Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrncnvel Structured version   Visualization version   GIF version

Theorem ltrncnvel 39316
Description: The converse of the lattice translation of an atom not under the fiducial co-atom. (Contributed by NM, 10-May-2013.)
Hypotheses
Ref Expression
ltrnel.l ≀ = (leβ€˜πΎ)
ltrnel.a 𝐴 = (Atomsβ€˜πΎ)
ltrnel.h 𝐻 = (LHypβ€˜πΎ)
ltrnel.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
ltrncnvel (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ ((β—‘πΉβ€˜π‘ƒ) ∈ 𝐴 ∧ Β¬ (β—‘πΉβ€˜π‘ƒ) ≀ π‘Š))

Proof of Theorem ltrncnvel
StepHypRef Expression
1 ltrnel.l . . . 4 ≀ = (leβ€˜πΎ)
2 ltrnel.a . . . 4 𝐴 = (Atomsβ€˜πΎ)
3 ltrnel.h . . . 4 𝐻 = (LHypβ€˜πΎ)
4 ltrnel.t . . . 4 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
51, 2, 3, 4ltrncnvat 39315 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) β†’ (β—‘πΉβ€˜π‘ƒ) ∈ 𝐴)
653adant3r 1179 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ (β—‘πΉβ€˜π‘ƒ) ∈ 𝐴)
7 simp3r 1200 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ Β¬ 𝑃 ≀ π‘Š)
8 simp1 1134 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
9 simp2 1135 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ 𝐹 ∈ 𝑇)
10 eqid 2730 . . . . . . 7 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
1110, 2atbase 38462 . . . . . 6 ((β—‘πΉβ€˜π‘ƒ) ∈ 𝐴 β†’ (β—‘πΉβ€˜π‘ƒ) ∈ (Baseβ€˜πΎ))
126, 11syl 17 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ (β—‘πΉβ€˜π‘ƒ) ∈ (Baseβ€˜πΎ))
13 simp1r 1196 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ π‘Š ∈ 𝐻)
1410, 3lhpbase 39172 . . . . . 6 (π‘Š ∈ 𝐻 β†’ π‘Š ∈ (Baseβ€˜πΎ))
1513, 14syl 17 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ π‘Š ∈ (Baseβ€˜πΎ))
1610, 1, 3, 4ltrnle 39303 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((β—‘πΉβ€˜π‘ƒ) ∈ (Baseβ€˜πΎ) ∧ π‘Š ∈ (Baseβ€˜πΎ))) β†’ ((β—‘πΉβ€˜π‘ƒ) ≀ π‘Š ↔ (πΉβ€˜(β—‘πΉβ€˜π‘ƒ)) ≀ (πΉβ€˜π‘Š)))
178, 9, 12, 15, 16syl112anc 1372 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ ((β—‘πΉβ€˜π‘ƒ) ≀ π‘Š ↔ (πΉβ€˜(β—‘πΉβ€˜π‘ƒ)) ≀ (πΉβ€˜π‘Š)))
1810, 3, 4ltrn1o 39298 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ 𝐹:(Baseβ€˜πΎ)–1-1-ontoβ†’(Baseβ€˜πΎ))
19183adant3 1130 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ 𝐹:(Baseβ€˜πΎ)–1-1-ontoβ†’(Baseβ€˜πΎ))
20 simp3l 1199 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ 𝑃 ∈ 𝐴)
2110, 2atbase 38462 . . . . . . 7 (𝑃 ∈ 𝐴 β†’ 𝑃 ∈ (Baseβ€˜πΎ))
2220, 21syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ 𝑃 ∈ (Baseβ€˜πΎ))
23 f1ocnvfv2 7277 . . . . . 6 ((𝐹:(Baseβ€˜πΎ)–1-1-ontoβ†’(Baseβ€˜πΎ) ∧ 𝑃 ∈ (Baseβ€˜πΎ)) β†’ (πΉβ€˜(β—‘πΉβ€˜π‘ƒ)) = 𝑃)
2419, 22, 23syl2anc 582 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ (πΉβ€˜(β—‘πΉβ€˜π‘ƒ)) = 𝑃)
25 simp1l 1195 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ 𝐾 ∈ HL)
2625hllatd 38537 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ 𝐾 ∈ Lat)
2710, 1latref 18398 . . . . . . 7 ((𝐾 ∈ Lat ∧ π‘Š ∈ (Baseβ€˜πΎ)) β†’ π‘Š ≀ π‘Š)
2826, 15, 27syl2anc 582 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ π‘Š ≀ π‘Š)
2910, 1, 3, 4ltrnval1 39308 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (π‘Š ∈ (Baseβ€˜πΎ) ∧ π‘Š ≀ π‘Š)) β†’ (πΉβ€˜π‘Š) = π‘Š)
308, 9, 15, 28, 29syl112anc 1372 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ (πΉβ€˜π‘Š) = π‘Š)
3124, 30breq12d 5160 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ ((πΉβ€˜(β—‘πΉβ€˜π‘ƒ)) ≀ (πΉβ€˜π‘Š) ↔ 𝑃 ≀ π‘Š))
3217, 31bitrd 278 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ ((β—‘πΉβ€˜π‘ƒ) ≀ π‘Š ↔ 𝑃 ≀ π‘Š))
337, 32mtbird 324 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ Β¬ (β—‘πΉβ€˜π‘ƒ) ≀ π‘Š)
346, 33jca 510 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ ((β—‘πΉβ€˜π‘ƒ) ∈ 𝐴 ∧ Β¬ (β—‘πΉβ€˜π‘ƒ) ≀ π‘Š))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∧ w3a 1085   = wceq 1539   ∈ wcel 2104   class class class wbr 5147  β—‘ccnv 5674  β€“1-1-ontoβ†’wf1o 6541  β€˜cfv 6542  Basecbs 17148  lecple 17208  Latclat 18388  Atomscatm 38436  HLchlt 38523  LHypclh 39158  LTrncltrn 39275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-map 8824  df-proset 18252  df-poset 18270  df-plt 18287  df-glb 18304  df-p0 18382  df-lat 18389  df-oposet 38349  df-ol 38351  df-oml 38352  df-covers 38439  df-ats 38440  df-atl 38471  df-cvlat 38495  df-hlat 38524  df-lhyp 39162  df-laut 39163  df-ldil 39278  df-ltrn 39279
This theorem is referenced by:  ltrncnv  39320  cdlemg17h  39842
  Copyright terms: Public domain W3C validator