Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hvmulcan2 | Structured version Visualization version GIF version |
Description: Cancellation law for scalar multiplication. (Contributed by NM, 19-May-2005.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hvmulcan2 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℋ ∧ 𝐶 ≠ 0ℎ)) → ((𝐴 ·ℎ 𝐶) = (𝐵 ·ℎ 𝐶) ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hvmulcl 28940 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ 𝐶) ∈ ℋ) | |
2 | 1 | 3adant2 1132 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ 𝐶) ∈ ℋ) |
3 | hvmulcl 28940 | . . . . 5 ⊢ ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐵 ·ℎ 𝐶) ∈ ℋ) | |
4 | 3 | 3adant1 1131 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐵 ·ℎ 𝐶) ∈ ℋ) |
5 | hvsubeq0 28995 | . . . 4 ⊢ (((𝐴 ·ℎ 𝐶) ∈ ℋ ∧ (𝐵 ·ℎ 𝐶) ∈ ℋ) → (((𝐴 ·ℎ 𝐶) −ℎ (𝐵 ·ℎ 𝐶)) = 0ℎ ↔ (𝐴 ·ℎ 𝐶) = (𝐵 ·ℎ 𝐶))) | |
6 | 2, 4, 5 | syl2anc 587 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (((𝐴 ·ℎ 𝐶) −ℎ (𝐵 ·ℎ 𝐶)) = 0ℎ ↔ (𝐴 ·ℎ 𝐶) = (𝐵 ·ℎ 𝐶))) |
7 | 6 | 3adant3r 1182 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℋ ∧ 𝐶 ≠ 0ℎ)) → (((𝐴 ·ℎ 𝐶) −ℎ (𝐵 ·ℎ 𝐶)) = 0ℎ ↔ (𝐴 ·ℎ 𝐶) = (𝐵 ·ℎ 𝐶))) |
8 | hvsubdistr2 28977 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 − 𝐵) ·ℎ 𝐶) = ((𝐴 ·ℎ 𝐶) −ℎ (𝐵 ·ℎ 𝐶))) | |
9 | 8 | eqeq1d 2740 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (((𝐴 − 𝐵) ·ℎ 𝐶) = 0ℎ ↔ ((𝐴 ·ℎ 𝐶) −ℎ (𝐵 ·ℎ 𝐶)) = 0ℎ)) |
10 | subcl 10956 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) ∈ ℂ) | |
11 | hvmul0or 28952 | . . . . . 6 ⊢ (((𝐴 − 𝐵) ∈ ℂ ∧ 𝐶 ∈ ℋ) → (((𝐴 − 𝐵) ·ℎ 𝐶) = 0ℎ ↔ ((𝐴 − 𝐵) = 0 ∨ 𝐶 = 0ℎ))) | |
12 | 10, 11 | stoic3 1783 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (((𝐴 − 𝐵) ·ℎ 𝐶) = 0ℎ ↔ ((𝐴 − 𝐵) = 0 ∨ 𝐶 = 0ℎ))) |
13 | 9, 12 | bitr3d 284 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (((𝐴 ·ℎ 𝐶) −ℎ (𝐵 ·ℎ 𝐶)) = 0ℎ ↔ ((𝐴 − 𝐵) = 0 ∨ 𝐶 = 0ℎ))) |
14 | 13 | 3adant3r 1182 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℋ ∧ 𝐶 ≠ 0ℎ)) → (((𝐴 ·ℎ 𝐶) −ℎ (𝐵 ·ℎ 𝐶)) = 0ℎ ↔ ((𝐴 − 𝐵) = 0 ∨ 𝐶 = 0ℎ))) |
15 | df-ne 2935 | . . . . . 6 ⊢ (𝐶 ≠ 0ℎ ↔ ¬ 𝐶 = 0ℎ) | |
16 | biorf 936 | . . . . . . 7 ⊢ (¬ 𝐶 = 0ℎ → ((𝐴 − 𝐵) = 0 ↔ (𝐶 = 0ℎ ∨ (𝐴 − 𝐵) = 0))) | |
17 | orcom 869 | . . . . . . 7 ⊢ ((𝐶 = 0ℎ ∨ (𝐴 − 𝐵) = 0) ↔ ((𝐴 − 𝐵) = 0 ∨ 𝐶 = 0ℎ)) | |
18 | 16, 17 | bitrdi 290 | . . . . . 6 ⊢ (¬ 𝐶 = 0ℎ → ((𝐴 − 𝐵) = 0 ↔ ((𝐴 − 𝐵) = 0 ∨ 𝐶 = 0ℎ))) |
19 | 15, 18 | sylbi 220 | . . . . 5 ⊢ (𝐶 ≠ 0ℎ → ((𝐴 − 𝐵) = 0 ↔ ((𝐴 − 𝐵) = 0 ∨ 𝐶 = 0ℎ))) |
20 | 19 | ad2antll 729 | . . . 4 ⊢ ((𝐵 ∈ ℂ ∧ (𝐶 ∈ ℋ ∧ 𝐶 ≠ 0ℎ)) → ((𝐴 − 𝐵) = 0 ↔ ((𝐴 − 𝐵) = 0 ∨ 𝐶 = 0ℎ))) |
21 | 20 | 3adant1 1131 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℋ ∧ 𝐶 ≠ 0ℎ)) → ((𝐴 − 𝐵) = 0 ↔ ((𝐴 − 𝐵) = 0 ∨ 𝐶 = 0ℎ))) |
22 | subeq0 10983 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) = 0 ↔ 𝐴 = 𝐵)) | |
23 | 22 | 3adant3 1133 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℋ ∧ 𝐶 ≠ 0ℎ)) → ((𝐴 − 𝐵) = 0 ↔ 𝐴 = 𝐵)) |
24 | 14, 21, 23 | 3bitr2d 310 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℋ ∧ 𝐶 ≠ 0ℎ)) → (((𝐴 ·ℎ 𝐶) −ℎ (𝐵 ·ℎ 𝐶)) = 0ℎ ↔ 𝐴 = 𝐵)) |
25 | 7, 24 | bitr3d 284 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℋ ∧ 𝐶 ≠ 0ℎ)) → ((𝐴 ·ℎ 𝐶) = (𝐵 ·ℎ 𝐶) ↔ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 ∨ wo 846 ∧ w3a 1088 = wceq 1542 ∈ wcel 2113 ≠ wne 2934 (class class class)co 7164 ℂcc 10606 0cc0 10608 − cmin 10941 ℋchba 28846 ·ℎ csm 28848 0ℎc0v 28851 −ℎ cmv 28852 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-sep 5164 ax-nul 5171 ax-pow 5229 ax-pr 5293 ax-un 7473 ax-resscn 10665 ax-1cn 10666 ax-icn 10667 ax-addcl 10668 ax-addrcl 10669 ax-mulcl 10670 ax-mulrcl 10671 ax-mulcom 10672 ax-addass 10673 ax-mulass 10674 ax-distr 10675 ax-i2m1 10676 ax-1ne0 10677 ax-1rid 10678 ax-rnegex 10679 ax-rrecex 10680 ax-cnre 10681 ax-pre-lttri 10682 ax-pre-lttrn 10683 ax-pre-ltadd 10684 ax-pre-mulgt0 10685 ax-hvcom 28928 ax-hvass 28929 ax-hv0cl 28930 ax-hvaddid 28931 ax-hfvmul 28932 ax-hvmulid 28933 ax-hvmulass 28934 ax-hvdistr2 28936 ax-hvmul0 28937 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3399 df-sbc 3680 df-csb 3789 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-nul 4210 df-if 4412 df-pw 4487 df-sn 4514 df-pr 4516 df-op 4520 df-uni 4794 df-iun 4880 df-br 5028 df-opab 5090 df-mpt 5108 df-id 5425 df-po 5438 df-so 5439 df-xp 5525 df-rel 5526 df-cnv 5527 df-co 5528 df-dm 5529 df-rn 5530 df-res 5531 df-ima 5532 df-iota 6291 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-riota 7121 df-ov 7167 df-oprab 7168 df-mpo 7169 df-er 8313 df-en 8549 df-dom 8550 df-sdom 8551 df-pnf 10748 df-mnf 10749 df-xr 10750 df-ltxr 10751 df-le 10752 df-sub 10943 df-neg 10944 df-div 11369 df-hvsub 28898 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |