Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trljat2 Structured version   Visualization version   GIF version

Theorem trljat2 40191
Description: The value of a translation of an atom 𝑃 not under the fiducial co-atom 𝑊, joined with trace. Equation above Lemma C in [Crawley] p. 112. (Contributed by NM, 25-May-2012.)
Hypotheses
Ref Expression
trljat.l = (le‘𝐾)
trljat.j = (join‘𝐾)
trljat.a 𝐴 = (Atoms‘𝐾)
trljat.h 𝐻 = (LHyp‘𝐾)
trljat.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
trljat.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
trljat2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) (𝑅𝐹)) = (𝑃 (𝐹𝑃)))

Proof of Theorem trljat2
StepHypRef Expression
1 simp1l 1198 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ HL)
2 trljat.l . . . . . 6 = (le‘𝐾)
3 trljat.a . . . . . 6 𝐴 = (Atoms‘𝐾)
4 trljat.h . . . . . 6 𝐻 = (LHyp‘𝐾)
5 trljat.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
62, 3, 4, 5ltrnat 40164 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐴) → (𝐹𝑃) ∈ 𝐴)
763adant3r 1182 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹𝑃) ∈ 𝐴)
81hllatd 39387 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ Lat)
9 simp3l 1202 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑃𝐴)
10 eqid 2736 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
1110, 3atbase 39312 . . . . . 6 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
129, 11syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑃 ∈ (Base‘𝐾))
13 simp1 1136 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
14 simp2 1137 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐹𝑇)
1510, 4, 5ltrncl 40149 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃 ∈ (Base‘𝐾)) → (𝐹𝑃) ∈ (Base‘𝐾))
1613, 14, 12, 15syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹𝑃) ∈ (Base‘𝐾))
17 trljat.j . . . . . 6 = (join‘𝐾)
1810, 17latjcl 18454 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝐹𝑃) ∈ (Base‘𝐾)) → (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾))
198, 12, 16, 18syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾))
20 simp1r 1199 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑊𝐻)
2110, 4lhpbase 40022 . . . . 5 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
2220, 21syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑊 ∈ (Base‘𝐾))
2310, 2, 17latlej2 18464 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝐹𝑃) ∈ (Base‘𝐾)) → (𝐹𝑃) (𝑃 (𝐹𝑃)))
248, 12, 16, 23syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹𝑃) (𝑃 (𝐹𝑃)))
25 eqid 2736 . . . . 5 (meet‘𝐾) = (meet‘𝐾)
2610, 2, 17, 25, 3atmod2i1 39885 . . . 4 ((𝐾 ∈ HL ∧ ((𝐹𝑃) ∈ 𝐴 ∧ (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ (𝐹𝑃) (𝑃 (𝐹𝑃))) → (((𝑃 (𝐹𝑃))(meet‘𝐾)𝑊) (𝐹𝑃)) = ((𝑃 (𝐹𝑃))(meet‘𝐾)(𝑊 (𝐹𝑃))))
271, 7, 19, 22, 24, 26syl131anc 1385 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝑃 (𝐹𝑃))(meet‘𝐾)𝑊) (𝐹𝑃)) = ((𝑃 (𝐹𝑃))(meet‘𝐾)(𝑊 (𝐹𝑃))))
282, 3, 4, 5ltrnel 40163 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊))
29 eqid 2736 . . . . . 6 (1.‘𝐾) = (1.‘𝐾)
302, 17, 29, 3, 4lhpjat1 40044 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊)) → (𝑊 (𝐹𝑃)) = (1.‘𝐾))
311, 20, 28, 30syl21anc 837 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑊 (𝐹𝑃)) = (1.‘𝐾))
3231oveq2d 7426 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑃 (𝐹𝑃))(meet‘𝐾)(𝑊 (𝐹𝑃))) = ((𝑃 (𝐹𝑃))(meet‘𝐾)(1.‘𝐾)))
33 hlol 39384 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ OL)
341, 33syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ OL)
3510, 25, 29olm11 39250 . . . 4 ((𝐾 ∈ OL ∧ (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾)) → ((𝑃 (𝐹𝑃))(meet‘𝐾)(1.‘𝐾)) = (𝑃 (𝐹𝑃)))
3634, 19, 35syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑃 (𝐹𝑃))(meet‘𝐾)(1.‘𝐾)) = (𝑃 (𝐹𝑃)))
3727, 32, 363eqtrrd 2776 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 (𝐹𝑃)) = (((𝑃 (𝐹𝑃))(meet‘𝐾)𝑊) (𝐹𝑃)))
38 trljat.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
392, 17, 25, 3, 4, 5, 38trlval2 40187 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐹) = ((𝑃 (𝐹𝑃))(meet‘𝐾)𝑊))
4039oveq1d 7425 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑅𝐹) (𝐹𝑃)) = (((𝑃 (𝐹𝑃))(meet‘𝐾)𝑊) (𝐹𝑃)))
4110, 4, 5, 38trlcl 40188 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) ∈ (Base‘𝐾))
4213, 14, 41syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐹) ∈ (Base‘𝐾))
4310, 17latjcom 18462 . . 3 ((𝐾 ∈ Lat ∧ (𝑅𝐹) ∈ (Base‘𝐾) ∧ (𝐹𝑃) ∈ (Base‘𝐾)) → ((𝑅𝐹) (𝐹𝑃)) = ((𝐹𝑃) (𝑅𝐹)))
448, 42, 16, 43syl3anc 1373 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑅𝐹) (𝐹𝑃)) = ((𝐹𝑃) (𝑅𝐹)))
4537, 40, 443eqtr2rd 2778 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) (𝑅𝐹)) = (𝑃 (𝐹𝑃)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5124  cfv 6536  (class class class)co 7410  Basecbs 17233  lecple 17283  joincjn 18328  meetcmee 18329  1.cp1 18439  Latclat 18446  OLcol 39197  Atomscatm 39286  HLchlt 39373  LHypclh 40008  LTrncltrn 40125  trLctrl 40182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-map 8847  df-proset 18311  df-poset 18330  df-plt 18345  df-lub 18361  df-glb 18362  df-join 18363  df-meet 18364  df-p0 18440  df-p1 18441  df-lat 18447  df-clat 18514  df-oposet 39199  df-ol 39201  df-oml 39202  df-covers 39289  df-ats 39290  df-atl 39321  df-cvlat 39345  df-hlat 39374  df-psubsp 39527  df-pmap 39528  df-padd 39820  df-lhyp 40012  df-laut 40013  df-ldil 40128  df-ltrn 40129  df-trl 40183
This theorem is referenced by:  trljat3  40192  cdlemc3  40217
  Copyright terms: Public domain W3C validator