![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hvmulcan2 | Structured version Visualization version GIF version |
Description: Cancellation law for scalar multiplication. (Contributed by NM, 19-May-2005.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hvmulcan2 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℋ ∧ 𝐶 ≠ 0ℎ)) → ((𝐴 ·ℎ 𝐶) = (𝐵 ·ℎ 𝐶) ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hvmulcl 31045 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ 𝐶) ∈ ℋ) | |
2 | 1 | 3adant2 1131 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ 𝐶) ∈ ℋ) |
3 | hvmulcl 31045 | . . . . 5 ⊢ ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐵 ·ℎ 𝐶) ∈ ℋ) | |
4 | 3 | 3adant1 1130 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐵 ·ℎ 𝐶) ∈ ℋ) |
5 | hvsubeq0 31100 | . . . 4 ⊢ (((𝐴 ·ℎ 𝐶) ∈ ℋ ∧ (𝐵 ·ℎ 𝐶) ∈ ℋ) → (((𝐴 ·ℎ 𝐶) −ℎ (𝐵 ·ℎ 𝐶)) = 0ℎ ↔ (𝐴 ·ℎ 𝐶) = (𝐵 ·ℎ 𝐶))) | |
6 | 2, 4, 5 | syl2anc 583 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (((𝐴 ·ℎ 𝐶) −ℎ (𝐵 ·ℎ 𝐶)) = 0ℎ ↔ (𝐴 ·ℎ 𝐶) = (𝐵 ·ℎ 𝐶))) |
7 | 6 | 3adant3r 1181 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℋ ∧ 𝐶 ≠ 0ℎ)) → (((𝐴 ·ℎ 𝐶) −ℎ (𝐵 ·ℎ 𝐶)) = 0ℎ ↔ (𝐴 ·ℎ 𝐶) = (𝐵 ·ℎ 𝐶))) |
8 | hvsubdistr2 31082 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 − 𝐵) ·ℎ 𝐶) = ((𝐴 ·ℎ 𝐶) −ℎ (𝐵 ·ℎ 𝐶))) | |
9 | 8 | eqeq1d 2742 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (((𝐴 − 𝐵) ·ℎ 𝐶) = 0ℎ ↔ ((𝐴 ·ℎ 𝐶) −ℎ (𝐵 ·ℎ 𝐶)) = 0ℎ)) |
10 | subcl 11535 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) ∈ ℂ) | |
11 | hvmul0or 31057 | . . . . . 6 ⊢ (((𝐴 − 𝐵) ∈ ℂ ∧ 𝐶 ∈ ℋ) → (((𝐴 − 𝐵) ·ℎ 𝐶) = 0ℎ ↔ ((𝐴 − 𝐵) = 0 ∨ 𝐶 = 0ℎ))) | |
12 | 10, 11 | stoic3 1774 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (((𝐴 − 𝐵) ·ℎ 𝐶) = 0ℎ ↔ ((𝐴 − 𝐵) = 0 ∨ 𝐶 = 0ℎ))) |
13 | 9, 12 | bitr3d 281 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (((𝐴 ·ℎ 𝐶) −ℎ (𝐵 ·ℎ 𝐶)) = 0ℎ ↔ ((𝐴 − 𝐵) = 0 ∨ 𝐶 = 0ℎ))) |
14 | 13 | 3adant3r 1181 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℋ ∧ 𝐶 ≠ 0ℎ)) → (((𝐴 ·ℎ 𝐶) −ℎ (𝐵 ·ℎ 𝐶)) = 0ℎ ↔ ((𝐴 − 𝐵) = 0 ∨ 𝐶 = 0ℎ))) |
15 | df-ne 2947 | . . . . . 6 ⊢ (𝐶 ≠ 0ℎ ↔ ¬ 𝐶 = 0ℎ) | |
16 | biorf 935 | . . . . . . 7 ⊢ (¬ 𝐶 = 0ℎ → ((𝐴 − 𝐵) = 0 ↔ (𝐶 = 0ℎ ∨ (𝐴 − 𝐵) = 0))) | |
17 | orcom 869 | . . . . . . 7 ⊢ ((𝐶 = 0ℎ ∨ (𝐴 − 𝐵) = 0) ↔ ((𝐴 − 𝐵) = 0 ∨ 𝐶 = 0ℎ)) | |
18 | 16, 17 | bitrdi 287 | . . . . . 6 ⊢ (¬ 𝐶 = 0ℎ → ((𝐴 − 𝐵) = 0 ↔ ((𝐴 − 𝐵) = 0 ∨ 𝐶 = 0ℎ))) |
19 | 15, 18 | sylbi 217 | . . . . 5 ⊢ (𝐶 ≠ 0ℎ → ((𝐴 − 𝐵) = 0 ↔ ((𝐴 − 𝐵) = 0 ∨ 𝐶 = 0ℎ))) |
20 | 19 | ad2antll 728 | . . . 4 ⊢ ((𝐵 ∈ ℂ ∧ (𝐶 ∈ ℋ ∧ 𝐶 ≠ 0ℎ)) → ((𝐴 − 𝐵) = 0 ↔ ((𝐴 − 𝐵) = 0 ∨ 𝐶 = 0ℎ))) |
21 | 20 | 3adant1 1130 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℋ ∧ 𝐶 ≠ 0ℎ)) → ((𝐴 − 𝐵) = 0 ↔ ((𝐴 − 𝐵) = 0 ∨ 𝐶 = 0ℎ))) |
22 | subeq0 11562 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) = 0 ↔ 𝐴 = 𝐵)) | |
23 | 22 | 3adant3 1132 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℋ ∧ 𝐶 ≠ 0ℎ)) → ((𝐴 − 𝐵) = 0 ↔ 𝐴 = 𝐵)) |
24 | 14, 21, 23 | 3bitr2d 307 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℋ ∧ 𝐶 ≠ 0ℎ)) → (((𝐴 ·ℎ 𝐶) −ℎ (𝐵 ·ℎ 𝐶)) = 0ℎ ↔ 𝐴 = 𝐵)) |
25 | 7, 24 | bitr3d 281 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℋ ∧ 𝐶 ≠ 0ℎ)) → ((𝐴 ·ℎ 𝐶) = (𝐵 ·ℎ 𝐶) ↔ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 846 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 (class class class)co 7448 ℂcc 11182 0cc0 11184 − cmin 11520 ℋchba 30951 ·ℎ csm 30953 0ℎc0v 30956 −ℎ cmv 30957 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-hvcom 31033 ax-hvass 31034 ax-hv0cl 31035 ax-hvaddid 31036 ax-hfvmul 31037 ax-hvmulid 31038 ax-hvmulass 31039 ax-hvdistr2 31041 ax-hvmul0 31042 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-hvsub 31003 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |