Proof of Theorem ltrncnvel
Step | Hyp | Ref
| Expression |
1 | | ltrnel.l |
. . . 4
⊢ ≤ =
(le‘𝐾) |
2 | | ltrnel.a |
. . . 4
⊢ 𝐴 = (Atoms‘𝐾) |
3 | | ltrnel.h |
. . . 4
⊢ 𝐻 = (LHyp‘𝐾) |
4 | | ltrnel.t |
. . . 4
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
5 | 1, 2, 3, 4 | ltrncnvat 38155 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) → (◡𝐹‘𝑃) ∈ 𝐴) |
6 | 5 | 3adant3r 1180 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (◡𝐹‘𝑃) ∈ 𝐴) |
7 | | simp3r 1201 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ¬ 𝑃 ≤ 𝑊) |
8 | | simp1 1135 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
9 | | simp2 1136 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝐹 ∈ 𝑇) |
10 | | eqid 2738 |
. . . . . . 7
⊢
(Base‘𝐾) =
(Base‘𝐾) |
11 | 10, 2 | atbase 37303 |
. . . . . 6
⊢ ((◡𝐹‘𝑃) ∈ 𝐴 → (◡𝐹‘𝑃) ∈ (Base‘𝐾)) |
12 | 6, 11 | syl 17 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (◡𝐹‘𝑃) ∈ (Base‘𝐾)) |
13 | | simp1r 1197 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑊 ∈ 𝐻) |
14 | 10, 3 | lhpbase 38012 |
. . . . . 6
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
15 | 13, 14 | syl 17 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑊 ∈ (Base‘𝐾)) |
16 | 10, 1, 3, 4 | ltrnle 38143 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((◡𝐹‘𝑃) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((◡𝐹‘𝑃) ≤ 𝑊 ↔ (𝐹‘(◡𝐹‘𝑃)) ≤ (𝐹‘𝑊))) |
17 | 8, 9, 12, 15, 16 | syl112anc 1373 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((◡𝐹‘𝑃) ≤ 𝑊 ↔ (𝐹‘(◡𝐹‘𝑃)) ≤ (𝐹‘𝑊))) |
18 | 10, 3, 4 | ltrn1o 38138 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾)) |
19 | 18 | 3adant3 1131 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾)) |
20 | | simp3l 1200 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑃 ∈ 𝐴) |
21 | 10, 2 | atbase 37303 |
. . . . . . 7
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
22 | 20, 21 | syl 17 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑃 ∈ (Base‘𝐾)) |
23 | | f1ocnvfv2 7149 |
. . . . . 6
⊢ ((𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾)) → (𝐹‘(◡𝐹‘𝑃)) = 𝑃) |
24 | 19, 22, 23 | syl2anc 584 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝐹‘(◡𝐹‘𝑃)) = 𝑃) |
25 | | simp1l 1196 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝐾 ∈ HL) |
26 | 25 | hllatd 37378 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝐾 ∈ Lat) |
27 | 10, 1 | latref 18159 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ 𝑊 ∈ (Base‘𝐾)) → 𝑊 ≤ 𝑊) |
28 | 26, 15, 27 | syl2anc 584 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑊 ≤ 𝑊) |
29 | 10, 1, 3, 4 | ltrnval1 38148 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑊 ∈ (Base‘𝐾) ∧ 𝑊 ≤ 𝑊)) → (𝐹‘𝑊) = 𝑊) |
30 | 8, 9, 15, 28, 29 | syl112anc 1373 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝐹‘𝑊) = 𝑊) |
31 | 24, 30 | breq12d 5087 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝐹‘(◡𝐹‘𝑃)) ≤ (𝐹‘𝑊) ↔ 𝑃 ≤ 𝑊)) |
32 | 17, 31 | bitrd 278 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((◡𝐹‘𝑃) ≤ 𝑊 ↔ 𝑃 ≤ 𝑊)) |
33 | 7, 32 | mtbird 325 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ¬ (◡𝐹‘𝑃) ≤ 𝑊) |
34 | 6, 33 | jca 512 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((◡𝐹‘𝑃) ∈ 𝐴 ∧ ¬ (◡𝐹‘𝑃) ≤ 𝑊)) |