Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hvmulcan2 | Structured version Visualization version GIF version |
Description: Cancellation law for scalar multiplication. (Contributed by NM, 19-May-2005.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hvmulcan2 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℋ ∧ 𝐶 ≠ 0ℎ)) → ((𝐴 ·ℎ 𝐶) = (𝐵 ·ℎ 𝐶) ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hvmulcl 29424 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ 𝐶) ∈ ℋ) | |
2 | 1 | 3adant2 1131 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ 𝐶) ∈ ℋ) |
3 | hvmulcl 29424 | . . . . 5 ⊢ ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐵 ·ℎ 𝐶) ∈ ℋ) | |
4 | 3 | 3adant1 1130 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐵 ·ℎ 𝐶) ∈ ℋ) |
5 | hvsubeq0 29479 | . . . 4 ⊢ (((𝐴 ·ℎ 𝐶) ∈ ℋ ∧ (𝐵 ·ℎ 𝐶) ∈ ℋ) → (((𝐴 ·ℎ 𝐶) −ℎ (𝐵 ·ℎ 𝐶)) = 0ℎ ↔ (𝐴 ·ℎ 𝐶) = (𝐵 ·ℎ 𝐶))) | |
6 | 2, 4, 5 | syl2anc 585 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (((𝐴 ·ℎ 𝐶) −ℎ (𝐵 ·ℎ 𝐶)) = 0ℎ ↔ (𝐴 ·ℎ 𝐶) = (𝐵 ·ℎ 𝐶))) |
7 | 6 | 3adant3r 1181 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℋ ∧ 𝐶 ≠ 0ℎ)) → (((𝐴 ·ℎ 𝐶) −ℎ (𝐵 ·ℎ 𝐶)) = 0ℎ ↔ (𝐴 ·ℎ 𝐶) = (𝐵 ·ℎ 𝐶))) |
8 | hvsubdistr2 29461 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 − 𝐵) ·ℎ 𝐶) = ((𝐴 ·ℎ 𝐶) −ℎ (𝐵 ·ℎ 𝐶))) | |
9 | 8 | eqeq1d 2738 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (((𝐴 − 𝐵) ·ℎ 𝐶) = 0ℎ ↔ ((𝐴 ·ℎ 𝐶) −ℎ (𝐵 ·ℎ 𝐶)) = 0ℎ)) |
10 | subcl 11270 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) ∈ ℂ) | |
11 | hvmul0or 29436 | . . . . . 6 ⊢ (((𝐴 − 𝐵) ∈ ℂ ∧ 𝐶 ∈ ℋ) → (((𝐴 − 𝐵) ·ℎ 𝐶) = 0ℎ ↔ ((𝐴 − 𝐵) = 0 ∨ 𝐶 = 0ℎ))) | |
12 | 10, 11 | stoic3 1776 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (((𝐴 − 𝐵) ·ℎ 𝐶) = 0ℎ ↔ ((𝐴 − 𝐵) = 0 ∨ 𝐶 = 0ℎ))) |
13 | 9, 12 | bitr3d 281 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (((𝐴 ·ℎ 𝐶) −ℎ (𝐵 ·ℎ 𝐶)) = 0ℎ ↔ ((𝐴 − 𝐵) = 0 ∨ 𝐶 = 0ℎ))) |
14 | 13 | 3adant3r 1181 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℋ ∧ 𝐶 ≠ 0ℎ)) → (((𝐴 ·ℎ 𝐶) −ℎ (𝐵 ·ℎ 𝐶)) = 0ℎ ↔ ((𝐴 − 𝐵) = 0 ∨ 𝐶 = 0ℎ))) |
15 | df-ne 2942 | . . . . . 6 ⊢ (𝐶 ≠ 0ℎ ↔ ¬ 𝐶 = 0ℎ) | |
16 | biorf 935 | . . . . . . 7 ⊢ (¬ 𝐶 = 0ℎ → ((𝐴 − 𝐵) = 0 ↔ (𝐶 = 0ℎ ∨ (𝐴 − 𝐵) = 0))) | |
17 | orcom 868 | . . . . . . 7 ⊢ ((𝐶 = 0ℎ ∨ (𝐴 − 𝐵) = 0) ↔ ((𝐴 − 𝐵) = 0 ∨ 𝐶 = 0ℎ)) | |
18 | 16, 17 | bitrdi 287 | . . . . . 6 ⊢ (¬ 𝐶 = 0ℎ → ((𝐴 − 𝐵) = 0 ↔ ((𝐴 − 𝐵) = 0 ∨ 𝐶 = 0ℎ))) |
19 | 15, 18 | sylbi 216 | . . . . 5 ⊢ (𝐶 ≠ 0ℎ → ((𝐴 − 𝐵) = 0 ↔ ((𝐴 − 𝐵) = 0 ∨ 𝐶 = 0ℎ))) |
20 | 19 | ad2antll 727 | . . . 4 ⊢ ((𝐵 ∈ ℂ ∧ (𝐶 ∈ ℋ ∧ 𝐶 ≠ 0ℎ)) → ((𝐴 − 𝐵) = 0 ↔ ((𝐴 − 𝐵) = 0 ∨ 𝐶 = 0ℎ))) |
21 | 20 | 3adant1 1130 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℋ ∧ 𝐶 ≠ 0ℎ)) → ((𝐴 − 𝐵) = 0 ↔ ((𝐴 − 𝐵) = 0 ∨ 𝐶 = 0ℎ))) |
22 | subeq0 11297 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) = 0 ↔ 𝐴 = 𝐵)) | |
23 | 22 | 3adant3 1132 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℋ ∧ 𝐶 ≠ 0ℎ)) → ((𝐴 − 𝐵) = 0 ↔ 𝐴 = 𝐵)) |
24 | 14, 21, 23 | 3bitr2d 307 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℋ ∧ 𝐶 ≠ 0ℎ)) → (((𝐴 ·ℎ 𝐶) −ℎ (𝐵 ·ℎ 𝐶)) = 0ℎ ↔ 𝐴 = 𝐵)) |
25 | 7, 24 | bitr3d 281 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℋ ∧ 𝐶 ≠ 0ℎ)) → ((𝐴 ·ℎ 𝐶) = (𝐵 ·ℎ 𝐶) ↔ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 ∨ wo 845 ∧ w3a 1087 = wceq 1539 ∈ wcel 2104 ≠ wne 2941 (class class class)co 7307 ℂcc 10919 0cc0 10921 − cmin 11255 ℋchba 29330 ·ℎ csm 29332 0ℎc0v 29335 −ℎ cmv 29336 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-resscn 10978 ax-1cn 10979 ax-icn 10980 ax-addcl 10981 ax-addrcl 10982 ax-mulcl 10983 ax-mulrcl 10984 ax-mulcom 10985 ax-addass 10986 ax-mulass 10987 ax-distr 10988 ax-i2m1 10989 ax-1ne0 10990 ax-1rid 10991 ax-rnegex 10992 ax-rrecex 10993 ax-cnre 10994 ax-pre-lttri 10995 ax-pre-lttrn 10996 ax-pre-ltadd 10997 ax-pre-mulgt0 10998 ax-hvcom 29412 ax-hvass 29413 ax-hv0cl 29414 ax-hvaddid 29415 ax-hfvmul 29416 ax-hvmulid 29417 ax-hvmulass 29418 ax-hvdistr2 29420 ax-hvmul0 29421 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3304 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-po 5514 df-so 5515 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11061 df-mnf 11062 df-xr 11063 df-ltxr 11064 df-le 11065 df-sub 11257 df-neg 11258 df-div 11683 df-hvsub 29382 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |