Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrncnvel Structured version   Visualization version   GIF version

Theorem ltrncnvel 38711
Description: The converse of the lattice translation of an atom not under the fiducial co-atom. (Contributed by NM, 10-May-2013.)
Hypotheses
Ref Expression
ltrnel.l ≀ = (leβ€˜πΎ)
ltrnel.a 𝐴 = (Atomsβ€˜πΎ)
ltrnel.h 𝐻 = (LHypβ€˜πΎ)
ltrnel.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
ltrncnvel (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ ((β—‘πΉβ€˜π‘ƒ) ∈ 𝐴 ∧ Β¬ (β—‘πΉβ€˜π‘ƒ) ≀ π‘Š))

Proof of Theorem ltrncnvel
StepHypRef Expression
1 ltrnel.l . . . 4 ≀ = (leβ€˜πΎ)
2 ltrnel.a . . . 4 𝐴 = (Atomsβ€˜πΎ)
3 ltrnel.h . . . 4 𝐻 = (LHypβ€˜πΎ)
4 ltrnel.t . . . 4 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
51, 2, 3, 4ltrncnvat 38710 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) β†’ (β—‘πΉβ€˜π‘ƒ) ∈ 𝐴)
653adant3r 1181 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ (β—‘πΉβ€˜π‘ƒ) ∈ 𝐴)
7 simp3r 1202 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ Β¬ 𝑃 ≀ π‘Š)
8 simp1 1136 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
9 simp2 1137 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ 𝐹 ∈ 𝑇)
10 eqid 2731 . . . . . . 7 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
1110, 2atbase 37857 . . . . . 6 ((β—‘πΉβ€˜π‘ƒ) ∈ 𝐴 β†’ (β—‘πΉβ€˜π‘ƒ) ∈ (Baseβ€˜πΎ))
126, 11syl 17 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ (β—‘πΉβ€˜π‘ƒ) ∈ (Baseβ€˜πΎ))
13 simp1r 1198 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ π‘Š ∈ 𝐻)
1410, 3lhpbase 38567 . . . . . 6 (π‘Š ∈ 𝐻 β†’ π‘Š ∈ (Baseβ€˜πΎ))
1513, 14syl 17 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ π‘Š ∈ (Baseβ€˜πΎ))
1610, 1, 3, 4ltrnle 38698 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((β—‘πΉβ€˜π‘ƒ) ∈ (Baseβ€˜πΎ) ∧ π‘Š ∈ (Baseβ€˜πΎ))) β†’ ((β—‘πΉβ€˜π‘ƒ) ≀ π‘Š ↔ (πΉβ€˜(β—‘πΉβ€˜π‘ƒ)) ≀ (πΉβ€˜π‘Š)))
178, 9, 12, 15, 16syl112anc 1374 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ ((β—‘πΉβ€˜π‘ƒ) ≀ π‘Š ↔ (πΉβ€˜(β—‘πΉβ€˜π‘ƒ)) ≀ (πΉβ€˜π‘Š)))
1810, 3, 4ltrn1o 38693 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ 𝐹:(Baseβ€˜πΎ)–1-1-ontoβ†’(Baseβ€˜πΎ))
19183adant3 1132 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ 𝐹:(Baseβ€˜πΎ)–1-1-ontoβ†’(Baseβ€˜πΎ))
20 simp3l 1201 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ 𝑃 ∈ 𝐴)
2110, 2atbase 37857 . . . . . . 7 (𝑃 ∈ 𝐴 β†’ 𝑃 ∈ (Baseβ€˜πΎ))
2220, 21syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ 𝑃 ∈ (Baseβ€˜πΎ))
23 f1ocnvfv2 7243 . . . . . 6 ((𝐹:(Baseβ€˜πΎ)–1-1-ontoβ†’(Baseβ€˜πΎ) ∧ 𝑃 ∈ (Baseβ€˜πΎ)) β†’ (πΉβ€˜(β—‘πΉβ€˜π‘ƒ)) = 𝑃)
2419, 22, 23syl2anc 584 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ (πΉβ€˜(β—‘πΉβ€˜π‘ƒ)) = 𝑃)
25 simp1l 1197 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ 𝐾 ∈ HL)
2625hllatd 37932 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ 𝐾 ∈ Lat)
2710, 1latref 18359 . . . . . . 7 ((𝐾 ∈ Lat ∧ π‘Š ∈ (Baseβ€˜πΎ)) β†’ π‘Š ≀ π‘Š)
2826, 15, 27syl2anc 584 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ π‘Š ≀ π‘Š)
2910, 1, 3, 4ltrnval1 38703 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (π‘Š ∈ (Baseβ€˜πΎ) ∧ π‘Š ≀ π‘Š)) β†’ (πΉβ€˜π‘Š) = π‘Š)
308, 9, 15, 28, 29syl112anc 1374 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ (πΉβ€˜π‘Š) = π‘Š)
3124, 30breq12d 5138 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ ((πΉβ€˜(β—‘πΉβ€˜π‘ƒ)) ≀ (πΉβ€˜π‘Š) ↔ 𝑃 ≀ π‘Š))
3217, 31bitrd 278 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ ((β—‘πΉβ€˜π‘ƒ) ≀ π‘Š ↔ 𝑃 ≀ π‘Š))
337, 32mtbird 324 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ Β¬ (β—‘πΉβ€˜π‘ƒ) ≀ π‘Š)
346, 33jca 512 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ ((β—‘πΉβ€˜π‘ƒ) ∈ 𝐴 ∧ Β¬ (β—‘πΉβ€˜π‘ƒ) ≀ π‘Š))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   class class class wbr 5125  β—‘ccnv 5652  β€“1-1-ontoβ†’wf1o 6515  β€˜cfv 6516  Basecbs 17109  lecple 17169  Latclat 18349  Atomscatm 37831  HLchlt 37918  LHypclh 38553  LTrncltrn 38670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5262  ax-sep 5276  ax-nul 5283  ax-pow 5340  ax-pr 5404  ax-un 7692
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3365  df-rab 3419  df-v 3461  df-sbc 3758  df-csb 3874  df-dif 3931  df-un 3933  df-in 3935  df-ss 3945  df-nul 4303  df-if 4507  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4886  df-iun 4976  df-br 5126  df-opab 5188  df-mpt 5209  df-id 5551  df-xp 5659  df-rel 5660  df-cnv 5661  df-co 5662  df-dm 5663  df-rn 5664  df-res 5665  df-ima 5666  df-iota 6468  df-fun 6518  df-fn 6519  df-f 6520  df-f1 6521  df-fo 6522  df-f1o 6523  df-fv 6524  df-riota 7333  df-ov 7380  df-oprab 7381  df-mpo 7382  df-map 8789  df-proset 18213  df-poset 18231  df-plt 18248  df-glb 18265  df-p0 18343  df-lat 18350  df-oposet 37744  df-ol 37746  df-oml 37747  df-covers 37834  df-ats 37835  df-atl 37866  df-cvlat 37890  df-hlat 37919  df-lhyp 38557  df-laut 38558  df-ldil 38673  df-ltrn 38674
This theorem is referenced by:  ltrncnv  38715  cdlemg17h  39237
  Copyright terms: Public domain W3C validator