 ∨ 𝐶 = 0)))
139, 12bitr3d 281 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (((𝐴 · 𝐶) − (𝐵 · 𝐶)) = 0 ↔ ((𝐴𝐵) = 0 ∨ 𝐶 = 0)))
14133adant3r 1181 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℋ ∧ 𝐶 ≠ 0)) → (((𝐴 · 𝐶) − (𝐵 · 𝐶)) = 0 ↔ ((𝐴𝐵) = 0 ∨ 𝐶 = 0)))
15 df-ne 2947 . . . . . 6 (𝐶 ≠ 0 ↔ ¬ 𝐶 = 0)
16 biorf 935 . . . . . . 7 𝐶 = 0 → ((𝐴𝐵) = 0 ↔ (𝐶 = 0 ∨ (𝐴𝐵) = 0)))
17 orcom 869 . . . . . . 7 ((𝐶 = 0 ∨ (𝐴𝐵) = 0) ↔ ((𝐴𝐵) = 0 ∨ 𝐶 = 0))
1816, 17bitrdi 287 . . . . . 6 𝐶 = 0 → ((𝐴𝐵) = 0 ↔ ((𝐴𝐵) = 0 ∨ 𝐶 = 0)))
1915, 18sylbi 217 . . . . 5 (𝐶 ≠ 0 → ((𝐴𝐵) = 0 ↔ ((𝐴𝐵) = 0 ∨ 𝐶 = 0)))
2019ad2antll 728 . . . 4 ((𝐵 ∈ ℂ ∧ (𝐶 ∈ ℋ ∧ 𝐶 ≠ 0)) → ((𝐴𝐵) = 0 ↔ ((𝐴𝐵) = 0 ∨ 𝐶 = 0)))
21203adant1 1130 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℋ ∧ 𝐶 ≠ 0)) → ((𝐴𝐵) = 0 ↔ ((𝐴𝐵) = 0 ∨ 𝐶 = 0)))
22 subeq0 11562 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝐵) = 0 ↔ 𝐴 = 𝐵))
23223adant3 1132 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℋ ∧ 𝐶 ≠ 0)) → ((𝐴𝐵) = 0 ↔ 𝐴 = 𝐵))
2414, 21, 233bitr2d 307 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℋ ∧ 𝐶 ≠ 0)) → (((𝐴 · 𝐶) − (𝐵 · 𝐶)) = 0𝐴 = 𝐵))
257, 24bitr3d 281 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℋ ∧ 𝐶 ≠ 0)) → ((𝐴 · 𝐶) = (𝐵 · 𝐶) ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wne 2946  (class class class)co 7448  cc 11182  0cc0 11184  cmin 11520  chba 30951   · csm 30953  0c0v 30956   cmv 30957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-hvcom 31033  ax-hvass 31034  ax-hv0cl 31035  ax-hvaddid 31036  ax-hfvmul 31037  ax-hvmulid 31038  ax-hvmulass 31039  ax-hvdistr2 31041  ax-hvmul0 31042
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-hvsub 31003
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator