HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvmulcan2 Structured version   Visualization version   GIF version

Theorem hvmulcan2 31101
Description: Cancellation law for scalar multiplication. (Contributed by NM, 19-May-2005.) (New usage is discouraged.)
Assertion
Ref Expression
hvmulcan2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℋ ∧ 𝐶 ≠ 0)) → ((𝐴 · 𝐶) = (𝐵 · 𝐶) ↔ 𝐴 = 𝐵))

Proof of Theorem hvmulcan2
StepHypRef Expression
1 hvmulcl 31041 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐴 · 𝐶) ∈ ℋ)
213adant2 1130 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐴 · 𝐶) ∈ ℋ)
3 hvmulcl 31041 . . . . 5 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐵 · 𝐶) ∈ ℋ)
433adant1 1129 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐵 · 𝐶) ∈ ℋ)
5 hvsubeq0 31096 . . . 4 (((𝐴 · 𝐶) ∈ ℋ ∧ (𝐵 · 𝐶) ∈ ℋ) → (((𝐴 · 𝐶) − (𝐵 · 𝐶)) = 0 ↔ (𝐴 · 𝐶) = (𝐵 · 𝐶)))
62, 4, 5syl2anc 584 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (((𝐴 · 𝐶) − (𝐵 · 𝐶)) = 0 ↔ (𝐴 · 𝐶) = (𝐵 · 𝐶)))
763adant3r 1180 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℋ ∧ 𝐶 ≠ 0)) → (((𝐴 · 𝐶) − (𝐵 · 𝐶)) = 0 ↔ (𝐴 · 𝐶) = (𝐵 · 𝐶)))
8 hvsubdistr2 31078 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴𝐵) · 𝐶) = ((𝐴 · 𝐶) − (𝐵 · 𝐶)))
98eqeq1d 2736 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (((𝐴𝐵) · 𝐶) = 0 ↔ ((𝐴 · 𝐶) − (𝐵 · 𝐶)) = 0))
10 subcl 11504 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐵) ∈ ℂ)
11 hvmul0or 31053 . . . . . 6 (((𝐴𝐵) ∈ ℂ ∧ 𝐶 ∈ ℋ) → (((𝐴𝐵) · 𝐶) = 0 ↔ ((𝐴𝐵) = 0 ∨ 𝐶 = 0)))
1210, 11stoic3 1772 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (((𝐴𝐵) · 𝐶) = 0 ↔ ((𝐴𝐵) = 0 ∨ 𝐶 = 0)))
139, 12bitr3d 281 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (((𝐴 · 𝐶) − (𝐵 · 𝐶)) = 0 ↔ ((𝐴𝐵) = 0 ∨ 𝐶 = 0)))
14133adant3r 1180 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℋ ∧ 𝐶 ≠ 0)) → (((𝐴 · 𝐶) − (𝐵 · 𝐶)) = 0 ↔ ((𝐴𝐵) = 0 ∨ 𝐶 = 0)))
15 df-ne 2938 . . . . . 6 (𝐶 ≠ 0 ↔ ¬ 𝐶 = 0)
16 biorf 936 . . . . . . 7 𝐶 = 0 → ((𝐴𝐵) = 0 ↔ (𝐶 = 0 ∨ (𝐴𝐵) = 0)))
17 orcom 870 . . . . . . 7 ((𝐶 = 0 ∨ (𝐴𝐵) = 0) ↔ ((𝐴𝐵) = 0 ∨ 𝐶 = 0))
1816, 17bitrdi 287 . . . . . 6 𝐶 = 0 → ((𝐴𝐵) = 0 ↔ ((𝐴𝐵) = 0 ∨ 𝐶 = 0)))
1915, 18sylbi 217 . . . . 5 (𝐶 ≠ 0 → ((𝐴𝐵) = 0 ↔ ((𝐴𝐵) = 0 ∨ 𝐶 = 0)))
2019ad2antll 729 . . . 4 ((𝐵 ∈ ℂ ∧ (𝐶 ∈ ℋ ∧ 𝐶 ≠ 0)) → ((𝐴𝐵) = 0 ↔ ((𝐴𝐵) = 0 ∨ 𝐶 = 0)))
21203adant1 1129 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℋ ∧ 𝐶 ≠ 0)) → ((𝐴𝐵) = 0 ↔ ((𝐴𝐵) = 0 ∨ 𝐶 = 0)))
22 subeq0 11532 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝐵) = 0 ↔ 𝐴 = 𝐵))
23223adant3 1131 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℋ ∧ 𝐶 ≠ 0)) → ((𝐴𝐵) = 0 ↔ 𝐴 = 𝐵))
2414, 21, 233bitr2d 307 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℋ ∧ 𝐶 ≠ 0)) → (((𝐴 · 𝐶) − (𝐵 · 𝐶)) = 0𝐴 = 𝐵))
257, 24bitr3d 281 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℋ ∧ 𝐶 ≠ 0)) → ((𝐴 · 𝐶) = (𝐵 · 𝐶) ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1536  wcel 2105  wne 2937  (class class class)co 7430  cc 11150  0cc0 11152  cmin 11489  chba 30947   · csm 30949  0c0v 30952   cmv 30953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-hvcom 31029  ax-hvass 31030  ax-hv0cl 31031  ax-hvaddid 31032  ax-hfvmul 31033  ax-hvmulid 31034  ax-hvmulass 31035  ax-hvdistr2 31037  ax-hvmul0 31038
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-po 5596  df-so 5597  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-hvsub 30999
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator