HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvmulcan2 Structured version   Visualization version   GIF version

Theorem hvmulcan2 29484
Description: Cancellation law for scalar multiplication. (Contributed by NM, 19-May-2005.) (New usage is discouraged.)
Assertion
Ref Expression
hvmulcan2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℋ ∧ 𝐶 ≠ 0)) → ((𝐴 · 𝐶) = (𝐵 · 𝐶) ↔ 𝐴 = 𝐵))

Proof of Theorem hvmulcan2
StepHypRef Expression
1 hvmulcl 29424 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐴 · 𝐶) ∈ ℋ)
213adant2 1131 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐴 · 𝐶) ∈ ℋ)
3 hvmulcl 29424 . . . . 5 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐵 · 𝐶) ∈ ℋ)
433adant1 1130 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐵 · 𝐶) ∈ ℋ)
5 hvsubeq0 29479 . . . 4 (((𝐴 · 𝐶) ∈ ℋ ∧ (𝐵 · 𝐶) ∈ ℋ) → (((𝐴 · 𝐶) − (𝐵 · 𝐶)) = 0 ↔ (𝐴 · 𝐶) = (𝐵 · 𝐶)))
62, 4, 5syl2anc 585 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (((𝐴 · 𝐶) − (𝐵 · 𝐶)) = 0 ↔ (𝐴 · 𝐶) = (𝐵 · 𝐶)))
763adant3r 1181 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℋ ∧ 𝐶 ≠ 0)) → (((𝐴 · 𝐶) − (𝐵 · 𝐶)) = 0 ↔ (𝐴 · 𝐶) = (𝐵 · 𝐶)))
8 hvsubdistr2 29461 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴𝐵) · 𝐶) = ((𝐴 · 𝐶) − (𝐵 · 𝐶)))
98eqeq1d 2738 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (((𝐴𝐵) · 𝐶) = 0 ↔ ((𝐴 · 𝐶) − (𝐵 · 𝐶)) = 0))
10 subcl 11270 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐵) ∈ ℂ)
11 hvmul0or 29436 . . . . . 6 (((𝐴𝐵) ∈ ℂ ∧ 𝐶 ∈ ℋ) → (((𝐴𝐵) · 𝐶) = 0 ↔ ((𝐴𝐵) = 0 ∨ 𝐶 = 0)))
1210, 11stoic3 1776 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (((𝐴𝐵) · 𝐶) = 0 ↔ ((𝐴𝐵) = 0 ∨ 𝐶 = 0)))
139, 12bitr3d 281 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (((𝐴 · 𝐶) − (𝐵 · 𝐶)) = 0 ↔ ((𝐴𝐵) = 0 ∨ 𝐶 = 0)))
14133adant3r 1181 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℋ ∧ 𝐶 ≠ 0)) → (((𝐴 · 𝐶) − (𝐵 · 𝐶)) = 0 ↔ ((𝐴𝐵) = 0 ∨ 𝐶 = 0)))
15 df-ne 2942 . . . . . 6 (𝐶 ≠ 0 ↔ ¬ 𝐶 = 0)
16 biorf 935 . . . . . . 7 𝐶 = 0 → ((𝐴𝐵) = 0 ↔ (𝐶 = 0 ∨ (𝐴𝐵) = 0)))
17 orcom 868 . . . . . . 7 ((𝐶 = 0 ∨ (𝐴𝐵) = 0) ↔ ((𝐴𝐵) = 0 ∨ 𝐶 = 0))
1816, 17bitrdi 287 . . . . . 6 𝐶 = 0 → ((𝐴𝐵) = 0 ↔ ((𝐴𝐵) = 0 ∨ 𝐶 = 0)))
1915, 18sylbi 216 . . . . 5 (𝐶 ≠ 0 → ((𝐴𝐵) = 0 ↔ ((𝐴𝐵) = 0 ∨ 𝐶 = 0)))
2019ad2antll 727 . . . 4 ((𝐵 ∈ ℂ ∧ (𝐶 ∈ ℋ ∧ 𝐶 ≠ 0)) → ((𝐴𝐵) = 0 ↔ ((𝐴𝐵) = 0 ∨ 𝐶 = 0)))
21203adant1 1130 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℋ ∧ 𝐶 ≠ 0)) → ((𝐴𝐵) = 0 ↔ ((𝐴𝐵) = 0 ∨ 𝐶 = 0)))
22 subeq0 11297 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝐵) = 0 ↔ 𝐴 = 𝐵))
23223adant3 1132 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℋ ∧ 𝐶 ≠ 0)) → ((𝐴𝐵) = 0 ↔ 𝐴 = 𝐵))
2414, 21, 233bitr2d 307 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℋ ∧ 𝐶 ≠ 0)) → (((𝐴 · 𝐶) − (𝐵 · 𝐶)) = 0𝐴 = 𝐵))
257, 24bitr3d 281 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℋ ∧ 𝐶 ≠ 0)) → ((𝐴 · 𝐶) = (𝐵 · 𝐶) ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wo 845  w3a 1087   = wceq 1539  wcel 2104  wne 2941  (class class class)co 7307  cc 10919  0cc0 10921  cmin 11255  chba 29330   · csm 29332  0c0v 29335   cmv 29336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-resscn 10978  ax-1cn 10979  ax-icn 10980  ax-addcl 10981  ax-addrcl 10982  ax-mulcl 10983  ax-mulrcl 10984  ax-mulcom 10985  ax-addass 10986  ax-mulass 10987  ax-distr 10988  ax-i2m1 10989  ax-1ne0 10990  ax-1rid 10991  ax-rnegex 10992  ax-rrecex 10993  ax-cnre 10994  ax-pre-lttri 10995  ax-pre-lttrn 10996  ax-pre-ltadd 10997  ax-pre-mulgt0 10998  ax-hvcom 29412  ax-hvass 29413  ax-hv0cl 29414  ax-hvaddid 29415  ax-hfvmul 29416  ax-hvmulid 29417  ax-hvmulass 29418  ax-hvdistr2 29420  ax-hvmul0 29421
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3304  df-reu 3305  df-rab 3306  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-po 5514  df-so 5515  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-er 8529  df-en 8765  df-dom 8766  df-sdom 8767  df-pnf 11061  df-mnf 11062  df-xr 11063  df-ltxr 11064  df-le 11065  df-sub 11257  df-neg 11258  df-div 11683  df-hvsub 29382
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator