Proof of Theorem trljat2
Step | Hyp | Ref
| Expression |
1 | | simp1l 1194 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝐾 ∈ HL) |
2 | | trljat.l |
. . . . . 6
⊢ ≤ =
(le‘𝐾) |
3 | | trljat.a |
. . . . . 6
⊢ 𝐴 = (Atoms‘𝐾) |
4 | | trljat.h |
. . . . . 6
⊢ 𝐻 = (LHyp‘𝐾) |
5 | | trljat.t |
. . . . . 6
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
6 | 2, 3, 4, 5 | ltrnat 37738 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) → (𝐹‘𝑃) ∈ 𝐴) |
7 | 6 | 3adant3r 1178 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝐹‘𝑃) ∈ 𝐴) |
8 | 1 | hllatd 36962 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝐾 ∈ Lat) |
9 | | simp3l 1198 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑃 ∈ 𝐴) |
10 | | eqid 2758 |
. . . . . . 7
⊢
(Base‘𝐾) =
(Base‘𝐾) |
11 | 10, 3 | atbase 36887 |
. . . . . 6
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
12 | 9, 11 | syl 17 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑃 ∈ (Base‘𝐾)) |
13 | | simp1 1133 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
14 | | simp2 1134 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝐹 ∈ 𝑇) |
15 | 10, 4, 5 | ltrncl 37723 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ (Base‘𝐾)) → (𝐹‘𝑃) ∈ (Base‘𝐾)) |
16 | 13, 14, 12, 15 | syl3anc 1368 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝐹‘𝑃) ∈ (Base‘𝐾)) |
17 | | trljat.j |
. . . . . 6
⊢ ∨ =
(join‘𝐾) |
18 | 10, 17 | latjcl 17727 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝐹‘𝑃) ∈ (Base‘𝐾)) → (𝑃 ∨ (𝐹‘𝑃)) ∈ (Base‘𝐾)) |
19 | 8, 12, 16, 18 | syl3anc 1368 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑃 ∨ (𝐹‘𝑃)) ∈ (Base‘𝐾)) |
20 | | simp1r 1195 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑊 ∈ 𝐻) |
21 | 10, 4 | lhpbase 37596 |
. . . . 5
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
22 | 20, 21 | syl 17 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑊 ∈ (Base‘𝐾)) |
23 | 10, 2, 17 | latlej2 17737 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝐹‘𝑃) ∈ (Base‘𝐾)) → (𝐹‘𝑃) ≤ (𝑃 ∨ (𝐹‘𝑃))) |
24 | 8, 12, 16, 23 | syl3anc 1368 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝐹‘𝑃) ≤ (𝑃 ∨ (𝐹‘𝑃))) |
25 | | eqid 2758 |
. . . . 5
⊢
(meet‘𝐾) =
(meet‘𝐾) |
26 | 10, 2, 17, 25, 3 | atmod2i1 37459 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ ((𝐹‘𝑃) ∈ 𝐴 ∧ (𝑃 ∨ (𝐹‘𝑃)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ (𝐹‘𝑃) ≤ (𝑃 ∨ (𝐹‘𝑃))) → (((𝑃 ∨ (𝐹‘𝑃))(meet‘𝐾)𝑊) ∨ (𝐹‘𝑃)) = ((𝑃 ∨ (𝐹‘𝑃))(meet‘𝐾)(𝑊 ∨ (𝐹‘𝑃)))) |
27 | 1, 7, 19, 22, 24, 26 | syl131anc 1380 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (((𝑃 ∨ (𝐹‘𝑃))(meet‘𝐾)𝑊) ∨ (𝐹‘𝑃)) = ((𝑃 ∨ (𝐹‘𝑃))(meet‘𝐾)(𝑊 ∨ (𝐹‘𝑃)))) |
28 | 2, 3, 4, 5 | ltrnel 37737 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝐹‘𝑃) ∈ 𝐴 ∧ ¬ (𝐹‘𝑃) ≤ 𝑊)) |
29 | | eqid 2758 |
. . . . . 6
⊢
(1.‘𝐾) =
(1.‘𝐾) |
30 | 2, 17, 29, 3, 4 | lhpjat1 37618 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝐹‘𝑃) ∈ 𝐴 ∧ ¬ (𝐹‘𝑃) ≤ 𝑊)) → (𝑊 ∨ (𝐹‘𝑃)) = (1.‘𝐾)) |
31 | 1, 20, 28, 30 | syl21anc 836 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑊 ∨ (𝐹‘𝑃)) = (1.‘𝐾)) |
32 | 31 | oveq2d 7166 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝑃 ∨ (𝐹‘𝑃))(meet‘𝐾)(𝑊 ∨ (𝐹‘𝑃))) = ((𝑃 ∨ (𝐹‘𝑃))(meet‘𝐾)(1.‘𝐾))) |
33 | | hlol 36959 |
. . . . 5
⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) |
34 | 1, 33 | syl 17 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝐾 ∈ OL) |
35 | 10, 25, 29 | olm11 36825 |
. . . 4
⊢ ((𝐾 ∈ OL ∧ (𝑃 ∨ (𝐹‘𝑃)) ∈ (Base‘𝐾)) → ((𝑃 ∨ (𝐹‘𝑃))(meet‘𝐾)(1.‘𝐾)) = (𝑃 ∨ (𝐹‘𝑃))) |
36 | 34, 19, 35 | syl2anc 587 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝑃 ∨ (𝐹‘𝑃))(meet‘𝐾)(1.‘𝐾)) = (𝑃 ∨ (𝐹‘𝑃))) |
37 | 27, 32, 36 | 3eqtrrd 2798 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑃 ∨ (𝐹‘𝑃)) = (((𝑃 ∨ (𝐹‘𝑃))(meet‘𝐾)𝑊) ∨ (𝐹‘𝑃))) |
38 | | trljat.r |
. . . 4
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
39 | 2, 17, 25, 3, 4, 5,
38 | trlval2 37761 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑅‘𝐹) = ((𝑃 ∨ (𝐹‘𝑃))(meet‘𝐾)𝑊)) |
40 | 39 | oveq1d 7165 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝑅‘𝐹) ∨ (𝐹‘𝑃)) = (((𝑃 ∨ (𝐹‘𝑃))(meet‘𝐾)𝑊) ∨ (𝐹‘𝑃))) |
41 | 10, 4, 5, 38 | trlcl 37762 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝑅‘𝐹) ∈ (Base‘𝐾)) |
42 | 13, 14, 41 | syl2anc 587 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑅‘𝐹) ∈ (Base‘𝐾)) |
43 | 10, 17 | latjcom 17735 |
. . 3
⊢ ((𝐾 ∈ Lat ∧ (𝑅‘𝐹) ∈ (Base‘𝐾) ∧ (𝐹‘𝑃) ∈ (Base‘𝐾)) → ((𝑅‘𝐹) ∨ (𝐹‘𝑃)) = ((𝐹‘𝑃) ∨ (𝑅‘𝐹))) |
44 | 8, 42, 16, 43 | syl3anc 1368 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝑅‘𝐹) ∨ (𝐹‘𝑃)) = ((𝐹‘𝑃) ∨ (𝑅‘𝐹))) |
45 | 37, 40, 44 | 3eqtr2rd 2800 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝐹‘𝑃) ∨ (𝑅‘𝐹)) = (𝑃 ∨ (𝐹‘𝑃))) |