HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvmulcan2 Structured version   Visualization version   GIF version

Theorem hvmulcan2 31092
Description: Cancellation law for scalar multiplication. (Contributed by NM, 19-May-2005.) (New usage is discouraged.)
Assertion
Ref Expression
hvmulcan2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℋ ∧ 𝐶 ≠ 0)) → ((𝐴 · 𝐶) = (𝐵 · 𝐶) ↔ 𝐴 = 𝐵))

Proof of Theorem hvmulcan2
StepHypRef Expression
1 hvmulcl 31032 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐴 · 𝐶) ∈ ℋ)
213adant2 1132 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐴 · 𝐶) ∈ ℋ)
3 hvmulcl 31032 . . . . 5 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐵 · 𝐶) ∈ ℋ)
433adant1 1131 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐵 · 𝐶) ∈ ℋ)
5 hvsubeq0 31087 . . . 4 (((𝐴 · 𝐶) ∈ ℋ ∧ (𝐵 · 𝐶) ∈ ℋ) → (((𝐴 · 𝐶) − (𝐵 · 𝐶)) = 0 ↔ (𝐴 · 𝐶) = (𝐵 · 𝐶)))
62, 4, 5syl2anc 584 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (((𝐴 · 𝐶) − (𝐵 · 𝐶)) = 0 ↔ (𝐴 · 𝐶) = (𝐵 · 𝐶)))
763adant3r 1182 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℋ ∧ 𝐶 ≠ 0)) → (((𝐴 · 𝐶) − (𝐵 · 𝐶)) = 0 ↔ (𝐴 · 𝐶) = (𝐵 · 𝐶)))
8 hvsubdistr2 31069 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴𝐵) · 𝐶) = ((𝐴 · 𝐶) − (𝐵 · 𝐶)))
98eqeq1d 2739 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (((𝐴𝐵) · 𝐶) = 0 ↔ ((𝐴 · 𝐶) − (𝐵 · 𝐶)) = 0))
10 subcl 11507 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐵) ∈ ℂ)
11 hvmul0or 31044 . . . . . 6 (((𝐴𝐵) ∈ ℂ ∧ 𝐶 ∈ ℋ) → (((𝐴𝐵) · 𝐶) = 0 ↔ ((𝐴𝐵) = 0 ∨ 𝐶 = 0)))
1210, 11stoic3 1776 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (((𝐴𝐵) · 𝐶) = 0 ↔ ((𝐴𝐵) = 0 ∨ 𝐶 = 0)))
139, 12bitr3d 281 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (((𝐴 · 𝐶) − (𝐵 · 𝐶)) = 0 ↔ ((𝐴𝐵) = 0 ∨ 𝐶 = 0)))
14133adant3r 1182 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℋ ∧ 𝐶 ≠ 0)) → (((𝐴 · 𝐶) − (𝐵 · 𝐶)) = 0 ↔ ((𝐴𝐵) = 0 ∨ 𝐶 = 0)))
15 df-ne 2941 . . . . . 6 (𝐶 ≠ 0 ↔ ¬ 𝐶 = 0)
16 biorf 937 . . . . . . 7 𝐶 = 0 → ((𝐴𝐵) = 0 ↔ (𝐶 = 0 ∨ (𝐴𝐵) = 0)))
17 orcom 871 . . . . . . 7 ((𝐶 = 0 ∨ (𝐴𝐵) = 0) ↔ ((𝐴𝐵) = 0 ∨ 𝐶 = 0))
1816, 17bitrdi 287 . . . . . 6 𝐶 = 0 → ((𝐴𝐵) = 0 ↔ ((𝐴𝐵) = 0 ∨ 𝐶 = 0)))
1915, 18sylbi 217 . . . . 5 (𝐶 ≠ 0 → ((𝐴𝐵) = 0 ↔ ((𝐴𝐵) = 0 ∨ 𝐶 = 0)))
2019ad2antll 729 . . . 4 ((𝐵 ∈ ℂ ∧ (𝐶 ∈ ℋ ∧ 𝐶 ≠ 0)) → ((𝐴𝐵) = 0 ↔ ((𝐴𝐵) = 0 ∨ 𝐶 = 0)))
21203adant1 1131 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℋ ∧ 𝐶 ≠ 0)) → ((𝐴𝐵) = 0 ↔ ((𝐴𝐵) = 0 ∨ 𝐶 = 0)))
22 subeq0 11535 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝐵) = 0 ↔ 𝐴 = 𝐵))
23223adant3 1133 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℋ ∧ 𝐶 ≠ 0)) → ((𝐴𝐵) = 0 ↔ 𝐴 = 𝐵))
2414, 21, 233bitr2d 307 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℋ ∧ 𝐶 ≠ 0)) → (((𝐴 · 𝐶) − (𝐵 · 𝐶)) = 0𝐴 = 𝐵))
257, 24bitr3d 281 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℋ ∧ 𝐶 ≠ 0)) → ((𝐴 · 𝐶) = (𝐵 · 𝐶) ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848  w3a 1087   = wceq 1540  wcel 2108  wne 2940  (class class class)co 7431  cc 11153  0cc0 11155  cmin 11492  chba 30938   · csm 30940  0c0v 30943   cmv 30944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-hvcom 31020  ax-hvass 31021  ax-hv0cl 31022  ax-hvaddid 31023  ax-hfvmul 31024  ax-hvmulid 31025  ax-hvmulass 31026  ax-hvdistr2 31028  ax-hvmul0 31029
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-hvsub 30990
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator