| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hvmulcan2 | Structured version Visualization version GIF version | ||
| Description: Cancellation law for scalar multiplication. (Contributed by NM, 19-May-2005.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hvmulcan2 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℋ ∧ 𝐶 ≠ 0ℎ)) → ((𝐴 ·ℎ 𝐶) = (𝐵 ·ℎ 𝐶) ↔ 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hvmulcl 30915 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ 𝐶) ∈ ℋ) | |
| 2 | 1 | 3adant2 1131 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ 𝐶) ∈ ℋ) |
| 3 | hvmulcl 30915 | . . . . 5 ⊢ ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐵 ·ℎ 𝐶) ∈ ℋ) | |
| 4 | 3 | 3adant1 1130 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐵 ·ℎ 𝐶) ∈ ℋ) |
| 5 | hvsubeq0 30970 | . . . 4 ⊢ (((𝐴 ·ℎ 𝐶) ∈ ℋ ∧ (𝐵 ·ℎ 𝐶) ∈ ℋ) → (((𝐴 ·ℎ 𝐶) −ℎ (𝐵 ·ℎ 𝐶)) = 0ℎ ↔ (𝐴 ·ℎ 𝐶) = (𝐵 ·ℎ 𝐶))) | |
| 6 | 2, 4, 5 | syl2anc 584 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (((𝐴 ·ℎ 𝐶) −ℎ (𝐵 ·ℎ 𝐶)) = 0ℎ ↔ (𝐴 ·ℎ 𝐶) = (𝐵 ·ℎ 𝐶))) |
| 7 | 6 | 3adant3r 1182 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℋ ∧ 𝐶 ≠ 0ℎ)) → (((𝐴 ·ℎ 𝐶) −ℎ (𝐵 ·ℎ 𝐶)) = 0ℎ ↔ (𝐴 ·ℎ 𝐶) = (𝐵 ·ℎ 𝐶))) |
| 8 | hvsubdistr2 30952 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 − 𝐵) ·ℎ 𝐶) = ((𝐴 ·ℎ 𝐶) −ℎ (𝐵 ·ℎ 𝐶))) | |
| 9 | 8 | eqeq1d 2731 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (((𝐴 − 𝐵) ·ℎ 𝐶) = 0ℎ ↔ ((𝐴 ·ℎ 𝐶) −ℎ (𝐵 ·ℎ 𝐶)) = 0ℎ)) |
| 10 | subcl 11396 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) ∈ ℂ) | |
| 11 | hvmul0or 30927 | . . . . . 6 ⊢ (((𝐴 − 𝐵) ∈ ℂ ∧ 𝐶 ∈ ℋ) → (((𝐴 − 𝐵) ·ℎ 𝐶) = 0ℎ ↔ ((𝐴 − 𝐵) = 0 ∨ 𝐶 = 0ℎ))) | |
| 12 | 10, 11 | stoic3 1776 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (((𝐴 − 𝐵) ·ℎ 𝐶) = 0ℎ ↔ ((𝐴 − 𝐵) = 0 ∨ 𝐶 = 0ℎ))) |
| 13 | 9, 12 | bitr3d 281 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (((𝐴 ·ℎ 𝐶) −ℎ (𝐵 ·ℎ 𝐶)) = 0ℎ ↔ ((𝐴 − 𝐵) = 0 ∨ 𝐶 = 0ℎ))) |
| 14 | 13 | 3adant3r 1182 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℋ ∧ 𝐶 ≠ 0ℎ)) → (((𝐴 ·ℎ 𝐶) −ℎ (𝐵 ·ℎ 𝐶)) = 0ℎ ↔ ((𝐴 − 𝐵) = 0 ∨ 𝐶 = 0ℎ))) |
| 15 | df-ne 2926 | . . . . . 6 ⊢ (𝐶 ≠ 0ℎ ↔ ¬ 𝐶 = 0ℎ) | |
| 16 | biorf 936 | . . . . . . 7 ⊢ (¬ 𝐶 = 0ℎ → ((𝐴 − 𝐵) = 0 ↔ (𝐶 = 0ℎ ∨ (𝐴 − 𝐵) = 0))) | |
| 17 | orcom 870 | . . . . . . 7 ⊢ ((𝐶 = 0ℎ ∨ (𝐴 − 𝐵) = 0) ↔ ((𝐴 − 𝐵) = 0 ∨ 𝐶 = 0ℎ)) | |
| 18 | 16, 17 | bitrdi 287 | . . . . . 6 ⊢ (¬ 𝐶 = 0ℎ → ((𝐴 − 𝐵) = 0 ↔ ((𝐴 − 𝐵) = 0 ∨ 𝐶 = 0ℎ))) |
| 19 | 15, 18 | sylbi 217 | . . . . 5 ⊢ (𝐶 ≠ 0ℎ → ((𝐴 − 𝐵) = 0 ↔ ((𝐴 − 𝐵) = 0 ∨ 𝐶 = 0ℎ))) |
| 20 | 19 | ad2antll 729 | . . . 4 ⊢ ((𝐵 ∈ ℂ ∧ (𝐶 ∈ ℋ ∧ 𝐶 ≠ 0ℎ)) → ((𝐴 − 𝐵) = 0 ↔ ((𝐴 − 𝐵) = 0 ∨ 𝐶 = 0ℎ))) |
| 21 | 20 | 3adant1 1130 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℋ ∧ 𝐶 ≠ 0ℎ)) → ((𝐴 − 𝐵) = 0 ↔ ((𝐴 − 𝐵) = 0 ∨ 𝐶 = 0ℎ))) |
| 22 | subeq0 11424 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) = 0 ↔ 𝐴 = 𝐵)) | |
| 23 | 22 | 3adant3 1132 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℋ ∧ 𝐶 ≠ 0ℎ)) → ((𝐴 − 𝐵) = 0 ↔ 𝐴 = 𝐵)) |
| 24 | 14, 21, 23 | 3bitr2d 307 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℋ ∧ 𝐶 ≠ 0ℎ)) → (((𝐴 ·ℎ 𝐶) −ℎ (𝐵 ·ℎ 𝐶)) = 0ℎ ↔ 𝐴 = 𝐵)) |
| 25 | 7, 24 | bitr3d 281 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℋ ∧ 𝐶 ≠ 0ℎ)) → ((𝐴 ·ℎ 𝐶) = (𝐵 ·ℎ 𝐶) ↔ 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 (class class class)co 7369 ℂcc 11042 0cc0 11044 − cmin 11381 ℋchba 30821 ·ℎ csm 30823 0ℎc0v 30826 −ℎ cmv 30827 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-hvcom 30903 ax-hvass 30904 ax-hv0cl 30905 ax-hvaddid 30906 ax-hfvmul 30907 ax-hvmulid 30908 ax-hvmulass 30909 ax-hvdistr2 30911 ax-hvmul0 30912 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-hvsub 30873 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |